
Role Migration and Advancement Processes in OSSD Projects:
A Comparative Case Study

Chris Jensen and Walt Scacchi
Institute for Software Research

 Bren School of Information and Computer Sciences
University of California, Irvine
 Irvine, CA USA 92697-3455

{cjensen, wscacchi}@ics.uci.edu

Abstract
Socio-technical processes have come to the forefront 
of  recent  analysis  of  the  open  source  software  
development (OSSD) world. Interest in making these  
processes explicit is mounting,  from industry and the  
software process community, as well as among those  
who may become contributors to OSSD organization.  
This paper serves to close this gap by providing an 
analysis  of   the  role  migration  and  project  career  
advancement  process,  and  role-sets  within,  that  we 
have  observed  through  comparative  case  studies 
within  three  large  OSSD  project  organizations:  
Mozilla.org, Apache.org, and NetBeans.org.

1. Introduction

In  recent  years,  organizations  producing  both 
open and closed software have sought to capitalize on 
the  perceived  benefits  of  open  source  software 
development (OSSD) methodologies and technologies. 
Recent years have seen a substantial number of full-
time  developers  employed  to  contribute  to,  extend, 
customize,  or  provide  support  for  the  bigger  named 
OSSD projects.   Whether a full-time contributor,  an 
occasional hobbyist, or an end-user eager to report a 
bug,  people  new  to  an  OSS  project  face  the  same 
challenge: learning how to participate in the project. 
Although  most  developers  do  not  typically  join  a 
project  with  the  intent  to  lead  it,  understanding  the 
joining and participation processes can be as large an 
entry-barrier as the technical contribution itself. 

Studies  of  OSSD  processes  are  increasing  in 
number  (e.g.,  [26,  27]),  while  OSSD organizational 
structures, technical roles, and career opportunities are 
much  less  studied.  Ye  and  Kishida  [31]  and  also 
Crowston and Howison [7] observe that OSSD project 
members  gravitate  towards  central  roles  over  time, 

Figure 1. An “onion” diagram representing a 
generic OSSD project organizational hierarchy 

which they depict with “onion” diagrams such as in 
Figure 1.

Precedent  for  this  sort  of  layered organizational 
depiction is well established outside of OSSD, such as 
in management, economics, and software engineering 
literature [22, 2, 8].  These diagrams indicate multi-
layer  organizational hierarchies across communities, 
but do not indicate how participants might transition 
between  layers,  or  what  roles  are  available  at  each 
layer.  Moreover, the onion model as presented fails to 
draw out  the  presence  of  multiple  tracks  of  project 
career  advancement  through  different  role-sets, 
suggested in  Figure 2.  Much like their development 
processes, OSSD communities typically provide little 
insight into role migration and advancement processes.

What  guidance  is  provided  is  often  directed  at 
recruitment-  initial  steps  to  get  people  in  the  door. 
Guidance  for  attaining  more  central  roles  is  often 
characterized as being meritocratic, depending on the 
governance  structure  of  the  project  [10,  25]. 
Nevertheless,  these  development  roles  and  how 
developers  move between them seem different  from 
and more diverse than those offered by the traditional 
view of software engineering, where developers seem 
to  be  limited  to  roles  like  requirements  analyst, 
software  designer,  programmer,  or  code  tester,  and 
where there is  little/no expected movement  between 



roles during a development project (except perhaps in 
small projects). 

Figure 2. An “onion” pyramid representation of a 
generic OSSD project organizational hierarchy 

with multiple role-sets and advancement tracks.

Christie  and  Staley  [4]  argue  that  social  and 
organizational processes, such as those associated with 
moving between different developer roles in a project, 
are important in determining the outcome of software 
development processes. In previous studies, we have 
examined software development processes within and 
across OSSD communities [15, 24, 25, 26].  Here, we 
examine two related socio-technical processes used in 
OSSD as  a  way  of  merging  the  social/cultural  and 
technical/developmental  OSSD  activities. 
Specifically,  we’ll  focus  on  the  role  migration and 
project  career  advancement processes  of  developers 
from end-users/observers  towards roles  more  central 
roles within the Mozilla, Apache, and NetBeans OSSD 
project communities. Such processes characterize both 
the hierarchy of roles that  OSS developers play (cf. 
[12]),  as  well  as  how  developers  move  through  or 
become upwardly mobile within an OSSD project (cf. 
[30]).   While  anecdotal  evidence  of  these  processes 
exists, the lack of precision in their description serves 
as  a  barrier  to  project  entry,  continuous  process 
improvement,  and  process  adoption  by  other 
organizations.  A  goal  of  our  work  is  to  provide 
process  transparency  through  explicit  modeling  of 
such  process  in  ways  that  enable  increased 
participation,  process  improvement,  and  more 
widespread adoption.

In the remaining sections, we outline details about 
these  role  migration  and  advancement  processes 
found, while analyzing cases within and across each of 
these three OSSD project communities. 

2. Background

Role  migration  and  career  advancement  has 
previously  been  studied  in  both  education  and 
management literature.  In the former, it falls under the 
category of tenure.  The latter brings us a wealth of 
topics  from  gender  specific  issues,  such  as  glass 
ceilings in the workplace [18] to promotion and tenure 
in  academia  [23].   Management  literature  has  long 

argued  over  the  dual  ladder  system  of  role 
advancement within corporations [1].  However, there 
may  only  be  one  technical  track  of  advancement 
available.   In  such  cases,  technical  people  can  be 
forced into managerial positions in order to advance in 
the organization, denoting a migration in career tracks.

Here,  we show that the two ladder system does 
not  hold  for  role  migration  processes  in  OSS 
development  organizations.   Rather,  we  see  several 
patterns  at  work  dictated  by  the  organizational 
configuration of the community.  Moreover, although 
the traditional assumption of two ladder theory follows 
that  individuals  move  up  the  ladder  towards  to 
positions  of  greater  authority  open  source  project 
participants  ascend  and  descend  the  organizational 
hierarchy,  but  it  is  not  uncommon  to  see  lateral 
movements to other tracks of community involvement. 
Moreover, participation in OSSD projects is volunteer-
driven  and  advancement  is  usually  meritocratic: 
participants  advance  by  proving  themselves  in  the 
responsibilities  of  the  position,  while  proving  the 
social  commitment  to  project  success  by facilitating 
others OSSD work, and by mediating others conflicts 
[27,  28].   There  is  a  growing  body  of  work  in 
modeling  OSS  processes,  and  enumerating  roles  in 
such  projects,  however,  the  literature  is  lacking  in 
detail of how advancement in rank is achieved in OSS 
development, and how participation changes over time 
through role migration and advancement. 

3. Research approach and methods

To help explore the preceding themes, we present 
findings from empirical studies of cases within three 
large  OSSD  project  that  we  have  investigated 
longitudinally starting in 2002.We do not claim that 
what  we  report  here  is  meant  to  describe  all/most 
OSSD projects,  since  they  probably  don’t.  They  do 
however  represent  case  studies  from  three  of  the 
largest  OSSD  projects  whose  software  products 
constitute a core software infrastructure for the World 
Wide Web. The goal of our effort is to comparatively 
examine  and  explicate  semi-structured  models  of 
interesting socio-technical  processes  found in  OSSD 
projects  that  appear  to  be  key  to  overall  project 
success and longevity. These processes and the roles 
people play within them guide and coordinate large-
scale  OSSD activities  without  a  traditional  software 
project  management  regime.  As  such,  we  have 
engaged  a  variety  of  qualitative  and  ethnographic 
research  methods  (including  participant  interviews, 
collection and cross-coding of OSSD artifacts, semi-
automated  Web  site  data  mining,  and  multi-mode 
modeling (cf. [24, 28, 29, 30]) to discover and analyze 
role  migration  and  advancement  processes  in  this 
sample of OSSD projects, as well as the set of roles 



through which participants advance. Our focus here is 
to reveal a sample of (otherwise invisible) processes 
we  have  found  through  our  studies  with  these 
methods, since these projects do not provide explicit 
descriptions  or  models  for  how  such  processes 
operate.  However,  we  note  that  the  processes  we 
describe are not static, and so they evolve and adapt 
over  time,  much like most  effective  work processes 
supported by evolving computing technologies.

4. Case 1: Role-sets, role migration and 
advancement process in Mozilla.org

Developer recruitment in Mozilla has always been 
difficult.  The opening of the Netscape Web browser 
source code a few years ago offered OSS developers a 
unique opportunity to peek under the hood of the once 
dominant Web browser in use.  Nevertheless, the large 
scale of this software application (millions of lines of 
source code) and the complex/convoluted architecture 
scared  many   developers  away.   These  factors, 
combined  with  the  lack  of  a  working  release  or 
support from Netscape led one project manager to quit 
early on [19].  However, with the eventual release of a 
working product,  the Mozilla  project  garnered users 
who  would  later  become  developers  to  further  the 
cause.  

The  Mozilla.org  project  Web  site  lists  several 
ways  for  potential  developers  and  non-technical 
people to get involved with the community  [13].  One 
focuses  on  quality  assurance  and  documentation 
reflects  a  community  focus  on  maturing, 
synchronizing,  and  stabilizing  updates  to  the  source 
code  base.   Technical  membership  roles  and 
responsibilities currently listed include bug reporting, 
screening,  confirming,  and  fixing,  writing 
documentation, and contacting Web sites that do not 
display  properly  within  Mozilla/Firefox  browsers. 
Compared to more central roles, these activities do not 
require deep knowledge of the Mozilla source code or 
system  architecture,  and  serve  to  allow  would-be 
contributors  to  get  involved  and  participate  in  the 
overall software development process.  

When bugs are submitted to the Bugzilla (the bug 
reporting  system  used  to  support  Mozilla 
development),  they  are  initially  assigned  to  a 
component, which developers look at.  On occasion, 
community  members  will  submit  patches  for 
outstanding  issues  within  the  bug  repository  (often 
attached  to  comments  within  the  defect  discussion 
thread)  if  module  developers  have  not  taken action. 
This phenomenon can be seen especially in instances 
where  community  members  wish  to  share  solutions 
that have been rejected by the committers or module 
owner for inclusion in the source tree.

The next  task  is  to  recruit  others  to  accept  the 
software  repair/modification  (i.e.,  patch)  and 
incorporate  it  into  the  source  tree.   Recruitment  of 
patch  review  is  best  achieved  through  emailing 
reviewers working on the module for which the patch 
was committed  or reaching out to the community via 
the Mozilla IRC chat.   By repeatedly demonstrating 
competency and dedication writing useful code within 
a  section of  the source,  would-be developers  gain a 
reputation  among  those  with  commit  access  to  the 
current  source  code  build  tree.   Eventually,  these 
committers recommend that the promising developer 
be granted access by  people who direct or coordinate 
overall project activities. These are called the project 
drivers.  In rare cases, such a developer may even be 
offered  to  become  a  module  owner  if  s/he  is  the 
primary developer of that module and it has not been 
blocked for inclusion into the trunk of the source tree 
(see 
https://bugzilla.mozilla.org/show_bug.cgi?id=18574).

Once a project contributor is approved as a source 
code contributor,  there are several roles available to 
community  members.   Most  of  these  are  positions 
requiring greater seniority or record of demonstrated 
accomplishments within the community.  As module 
developers  and  owners  establish  themselves  as 
prominent  community  members,  other  opportunities 
may open up.  In meritocratic fashion, developers may 
transition from being a QA module contact to a QA 
owner  (cf.  [10]).   Similar  occasions  exist  on  the 
project level for becoming a module source reviewer.

Super-reviewers  attain  rank  by  demonstrating 
superior expertise for discerning quality and effect of a 
given section of source on the remainder of the source 
tree.   If  a  reviewer  believes  that  s/he  has  done  this 
appropriately,  s/he must  convince an existing super-
reviewer  of  such  an  accomplishment.   This  super-
reviewer will propose the candidate to the remainder 
of  the  super-reviewers.   Upon group consensus,  the 
higher rank is bestowed on the reviewer [20].

Project  drivers  are  usually  either  contributing 
company  employees  or  module  owners  who  are 
interested  in  setting  the  technical  direction  of  the 
project per release.  Their primary role is to encourage 
developers to fix specific high priority or high impact 
bugs critical to a release.   In that sense,  they act as 
release managers in a similar capacity to those of the 
NetBeans.org project described later.  At the time of 
this writing, there are seventeen drivers listed on the 
Mozilla  project  management  information  page  (see 
http://www.mozilla.org/about/drivers),  though  the 
recent development branch (version 1.8.1) is directed 
by  five  drivers  (see 
http://developer.mozilla.org/devnews/index.php/2006/
06/20/181-branch-now-under-branch-driver-control).  



There  is  little  evidence  to  offer  generalizations 
about  how  one  becomes  a  driver,  however  what  is 
visible  from  the  calendar  sub-project  shows  a 
developer  informally  nominated  at  a  project  status 
meeting  by  other  project  leads  and  developers  (see 
http://wiki.mozilla.org/Calendar:Status_Meetings:200
6-07-26_MeetingLog).   This  individual  agreed  to 
serve and was affirmed by the others present online. 
The  change  in  semantics  for  developer  roles  (i.e. 
project  lead  developer)  appears  characteristic  to  the 
sub-project, rather than extending to flagship projects 
such as Firefox and Thunderbird.

Community  level  roles  include  smoke-test 
coordinator, code sheriff, and build engineer, although 
no  process  is  prescribed  for  such  transitions.   As 
individual roles, they are held until vacated, at which 
time,  the position is  filled by appointment  from the 
senior  community members  and Mozilla  Foundation 
staff.

The participation tracks and respective hierarchy 
are given in Figure 3.  This is how the Mozilla project 
worked  for  some  period  of  time.   It  appears  that 
notions  of  module  ownership  and  a  formal  quality 
assurance  process  have  diminished  in  recent  years. 
The quality assurance track, in particular, appears to 
have collapsed into three roles: the defect submitter, 
the  benevolent  committer,  who  may  take  corrective 
and administrative actions on the defect report, and the 
patch contributor sharing his/her solution with others 
(which may or may not be included in the source tree). 
This  is  not  to  suggest  that  quality  assurance  is  not 
performed, but rather to the contrary, that the review 
process and the associated role structure, have become 
subsumed  by  other  processes  and  roles  over  time. 
When Mozilla was connected with Netscape, the super 

reviewership process was created in order to balance 
contributions from Netscape developers and the public 
community  and  ensure  their  quality.   As  Mozilla 
matured  (and  later  separated  from  Netscape),  the 
number of expert developers increased.  For reasons as 
technical  as  social/political  (as  suggested  by  [6]), 
several developers split off to create Firefox with more 
lightweight  development  processes  and  a  small, 
though heavily  gated,  role  hierarchy.   With  Firefox 
becoming  the  dominant  browser  project,  code 
reviewing and many of the related quality assurance 
tasks  have  merged  into  module  development 
processes.   Similarly,  the  reviewer  and  smoke  test 
coordinator  roles  in  the  development  track  have 
similarly faded, along with code sheriff in the build 
and project management tracks.  Moreover, since the 
legal incorporation of the Mozilla Foundation in 2005, 
build  and  release  roles  are  assigned  to  Foundation 
employees. Incorporation further added a management 
layer  including  the  board  of  directors  and  standing 
committees.   The  (now  deprecated)  role  migration 
process  for  reviewers  in  the Mozilla.org community 
appears in Figure 4.

5. Case 2: Role-sets, role migration and 
advancement process in Apache.org

The Apache Software Foundation (ASF) has been 
established  to  nurture  and  nominally  coordinate  a 
multi-project  software  ecosystem that  surrounds  the 
Apache Web server effort.  ASF has laid out a linear 
(and meritocratic) path for involvement, as shown by 
the role hierarchy in Figure 5.  Individuals start out as 
end-users  (e.g.,  Web  site  administrators),  and  then 
proceed to developer status, committer status, project 

Figure 3. Role-sets, role hierarchies, and advancement paths (left-to-right) in Mozilla.org



management  committee  (PMC)  status,  ASF 
membership,  and  lastly,  ASF  board  of  directors’ 
membership [14].    Much as in advancement in  the 
Mozilla  community,  Apache  membership  is  by 
invitation  only.   As  the  name suggests,  the  Apache 
server  is  comprised  of  patches  submitted  by 
developers.   These  patches  are  reviewed  by 
committers  and  either  rejected  or  accepted  into  the 
source tree.

In addition to feature patches, developers are also 
encouraged  to  submit  defect  reports,  project 
documentation,  and  participate  on  the  developer 
mailing  lists.   When  the  PMC is  satisfied  with  the 
developer’s contributions, they may elect to extend an 
offer  of  “committership”  to  the  developer,  granting 
him/her  write  access  to  the  source  tree.   To  accept 
committership,  the  developer  must  submit  a 
contributor  license  agreement,  granting  the  ASF 
license  to  the  intellectual  property  conveyed  in  the 
committed software artifacts.

PMC membership  is  granted  by  the  ASF.   To 
become  a  PMC  member,  the  developer/committer 
must be nominated by an existing ASF member and 
accepted by a majority vote of the ASF membership 
participating  in  the  election  [11].   Developers  and 
committers nominated to become PMC members have 
demonstrated  commitment  to  the  project,  good 
judgment in their contributions to the source tree, and 
capability  in  collaborating  with  other  developers  on 
the  project.   The  PMC  is  responsible  for  the 
management  of  each  project  within  the  Apache 
community.  The chair of the PMC is an ASF member 
elected by his/her fellow ASF members who initially 
organizes  the  day-to-day  management  infrastructure 
for each project, and is ultimately responsible for the 

project thereafter.  ASF membership follows the same 
process as PMC membership- nomination and election 
by a majority vote of existing ASF members.

ASF  members  may  run  for  office  on  the  ASF 
board of directors, as outlined by the ASF bylaws [3]. 
Accordingly, the offices of chairman, vice chairman, 
president, vice president, treasurer (and assistant), and 
secretary (and assistant) are elected annually.  A flow 
graph of the role migration process appears in  Figure
6.

Although, there is one path of advancement in the 
Apache  community,  there  are  several  less  formal 
committees that exist on a community (as opposed to 
project)  scale.   These  include  the  conference 
organizing  committee,  the  security  committee,  the 
public  relations  committee,  the  Java  Community 
Process  (JCP)  committee,  and  the  licensing 
committee.  Participation in these committees is open 
to  all  committers  (and higher  ranked  members)  and 
roles  are  formalized  on  an  as-needed  basis  (e.g. 
conference organization).  Non-committers may apply 
for inclusion in specific discussion lists by sending an 
email to the board-mailing alias explaining why access 
should be granted.   Thus,  processes  associated with 
these committees are ad hoc and consist of one step.

6. Case 3: Role-sets, role migration and 
advancement processes in NetBeans.org 

Roles  in  the  NetBeans.org  community  for 
developing  the  Java-based  NetBeans  interactive 
development environment are observable on six levels 
of project management [21],  as demonstrated by the 
role-sets and hierarchy in Figure 7.

Figure 4. Deprecated role migration process for reviewers in Mozilla.org



These  range  from  users  to  source  contributors, 
module-level  managers,  project-level  managers,  and 
community-level  managers.   The  NetBeans 
community’s  core  members  are  mostly  Sun 
Microsystems  employees,  the  community’s  primary 
sponsor, and are subject to the responsibilities set on 
them by  their  internal  organizational  hierarchy.   As 
such, (and unlike the cases of Apache and Mozilla), 
not  all  roles  are  open  to  volunteer  and  third-party 
contributors.   Non-Sun  employed  community 
members wanting to participate beyond end-usage are 
advised  to  start  out  with  activities  such  as  quality 
assurance  (QA),  internationalization,  submitting 
patches, and documentation [5].  As in the case with 
Mozilla,  until  they  have  proven  themselves  as 
responsible,  useful,  and  dedicated  contributors, 
developers  must  submit  their  contributions  to 
developer  mailing  lists  and  the  issue  repository, 
relying on others with access to commit the source. 
However,  unlike  Mozilla,  developers  are  also 
encouraged to start new modules.  

While  the  community  was  more  liberal  with 
module creation early in the project’s history, as the 
community  has  matured,  additions  to  the  module 
catalog have become more managed to eliminate an 
abundance of abandoned modules.  Also as in Apache 
and Mozilla, developers are subjected to the proving 
themselves before being granted committer status on a 
portion of the source tree.  Additionally, they may gain 
module owner status be creating a module or taking 

over  ownership  of  an  abandoned  module  that  they 
have been the primary committer for.  With module 
ownership  comes  the  responsibility  to  petition  the 
CVS manager  to  grant  commit access  to  the  source 
tree  to  developers  working  on  the  module,  thereby 
raising their role status to “committer.”

Rising  up  to  the  project-level  roles,  the  Sun-
appointed  CVS  source  code  repository  manager  is 
responsible for maintaining the integrity of the source 
tree,  as  well  as  granting  and  removing  developer 
access permissions.  In contrast, the release manger’s 
role is to coordinate efforts of module owners to plan 
and  achieve  timely  release  of  the  software  system. 
Theoretically, any community member may step in at 
any  time  and  attempt  to  organize  a  release.   In 
practice, this rarely occurs.  Instead, most community 
members  passively  accept  the  roadmap  devised  by 
Sun’s NetBeans team.  In the latter case, the previous 
release manager puts out a call to the community to 
solicit  volunteers  for  the  position  for  the  upcoming 
cycle.  Assuming there are no objections, the (usually 
veteran) community member’s candidacy is accepted 
and the  CVS manager  prepares  the  source  tree  and 
provides  the  new  release  manager  permissions 
accordingly.   Alternatively,  a  member  of  Sun  may 
appoint a member of their development team to head 
up the release of their next development milestone.

At  the  community-management  level,  the 
community  managers  coordinate  efforts  between 
developers  and  ensure  that  issues  brought  up  on 

Figure 5. Role-set, role hierarchy, and advancement paths in Apache.org

Figure 6. Role migration process for committership  in the Apache.org community, highlighting the sequence 
of a developer becoming a committer.



mailing lists are addressed fairly.  At the inception of 
the NetBeans project, an employee of CollabNet (the 
company hosting the NetBeans Web portal) originally 
acted  as  community  manager  and  liaison  between 
CollabNet  and  NetBeans.   However,  it  was  soon 
transferred to a carefully selected Sun employee (by 
Sun) who has held it since.  As community members 
have risen to more central positions in the NetBeans 
community, they tend to act similarly, facilitating and 
mediating  mailing  list  discussions  of  a  technical 
nature,  as  well  as  initiating  and  participating  in 
discussions of project and community direction. 

Lastly, a committee of three community members, 
whose  largely  untested  responsibility  is  to  ensure 
fairness within the community, governs the NetBeans 
project.  One of the three is appointed by Sun.  The 
community at large elects the other two members of 
the governance board.  These elections are held every 
six months, beginning with a call for nominations by 
the  community  management.   Those  nominees  that 
accept their nomination are compiled into a final list of 
candidates to be voted on by the community.  A model 
of  the  product  development  track  role  migration 
process is shown in Figure 8.

7. Comparative case analysis 

Role migration and project advancement in most 
OSS projects is usually passive and does not extend 
beyond  a  project's  own  Web  site.   In  the  projects 
observed, recruitment consisted of multiple ways for 
users and observers to get involved.  Such activities 
include  submitting  defect  reports,  test  cases,  source 
code  and  so  forth.   These  activities  require  a  low 
degree of interaction with other community members, 
most  notably  decision  makers  at  the  top  of  the 
organizational  hierarchy.   Our  observation  has  been 
that  the  impact  of  contributions  trickles  up  the 
organizational  hierarchy  whereas  socio-technical 
direction  decisions  are  passed  down.   As  such, 
activities that demonstrate capability in a current role, 
while also coordinating information between upstream 
and  downstream (with  respect  to  the  organizational 
hierarchy)  from  a  given  developer  are  likely  to 
demonstrate community member capability at his/her 
current  role,  and  therefore  good  candidates  for 
additional responsibilities.

Several themes are present in the role migration 
processes of these three projects.  In the communities 
we  have  examined,  we  found  different  paths  (or 

Figure 7. Role-sets, role hierarchies, and advancement paths in NetBeans.org



tracks)  towards  the  center  of  the  developer  role 
hierarchy as per the focus of each path.  Paths we have 
identified include project management (authority over 
technical  issues)  and  organizational  management 
(authority  over  social/infrastructural  issues).   Within 
these paths, we see tracks that reflect the different foci 
in  their  software  processes.   These  include  quality 
assurance roles, source code creation roles, and source 
code  versioning  roles  (e.g.  CVS  manager,  CVS 
committer,  etc),  as  well  as  role  paths  for  usability, 
marketing, and licensing.  There are roles for upstream 
development  activities  (project  planning).   More 
senior members of the community generally take these 
up. This is due in part that developers working in these 
roles can have an impact on the system development 
commensurate with the consequences/costs of failure, 
and requires demonstrated skills to ensure the agents 
responsible will not put the software source code into 
a state of disarray.

The  presence  of  corporate  and  non-profit 
organizations  as  the  core  of  OSS  organizations, 
employing project members in a full time fashion has 
become common.  As a salient example: the Mozilla 
project began as a proprietary company product.  For 
several  years  after  the  source  was  opened,  Mozilla 
existed as a  non-profit  foundation that  now recently 
has incorporated (though still with a non-profit status). 
With  a  full  time  staff,  many  of  the  project 
management  roles  (e.g.  build  engineering)  are  not 
positions  available to  community members  from the 
general public, but rather staffed positions.  The same 
is true of NetBeans.  Role migration and advancement 
processes for these positions follow from the corporate 
or  staffed  organization.   These  processes  are 
consequently more opaque than those of community 
positions.  In terms of recruitment, organizations often 

extend  employment  offers  to  veteran  community 
members.   Moreover,  though  Mozilla,  Apache,  and 
NetBeans  all  have  well  defined  organizational 
structures,  we  also  note  the  existence  a  number  of 
unofficial roles, such as for conference organization in 
Apache.  These roles are emergent and their migration 
processes may be one-off in nature.  Their existence 
may  be  temporary  (e.g.  conference  organizing)  but 
may formalize  over  time.   Table  1 summarizes  the 
types of role migration processes we have observed.

Recruitment and role migration processes are not 
a  newly  observed  phenomenon.   Like  career  paths 
described in management literature [17], movement in 
the  organizational  structure  may  be  vertical  or 
horizontal.  Most large OSSD project communities are 
hierarchical, even if they consist of only a few layers 
with  many members  exist  at  each  layer.   It  is  also 
common for project members to wear multiple hats, so 
to speak.  Source code developers almost unfailingly 
submit  defect  reports  though  their  primary  focus  is 
creating new code,  rather  than managing test  cases, 
test suites, or defect repository as they are the focus of 
the higher levels of the quality assurance that we have 
discussed here.   Quality  assurance and development 
are  two  tracks  that  naturally  align  themselves  well. 
With  further  empirical  study,  we  may  be  able  to 
identify additional patterns of alignment.

In  comparison  to  traditional  software 
development organizations, tracks of advancement in 
open  source  communities  are  much  more  fluid.   A 
developer  contributing  primarily  to  source  code 
generation may easily  contribute usability  or  quality 
assurance  test  cases  and  results  to  their  respective 
community  teams.   These  is  not  to  suggest  that  a 
module  manager  of  a  branch  of  source  code  will 
automatically  and  immediately  gain  core  developer 

Figure 8. Role migration process for Web team membership in NetBeans.org



privileges,  responsibilities,  and  respect  from  those 
teams.   However,  industrial  environments  tend 
towards rigid and static organizational hierarchies with 
highly controlled growth at each layer.

The depiction of role hierarchies in OSSD project 
communities as concentric,  onion-like circles speaks 
to the fact that those in the outer periphery have less 
direct  control  or  knowledge of  the  project’s  current 
state and its social and technical direction compared to 
those  in  the  inner  core  circle.   As  observed  with 
Mozilla,  organizational  hierarchies  and  recruitment 
and role  migration processes  are  not  static.   Unlike 
their  industrial  counterparts,  OSSD  organizational 
hierarchies  tend  towards  a  higher  degree  of  agility. 
Although  changes  in  the  number  of  layers  stabilize 
early in community formation, the size of each layer 
(especially outer layers) is highly variable.  Evolution 
of the organizational structure may cause or be caused 
by changes in leadership, control, conflict negotiation, 
and  collaboration  in  the  community,  such  as  those 
examined elsewhere [16].  If too pronounced, changes 
can lead to breakdowns of the technical processes.

Overall,  meritocratic  role  migration  and 
advancement  processes,  such  as  presented  here, 
consist  of  a  sequence  of  establishing  a  record  of 
contribution  in  technical  processes  in  collaboration 
with other community members, followed by certain 
“rights of passage” specific to each community.  For 
Apache, there is a formal voting process that precedes 
advancement.  In Mozilla and NetBeans, these are less 
formal.   The  candidate  petitions  the  appropriate 
authorities for advancement or otherwise volunteers to 
accept responsibility for an activity.  These authorities 
will either accept or deny the inquiry.

8. Conclusions

Social or organizational processes that affect the 
performance of software development processes have 
had comparatively little investigation. This is partially 
because some of these processes are perceived to be 
well understood (e.g., project management processes 
like  scheduling  or  staffing),  while  others  are  often 

treated as “one-off” or  ad hoc in nature, executing in 
different  ways in  each instantiation.  The purpose of 
our  comparative  case  study  examination  role 
migration and project career advancement processes is 
to help reveal how these socio-technical processes are 
intertwined  with  conventional  software  development 
processes, and thus constrain or enable how OSSD is 
performed in practice. In particular, we have examined 
and  modeled  these  processes  within  a  comparative 
sample of three large OSSD projects that embed the 
Web software infrastructure. As a result, we were able 
to  identify  different  types  of  methods  that  OSSD 
projects  employ  to  migrate  and  advance  their 
participants,  from peripheral  roles to core leadership 
positions. Lastly, we have shown where and how they 
interact with existing software development processes 
found in our project sample.

Overall, we have found that comparative studies 
of socio-technical processes found with even a small 
sample  of  cases,  such  studies  do  in  fact  provide 
sufficient substance and detail to reveal the richness of 
processes, practices, and roles that shape open source 
software development projects.

9. References

[1] Allen, T.J., & Katz, R. (1985). The Dual Ladder: 
Motivational Solution or Managerial Delusion? (Tech. 
Rep.  WP1692-85).   Massachusetts  Institute  of 
Technology (MIT), Sloan School of Management.
[2] Baldwin R.E.  (2001). The Core-Periphery Model 
with Forward-looking Expectations.  Regional Science 
and Urban Economics, 31(1), 21-49.
[3] Bylaws  of  the  Apache  Software  Foundation, 
Retrieved  February  7,  2005  from 
http://www.apache.org/foundation/bylaws.html
[4] Christie, A., & Staley, M. (2000). Organizational 
and  Social  Simulation  of  a  Software  Requirements 
Development  Process.  Software  Process--
Improvement and Practice, 5, 103–110
[5] Contributing  to  the  NetBeans  Project. Retrieved 
February  7,  2005  from 
http://www.netbeans.org/community/contribute/

Table 1. Types of role migration processes observed in OSSD projects

Role Acquisition Method Description

Implicit Acquired by performing a task.

Earned/Granted An individual or body of authority grants the rank to the community member.  This may 
require that the community member apply for the position, or that he or she is nominated 
or sponsored by a higher ranking member, possibly involving a vote from the granting 
body.

Elected An individual is voted into a position by the community at large or a subcommittee.

Appointed/Assigned An individual or body of authority appoints the community member to a position.



[6] Coward, A.  (2005).  About Firefox and Mozilla. 
Comment on Slashdot.org forum: Firefox Developer  
on  Recruitment  Policy, Retrieved  January  31,  2005 
from 
http://developers.slashdot.org/comments.pl?sid=13781
5&threshold=1&commentsort=0&tid=154&tid=8&mo
de=thread&cid=11527647
[7] Crowston, K. & Howison, J.  (2005).  The Social 
Structure  of  Free  and  Open  Source  Software 
Development,  First  Monday,  10(2).   February. 
Retrieved  27  April  2006 
http://www.firstmonday.org/issues/issue10_2/crowsto
n/index.html
[8] Curtis, B., Krasner,  H., & Iscoe, N.  (1988).  A 
Field Study of the Software Design Process for Large 
System.  Communications of the ACM, 31(11), 1268–
1287.
[9] Elliott, M. and Scacchi, W. (2003). Free Software 
Developers as an Occupational Community: Resolving 
Conflicts  and  Fostering  Collaboration,  Proc.  ACM 
Intern. Conf. Supporting Group Work, 21-30, Sanibel 
Island, FL, November.
[10] Fielding,  R.  (1999).  Shared  Leadership  in  the 
Apache Project. Comm. ACM, 42(4), 42-43.
[11] Fielding, R., Hann, I-H., Roberts, J., & Slaughter, 
S.  (2002).   Delayed  Returns  to  Open  Source 
Participation:  An Empirical  Analysis  of  the  Apache  
HTTP  Server  Project,  Paper  presented  at  the 
Conference  on  Open  Source:  Economics,  Law,  and 
Policy, Toulouse, France.
[12] Gacek,  C.,  &  Arief,  B.  (2004).   The  Many 
Meanings of Open Source, IEEE Software, 21(1), 34-
40.
[13] Getting  Involved  with  Mozilla.org.  Retrieved  3 
Nov 2004, http://www.mozilla.org/contribute
[14] How  the  ASF  works,  Retrieved  7  Feb.  2005 
http://www.apache.org/foundation/how-it-works.html
[15] Jensen,  C.,  &  Scacchi,  W.  (2005).   Process 
Modeling Across the Web Information Infrastructure, 
Software  Process  Improvement  and  Practice,  10(3), 
255-272.
[16] Jensen,  C.,  &  Scacchi,  W.  (2005b). 
Collaboration,  Leadership,  Control,  and  Conflict  
Negotiation  Processes  in  the  NetBeans.org  Open 
Source Software Development Community.  Proc. 38th. 

Hawaii  Intern,  Conf.  Systems  Science,  Waikola 
Village, HI, January 2005.
[17] Lash, P.B., & Sein, M.K. (1995). Career Paths in 
a  Changing  IS  Environment:  A  Theoretical 
Perspective,  Proceedings of SIGCPR 1995,  117-130. 
Nashville, TN
[18] Liff,  S.,  &  Ward,  K.  (2001).  Distorted  views 
through  the  glass  ceiling,  Gender,  Work,  and 
Organization, 8(1), 9-36.

[19] Mockus, A., Fielding, R., & Herbsleb, J. (2002). 
Two  Case  Studies  of  Open  Source  Software 
Development:  Apache  and  Mozilla,  ACM  Trans.  
Softw. Eng. and Methodology, 11(3), 309-346.
[20] Mozilla  Code  Review  FAQ,  Retrieved  7  Feb. 
2005  http://www.mozilla.org/hacking/code-review-
faq.html
[21] Oza,  M.,  Nistor,  E.,  Hu,  X.,  Jensen,  C.,  & 
Scacchi,  W. (2004).   A First  Look  at  the  NetBeans  
Requirements  and  Release  Process.  Unpublished 
report,  Bren  School  of  Information  and  Computer 
Sciences, University of California, Irvine.  Retrieved 
28  Mar.  2006 
http://www.isr.uci.edu/~cjensen/papers/FirstLookNetB
eans/.
[22] Rosen,  S.  (1982).  Authority,  Control,  and  the 
Distribution of Earnings.  Bell Journal of Economics, 
13(2), 311-323.
[23] Saaty,  T.L.,  &  Ramanujam,  V.  (1983).   An 
objective approach to faculty promotion and tenure by 
the analytic  hierarchy process.   Research in  Higher 
Education, 18(3), 311-331.
[24] Scacchi,  W.  (2002).  Understanding  the 
Requirements for Developing Open Source Software 
Systems, IEE Proceedings--Software, 149(1), 24-39.
[25] Scacchi, W.  (2004).  Free/Open Source Software 
Development  Practices  in  the  Computer  Game 
Community, IEEE Software, 21(1), 59-67.
[26] Scacchi,  W. (2005).  Socio-Technical  Interaction 
Networks in Free/Open Source Software Development 
Processes,  in  S.T.  Acuña  and  N.  Juristo  (eds.), 
Software  Process  Modeling,  1-27.  New  York, 
Springer Science+Business Media Inc.
[27] Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. 
and  Lakhani,  K.  (2006).  Understanding  Free/Open 
Source  Software  Development  Processes,  Software 
Process--Improvement  and  Practice,  11(2),  95-105, 
March/April.
[28] Scacchi, W., Jensen, C., Noll, J., and Elliott, M., 
(2006),  Multimodal  Modeling,  Analysis,  and 
Validation  of  Open  Source  Software  Development 
Processes, Intern. J. Information Technology and Web 
Engineering, 1(3), 49-63.
[29] Seaman,  C.B.,  (1999).  Qualitative  Methods  in 
Empirical  Studies  of  Software  Engineering,  IEEE 
Trans.  Software  Engineering,  25(4),  557-572, 
July/August.
[30] Sim, S.E., & Holt, R.C., (1998).  The Ramp-Up 
Problem in Software Projects: A Case Study of How 
Software Immigrants Naturalize, In  Proc. 20th Intern.  
Conf. Softw. Eng, 361-370. Kyoto, Japan.
[31] Ye,  Y.,  &  Kishida,  K.   (2003).   Towards  an 
Understanding  of  the  Motivation  of  Open  Source 
Software  Developers,  In  Proc.  25th Intern.  Conf.  
Softw. Eng. 419-429. Portland, OR


	1. Introduction
	2. Background
	3. Research approach and methods
	4. Case 1: Role-sets, role migration and advancement process in Mozilla.org
	5. Case 2: Role-sets, role migration and advancement process in Apache.org
	6. Case 3: Role-sets, role migration and advancement processes in NetBeans.org 
	7. Comparative case analysis 
	8. Conclusions
	9. References

