
Integrating Developer-related information across Open Source Repositories

Aftab Iqbal and Michael Hausenblas
Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway (NUIG)
IDA Business Park, Galway, Ireland

Email: {aftab.iqbal , michael.hausenblas}@deri.org

Abstract

Software developers use various software repositories in
order to interact with each other or to solve software re-
lated problems. They are required to adopt an identity for
each of the software repositories they wanted to use. Quite
often developers are also found on different code forges de-
veloping open source projects. It is worth mentioning that
the information relevant to the developers are distributed
on the Web among different data sources each requires an
ID and an authentication mechanism. In this paper, we pro-
pose to interlink the identities of a developer across differ-
ent data sources on the Web. Further, we show the benefit
of integrating developer-related information from different
data sources using some real-world scenarios.

1. Introduction and Motivation

Software developers use tools with underlying reposi-
tories to support the collaboration of distributed software
development. In order to interact with the many software
repositories that are part of an open-source project, soft-
ware developers usually require to adopt an identity for
each repository. Often, they use multiple identities for the
same repository [10]. Research has shown that these soft-
ware repositories contain rich amount of information about
software projects. By mining the information contained in
these software repositories, practitioners can depend less
on their experience and more on the historical data [5].
However, software repositories are commonly used only
as record-keeping repositories and rarely for design deci-
sion processes [4]. As pointed out by Conklin in [3], it is
still surprisingly difficult to obtain and abstract information
from these software repositories in order to answer even
simple questions like: How many developers are working
on the project? How big the community is surrounding
a project? How many contributors are contributing to the
project? What is the development ratio per developer? Is

the project flourishing? and many more. These are few
of the many questions which are hidden deep in the soft-
ware repositories and developers usually have in mind be-
fore joining or start contributing to a project. Having an-
swers to such questions can give a clear picture to the new-
comers or other interested users/developers of the project.

Apart from mining information from software reposi-
tories in order to answer questions which are mentioned
above, there also exist analytic services which provides de-
tailed analysis on different open source projects. One good
example of such a service is Ohloh1. Ohloh is a free, public
software directory which monitors up-to-date development
activity of open source projects. Ohloh allows software de-
velopers to join (i.e., adopt an identity) and claim their com-
mits on existing projects and also add projects not yet on
Ohloh, in order to assemble a complete profile of their open
source project contributions. Ohloh provides several types
of information about an open source project. For example,
it provides detailed analysis of per developer commit ratio
to the project, per programming language commit ratio to
the project, longevity of the project and software metrics
such as total lines of source code, commit statistics, com-
ment ratio etc. Other global statistics like programming-
language usage are also provided. Ohloh provides all types
of information which a user, developer or project manager
is interested or keen to know. At the time of writing this
paper Ohloh indexed 552,103 open source projects con-
necting more than 1,534,084 open source developers/-
contributors making it a valuable data source for collecting
up-to-date metrics about open source projects.

With the success and adoption of open source software
development, we have seen a tremendous growth in the
availability of different code forges. Different forges pro-
vide different kinds of features in order to keep existing
projects and attract more projects. Because of this, an
open source project sometimes developed at multiple code
forges. For example, Apache Software Foundation (ASF)2

1http://www.ohloh.net
2http://apache.org



manage projects at their own infrastructure but also pro-
vide github mirrors for developers who prefer git3 over svn4

versioning system. Therefore certain developers use the
GitHub5 infrastructure to contribute to the development of
Apache projects. At the time of writing this paper, ASF host
mirrors of approximately 320 different Apache projects on
GitHub6. Further, an open source project sometimes mi-
grate between different code forges during its entire time
period. These code forges also require projects and devel-
opers to adopt an identity in order to host a project and to
keep track of developers development activity. Eventually,
developers end up in developing multiple projects in differ-
ent code forges. For example, Stefan Bodewig7 who
is a member of ASF and is contributing to many Apache
projects8, has also developed few projects on GitHub9 and
SourceForge10. Hence, the history of open source project
development and developer’s contribution to different open
source projects are distributed across multiple code forges.

It is worth mentioning that there is an implicit connec-
tion between the developer’s activity in different software
repositories (i.e., mailing lists, bug tracking systems, source
control etc.) hosting a particular project, project develop-
ment statistics (available via Ohloh), activity on the social
media platforms and involvement in multiple projects on
different code forges. The developers are required to adopt
an identity for each of the repositories they wanted to use.
For example, they are required to adopt an email address in
order to send an email to the project mailing list, adopt an
ID to interact with others on social media platforms, adopt
an ID on a particular code forge, adopt an ID to push com-
mits to the source code repository, adopt an ID to comment
on the bug in a bug tracking system etc. Each repository
implemented its own proprietary ID management in order
to authenticate developers to log on and its own proprietary
user profile system to manage information about develop-
ers. Hence the information relevant to developers are dis-
tributed on the Web among different data sources (i.e., so-
cial platforms, code forges, software repositories etc.). The
different types of identities developer adopts are OpenID11,
WebID12, email address etc. We need hence not only make
the interconnection between developer identities among dif-
ferent software repositories within a project explicit but also
allow connecting it to other related data sources available on
the Web. Having such an explicit representation of the in-

3http://git-scm.com/
4http://subversion.apache.org/
5https://github.com
6https://github.com/apache
7http://stefan.samaflost.de/
8http://people.apache.org/committer-index.html#

bodewig
9https://github.com/bodewig

10http://sourceforge.net/users/bodewig
11http://openid.net/
12http://www.w3.org/wiki/WebID

terconnection between the data sources available we will be
able to support certain scenarios often found in the software
development process:

1. Synthesis Scenarios

• A developer could effectively query the co-
developers activities in different software reposi-
tories of the project.

• A developer could learn about the expertise
of co-developers in different programming lan-
guages.

• A developer could easily track the contribution of
co-developers in different projects.

2. Analysis Scenarios

• Different programming languages used in the
project and the ratio of commits relevant to each
programming language.

• Development ratio of a project across multiple
code forges.

• Developer’s contribution statistics on each
project.

The contribution of this paper is twofold: first, we iden-
tified the different types of identities which developers are
using in different data sources and provide a simple yet ef-
fective approach to interlink identities of the same developer
found in different data sources. It will enable developers
and other interested users to not only query facts which are
hidden deep inside the software repositories but also allow
to query development statistics as well as development ac-
tivity of a developer across multiple code forges. Further,
we show different use case scenarios which can be easily
addressed by integrating data from multiple data sources.

The paper is structured as follows: in Section 2 we
present use cases which describes the benefit of data in-
tegration from multiple sources. Then, we introduce the
overall architecture of data extraction, transformation and
interlinking process in Section 3. We report on exemplary
queries and their results in Section 4. In Section 5 we re-
view related work and compare it to our approach. Finally,
we conclude in Section 6 and outline future steps.

2. Use Cases

In the following we describe real-world scenarios from
the software development domain that can benefit from our
methodology. By establishing the identity of developers
throughout two or more data sources on the Web (for ex-
ample a code forge, social media platform and Ohloh) we
can integrate the necessary information to meet the require-
ments of the following, non-exhaustive list of application
scenarios:



Identifying a potential contributor Ryan is the initiator
of an open source project dealing with dynamic Web
content. He would like to extend the codebase and is
looking for one or more developers he can approach
based on a profile he defines as: “Must be familiar with
HTTP and REST and should have at least five years
experience in back-end development. Working experi-
ence with JavaScript is a plus”. How can Ryan, based
on information from GitHub, Geekli.st13, Twitter and
the project mailing list, find appropriate candidates he
can approach?

Supporting team changes Mary, a developer for a soft-
ware company, has to relocate in the middle of a
project. Julie, her supervisor, needs to hire someone
who can replace Mary. Julie wants to analyse Mary’s
expertise and recent activities: assigned bugs, commit-
ted code, mailing list and blog posts, etc. What Julie
ultimately wants is to enable the new hire to hit the
ground running, making the new team member as pro-
ductive as possible from day one by benefitting from
Mary’s experience.

Selecting a project for corporate sponsorship The board
of VOZ, a big, multinational company has identified an
opportunity to strategically (that is, both in-kind and fi-
nancially) sponsor an open source project dealing with
a MapReduce implementation. Ken, a new VP for this
area, is responsible to suggest an open source project
to the board. Ken has access to the code repositories
and issue trackers, the mailing lists, a few blog posts
and white papers of the projects. How can Ken assess
which of the many open source projects is trustworthy?
Which project has a mature base and a healthy commu-
nity? What project fits best both with VOZ’s company
and technology culture? How can Ken rank the can-
didate projects with as little manual work as possible
involved, based on objective criteria?

3. Design and Architecture

In this section, we describe the data sources we used to
extract information and the usage of a common model and
standard format to represent extracted information from dif-
ferent data sources to support better integration. One may
think of questions like: what is the best way to express the
knowledge so that it can be integrated easily across different
data sources? Can the knowledge be further used to link to
other data sources which contains extra information about a
certain entity? Can it be done in an automated fashion?

We propose to use Semantic Web technologies to repre-
sent data from multiple data sources. As such, we propose

13http://geekli.st/

to use RDF [7] (Resource Description Framework) as the
core, target data model. Once modeled in RDF, the data can
be indexed and queried using the SPARQL query standard
and associated tools. Finally, the integrated data can be pub-
lished on the Web using Linked Data principles14 allowing
third parties to discover and subsequently crawl the knowl-
edge, and also allowing to interlink with background infor-
mation available remotely on the Web. In Fig. 1, the overall
architecture of our approach is depicted. The architecture
basically covers the layers as described in the following:

1. The project and developer’s information from different
data sources are extracted and transformed into RDF,
yielding RDF data sets.

2. Interlink the RDF data sets with each other and across
different data sources, where necessary.

3. Load the interlinked RDF data sets into an SPARQL
endpoint. This enables one to query the interlinked
data sources in order to address many use cases (cf.
Section 2).

Figure 1. Architecture.

3.1 Transforming Data Sources into RDF

We considered Apache ANT15 project repositories,
GitHub and Ohloh as our primary data sources. We gen-

14http://www.w3.org/DesignIssues/LinkedData.html
15http://ant.apache.org



erated RDF data sets from mailing list archives, bug track-
ing systems, source control repositories and source code of
Apache ANT project. Further, we extracted project and de-
veloper related information from GitHub and Ohloh, pro-
ducing more RDF data sets.

In order to generate and interlink information from
Apache ANT project repositories, we used a Linked Data-
driven approach for extracting and interlinking information,
as we have argued elsewhere [6]. The overall concept of
Linked Data Driven Software Development (LD2SD) is to
extract information from software repositories of a particu-
lar project in RDF format by assigning URIs to each project
entity (i.e., bug, email, developer id etc.) and interlink
the URIs where necessary. Our LD2SD approach currently
generates RDF data sets from bug tracking systems, mail-
ing list archives, source control commit logs and the Java
source code of a particular project. An excerpt of an exem-
plary RDF representation of a source code file is shown in
Listing 1. 16

1 @prefix : <http://example.org/prj/org/> .
2 @prefix b: <http://vocab.deri.ie/linkedfloss#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 :connect a b:JavaClass;
5 b:imports "java.io.IOException";
6 b:author <http://example.org/ant/author/bodewig>;
7 b:package <http://example.org/prj/org/>;
8 b:hasMethod :connect#send;
9 b:hasMethod :connect#write;

10 b:hasAttribute "_port"
11 .
12 :connect#write a b:JavaMethod;
13 b:parameter-type "byte[]";
14 b:parameter-name "buff"
15 .

Listing 1. An Exemplary Java Source in RDF.

Listing 1 describes classes or packages which are im-
ported (see line#5), the author of the class (see line#6),
the methods defined in the class (see line#8-9) and
the class variables (see line#10). Further, the param-
eter names and types along with the JavaDocs associ-
ated with each method definition is also extracted (see
line#12-14).

GitHub provides an API17 access over HTTPS and al-
lows to send and receive data as JSON. We used the API
to extract projects and developers information in JSON and
converted it into RDF data sets. We do not go into details
of the metadata which is provided by the API but recom-
mend interested readers to have a look at their API tuto-
rial18. An excerpt of an exemplary RDF representation of
a developer information extracted from GitHub is shown in

16The URIs used in the Listings are just for illustration purposes and are
not dereferenceable.

17https://api.github.com
18http://developer.github.com/v3/

Listing 2. The information extracted for a particular de-
veloper describes the developers he/she is following and is
being followed (see line#4), the projects he/she is work-
ing on (see lines#5-6) and basic profile information (see
lines#7-9).

1 @prefix : <http://vocab.deri.ie/linkedfloss#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 <http://example.org/gh/dev/bodewig> a foaf:Person;
4 :followers <http://example.org/gh/dev/larrys>;
5 :repo <http://example.org/gh/prj/Ant4NantAndMSBuild>;
6 :repo <http://example.org/gh/prj/ant>;
7 :location "Germany";
8 foaf:accountName "bodewig";
9 foaf:name "Stefan Bodewig"

10 .

Listing 2. An Exemplary Developer
Information extracted from GitHub in RDF.

An excerpt of an exemplary RDF representation of
a project extracted from GitHub is shown in Listing 3.
The project information extracted from GitHub (cf. List-
ing 3) describes some basic information about the project
(see lines#6-10), core developers of the project (see
line#11), the developers who forked the project (i.e.,
contributors of the project) and source control commits rel-
evant to the project (see lines#12-17).

1 @prefix : <http://vocab.deri.ie/linkedfloss#> .
2 @prefix doap: <http://usefulinc.com/ns/doap#> .
3 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
4 @prefix b: <http://baetle.googlecode.com/svn/ns/#> .
5 <http://example.org/gh/prj/ant> a doap:Project;
6 :forkedby <http://example.org/gh/dev/terabyte>;
7 :watchers <http://example.org/gh/dev/bodewig>;
8 doap:description "Apache Ant";
9 doap:name "ant";

10 doap:programming-language "Java";
11 doap:developer <http://example.org/gh/dev/bodewig>;
12 :commits <http://example.org/gh/commits/0035b01af>,
13 <http://example.org/gh/commits/3bf8ef5f4>
14 .
15 :0035b01af a baetle:Committing;
16 b:author "stefan.bodewig";
17 b:summary "simple build file to create ..."
18 .

Listing 3. An Exemplary Project Information
extracted from GitHub in RDF.

Ohloh provides a RESTful API to the Ohloh open source
directory and returns XML-formatted data in response to
HTTP GET requests. We used the Ohloh API to get statisti-
cal information about projects and developers in XML for-
mat and converted it into RDF data sets. For details on the
metadata provided by Ohloh API we recommend interested



readers to have a look at their API tutorial19. An excerpt
of an exemplary RDF representation of a developer infor-
mation extracted from Ohloh is shown in Listing 4. The
information extracted for a particular developer describes
the basic profile information (see lines#4-9) along with
the projects he is working on (see lines#11-13).

1 @prefix : <http://vocab.deri.ie/linkedfloss#> .
2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
3 <http://example.org/ohloh/dev/bodewig> a foaf:Person;
4 :kudo-rank "9";
5 :location "Germany";
6 foaf:based_near [
7 geo:lat "51.191261";
8 geo:long "6.442066" ];
9 foaf:name "Stefan Bodewig"

10 .
11 :repo <http://example.org/ohloh/prj/ant>,
12 <http://example.org/ohloh/prj/Ant4NantAndMSBuild>,
13 <http://example.org/ohloh/prj/xmlunit>
14 .

Listing 4. An Exemplary Developer
Information extracted from Ohloh in RDF.

An excerpt of an exemplary RDF representation of a
project information extracted from Ohloh is shown in List-
ing 5. The project information extracted from Ohloh de-
scribes the number of users who uses the project, total num-
ber lines of code, developers contributed to the project and
the name of the project (see lines#6-9) etc. Moreover,
the total number of commits made by a particular devel-
oper, basic information about him/her and the total number
of commits made using different programming or scripting
languages is also extracted (see lines#12-25), which
will help in identifying the expertise of a developer in a cer-
tain programming or scripting language.

3.2 Interlinking RDF Data Sources

From the Listings, we are able to conclude that the RDF
fragments are talking about two different entities, i.e., a
project named “Apache Ant” and a developer named “Ste-
fan Bodewig”. We can interlink these RDF fragments using
an owl:sameAs property indicating that these URIs actu-
ally refers to the same entity (see Listing. 6). Through in-
terlinking Apache Ant repositories, GitHub and Ohloh RDF
data sources, we will be able to query the projects which
“Stefan Bodewig” is developing at GitHub, his development
activity (e.g., last month commits, bug fixes, social interac-
tion etc.) in Apache Ant repositories and his project devel-
opment ratio in different programming languages (available
via Ohloh).

19http://meta.ohloh.net/getting_started/

1 @prefix : <http://example.org/ohloh/prj/ant#> .
2 @prefix ls: <http://vocab.deri.ie/linkedfloss#> .
3 @prefix doap: <http://usefulinc.com/ns/doap#> .
4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5 <http://example.org/ohloh/prj/ant> a doap:Project;
6 ls:users "1174";
7 ls:loc "218797";
8 doap:developer :15491947040395;
9 doap:name "Apache Ant"

10 .
11 :15491947040395 a foaf:Person;
12 ls:commits "3994";
13 ls:language_fact :15491947040395_5 ,

15491947040395_3;
14 foaf:accountName "bodewig";
15 foaf:name "Stefan Bodewig"
16 .
17 :2528958348267147_5
18 ls:commits "2501";
19 ls:language-id "5";
20 doap:programming-language "Java"
21 .
22 :2528958348267147_3
23 ls:commits "1311";
24 ls:language-id "3";
25 doap:programming-language "XML"
26 .

Listing 5. An Exemplary Project Information
extracted from Ohloh in RDF.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .
2

3 <http://example.org/gh/dev/bodewig> owl:sameAs
4 <http://example.org/ohloh/dev/bodewig>,
5 <http://example.org/ant/author/bodewig> .
6

7 <http://example.org/ohloh/prj/ant> owl:sameAs
8 <http://example.org/gh/prj/ant> .

Listing 6. An Exemplary Interlinking.

In order to interlink software repositories of a particu-
lar project, we wrote our own scripts. For example, the log
extractor generates the RDF data sets from source control
commit logs and further, links it to the RDF data sets of bugs
and source-code where necessary. An excerpt of an exem-
plary RDF representation of a source control log is shown
in Listing 7. It exploits the convention used by the develop-
ers mentioning bug IDs in the summary of a commit while
committing changes to the source control repository. The
log extractor uses simple text search algorithm to search
for certain phrases commonly used by developers such as,
bug#xxxx in the summary of a source control logs. When
a bug ID is detected, the log extractor adds a triple using
property b:fixes to interlink the source control log to
that particular bug (see line#8). The log extractor also
links the source code file URL on source control repository
URL to the meta-information of that particular source code
file using owl:sameAs property (see line#11).



1 @prefix : <http://example.org/apache/prj/SVN/> .
2 @prefix b: <http://baetle.googlecode.com/svn/ns/#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 :39823 a b:Committing;
5 b:modified

<http://example.org/prj/svn/org/connect.java>;
6 b:author

<http://example.org/apache/prj/author/bodewig>;
7 b:revision "39823";
8 b:fixes <http://example.org/apache/prj/Bug/123>;
9 b:summary "this patch fixes bug#123.";

10 <http://example.org/prj/svn/org/connect.java> a
b:JavaSource;

11 owl:sameAs <http://example.org/prj/org/connect>
12 .

Listing 7. An Exemplary Source Control
Interlinking.

Generating owl:sameAs links between the developers
of Ohloh to the Apache or GitHub developers is straight
forward. Ohloh contains statistics of a particular project
by analyzing source code repositories which means that
the developer names at Ohloh will be same as the devel-
oper names in the source code repository of that particular
project. In order to generate a set of owl:sameAs links
between an Apache project and the Ohloh project, we ex-
tracted a list of developers who committed on the source
control repository of an Apache ANT project by query-
ing the source control RDF data sets. Further, we queried
the Ohloh RDF data set to retrieve a list of developers of
Apache ANT project. Finally we compared both lists of
developers using string similarity measures in order to gen-
erate owl:sameAs links between them. There are in to-
tal 46 developers who committed code to the source con-
trol repository of Apache ANT project from the beginning
of the project to date, among them we found 45 developer
names in the Ohloh data set hence producing 45 links be-
tween Apache ANT and the respective Ohloh data set. This
interlinking enables us to not only query the activities of a
particular developer in Apache ANT project but also allows
to see the commits ratio of a developer in different program-
ming languages used in the project.

In order to generate links between Ohloh and GitHub
developers, we took a subset of 153 random projects from
Ohloh and 4414 projects from GitHub. We extracted a list
of developers who worked on the GitHub projects under
consideration and compared it with the developers of se-
lected 153 Ohloh projects. The string similarity approach
resulted in 196 owl:sameAs links between Ohloh and
GitHub data sets. This enables us to not only query the de-
velopment activity of developers in GitHub project but also
allows to query their contribution statistics which are stored
by Ohloh.

4. Preliminary Experimental Results

We are currently in the phase of preparing a ground truth
in order to validate our approach of interlinking data sources
as well as comparing it to other duplicate detection algo-
rithms and frameworks like Silk [11], Swoosh [1], Duke 20

etc. We will address in this section few use cases which we
discussed in Section 2 and show how linked data sets can be
used to exploit them.

In order to show the benefit of integrating developer re-
lated information from different data sources, we hosted
a SPARQL endpoint21 which contains the RDF data sets
from GitHub, Ohloh and Apache projects. We will use
this SPARQL endpoint to run SPARQL queries which are
presented in this section. We start with a simple query to
lists all projects on which a developer is working on or has
worked in the past (cf. Listing 8).

1 PREFIX ls: <http://vocab.deri.ie/linkedfloss#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3

4 select distinct ?repo {
5 ?dev ls:repo ?repo .
6 ?dev foaf:accountName "bodewig".
7 }

Listing 8. Developer Projects Query Pattern.

In our current settings, we extracted Apache ANT de-
velopers data from one code forge only (i.e., GitHub). In
the near future, we will incorporate other code forges (i.e.,
SourceForge, GoogleCode etc.) and further apply interlink-
ing approach in order to get an extensive list of projects
on which developer is working or has worked in the past.
Given that the Ohloh data set contains the development
statistics of a developer in different programming languages
as part of a particular project, it is easy to query the number
of commits he made to a particular project using different
programming languages as shown in Listing 9.

The results of the SPARQL query (cf. Listing 9) is
shown in Table 1 which makes it easier to understand the
expertise of a particular developer in different programming
languages based on the number of commits he made to the
project. For example, the result shows that the developer
has most experience in “Java” comparing to “MetaFont”
programming language. It also address to a certain extent
our first use case scenario outlined in Section 2.

It is very likely that the developer has contributed to
other open source projects which are also indexed by Ohloh.
Hence, one can also query the development statistics of all
the programming languages which a developer has used in
developing different open source projects. The query in

20http://code.google.com/p/duke/
21http://linkedfloss.srvgal85.deri.ie/sparql



1 PREFIX ls: <http://vocab.deri.ie/linkedfloss#>
2 PREFIX doap: <http://usefulinc.com/ns/doap#>
3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4 PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6

7 select ?commits ?language {
8 ?id foaf:accountName "Stefan Bodewig" .
9 ?repo doap:developer ?id .

10 ?repo doap:name "Apache Ant" .
11 ?id ls:language-fact ?languageFact .
12 ?languageFact ls:commits ?commits .
13 ?languageFact doap:programming-language ?language .
14 }

Listing 9. Developer Commits Query Pattern.

Programming Language Commits
Java 2501
HTML 1404
XML 1311
JavaScript 257
Shell Script 74
XSL Transformation 30
DOS Batch Script 28
CSS 23
Perl 8
Python 7
C# 6
XML Schema 1
MetaFont 1

Table 1. Developer Commits to the Project
based on Programming Language.

Listing 10 returns an average commit ratio of a developer in
different programming languages based on all the projects
he worked. The results returned by the query (cf. List-
ing 10) gives an idea about the expertise level of a developer
in different programming languages as shown in Table 2.

Further, one can query the total number of commits made
by all the developers to the project in different program-
ming languages. It will help newcomers (i.e., volunteers)
of the open source project to get an insight of which pro-
gramming or scripting language they could potentially use
to start contributing to the project. In fact, most or all of
the questions pointed out by Conklin (cf. Section 1) can
be answered by simple queries. Enabling such integration
will not only allow developers to query abstract level in-
formation (e.g., number of commits made by a developer
to the project) about the project or developer but also al-
low to query information which is hidden deep inside the
project repositories (e.g., contribution of a developer in the
last release of the project). We have tried to show the ben-
efit of integrating developer-related data from different data

1 PREFIX ls: <http://vocab.deri.ie/linkedfloss#>
2 PREFIX doap: <http://usefulinc.com/ns/doap#>
3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
4 PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6

7 select ?language (AVG(xsd:int(?commits)) AS
?commit_average)

8 where {
9 ?id foaf:accountName "Stefan Bodewig" .

10 ?repo doap:developer ?id .
11 ?id ls:language-fact ?languageFact .
12 ?languageFact ls:commits ?commits .
13 ?languageFact doap:programming-language ?language .
14 OPTIONAL {?languageFact ls:comment-ratio

?commentRatio }
15 } group by ?language

Listing 10. Developer’s Average Commit Ratio
Query Pattern.

Programming Language Commits Average
Java 327.00
JavaScript 257.00
HTML 171.88
XML 129.57
Shell Script 37.50
DOS Batch Script 28.00
C# 27.00
CSS 11.33
XSL Transformation 8.00
Perl 8.00
Python 7.00
XML Schema 1.50
MetaFont 1.00
Ruby 1.00

Table 2. Developer’s Average Commit Ratio
based on Programming Language.

sources in order to serve a variety of use cases often found
in the software development domain.

5. Related Work

To the best of our knowledge, there are only a few pub-
lished works on identifying and relating the different identi-
ties that developers use to interact with different tools in the
field of software engineering. In [2], Bird et al. proposed an
approach to produce a list of <name,email> identifiers by
parsing the emails and clustering them. The clustering algo-
rithm to measure the similarity between every pair of IDs is
based on string similarity between names, between emails,
between names and emails, etc. We also use the string sim-
ilarity approach in order to interlink the data sources but



our scope is broader in a sense that we are not applying the
heuristics within a single project but across different data
sources.

Robles et al. [10] discusses the problem of developer
identification in general, but the work lacks in details about
the heuristics they propose to identify and match the dif-
ferent identities of developers. The authors propose a
technique to build one identity from another by extract-
ing the “real life” name from email addresses, such as
nsurname@domain.com, name.surname@domain.com etc.
Their approach also relies on string similarity algorithm. In
general, the problem is related to duplicate detection. The
duplicate detection frameworks provide several techniques
to effectively solve matching different entities. In this re-
gard, Kopcke et al. [8] analyzed and compared 11 different
duplicate detection frameworks. While research in this area
mostly refers to identifying duplicates in the same data set,
the techniques might be mapped to the case of matching
over different data sets. However, they are tailor-made for
identifying different IDs of the same developer inside one
repository. Naumann et al.[9] provides a nice overview of
this research direction.

In the Semantic Web domain, Volz et al. [11] proposed
an interlinking framework also known as SILK framework
which generates link between two RDF data sets based on
some string similarity measures specified by the user. Their
interlinking framework supports different string similarity
algorithms to compare if two different RDF resources are
similar or not. In a next step, we will assess to what ex-
tent we can use the SILK framework to link different data
sources in the near future.

6. Conclusion

We have motivated and proposed a simple yet effective
approach of integrating developer-related information from
different data sources on the Web. We have argued that Se-
mantic Web technologies allow integrating and querying in-
formation across different data sources and have illustrated
this through a number of real-world examples.

We have made some initial progress in integrating dif-
ferent data sources using string similarity based interlink-
ing approach. Currently, we are in the phase of preparing a
ground truth and will compare our approach with other du-
plicate detection algorithms and frameworks. Additionally,
we improve the interlinking approach, yielding higher qual-
ity and quantity links between different data sources. We
also plan to extract more project and developer-related in-
formation from different data sources (i.e., Apache, GitHub,
Ohloh, SourceForge, GoogleCode etc.), transform them
into RDF data sets, interlink them and host them via our
SPARQL endpoint. In the near future, we also plan to pro-
vide an application on top of our interlinked data sources

in order to address certain issues/use cases often found in
software development processes.

References

[1] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. The VLDB Journal, 18(1):255–276, Jan.
2009.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan. Mining email social networks. In MSR ’06: Pro-
ceedings of the 2006 international workshop on Mining soft-
ware repositories, pages 137–143, New York, NY, USA,
2006. ACM.

[3] M. Conklin. Beyond low-hanging fruit: Seeking the next
generation in floss data mining. In proceeedings of OSS,
pages 47–56, 2006.

[4] S. Diehl, H. C. Gall, and A. E. Hassan. Guest editor’s in-
troduction: Special issue on mining software repositories.
Empirical Softw. Eng., 14(3):257–261, 2009.

[5] A. E. Hassan. The Road Ahead for Mining Software Repos-
itories. In Future of Software Maintenance (FoSM) at Int.
Conf. on Software Maintenance(ICSM), 2008.

[6] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello.
LD2SD: Linked Data Driven Software Development. In Int.
Conf. on Software Engineering and Knowledge Engineering
(SEKE 09), 2009.

[7] G. Klyne, J. J. Carroll, and B. McBride. Resource De-
scription Framework (RDF): Concepts and Abstract Syn-
tax). W3C Recommendation 10 February 2004, RDF Core
Working Group, 2004.

[8] H. Köpcke and E. Rahm. Frameworks for entity match-
ing: A comparison. Data Knowl. Eng., 69(2):197–210, Feb.
2010.

[9] F. Naumann and M. Herschel. An introduction to duplicate
detection. Synthesis Lectures on Data Management, 2(1):1–
87, 2010.

[10] G. Robles and J. M. Gonzalez-Barahona. Developer identi-
fication methods for integrated data from various sources. In
Proceedings of the 2005 international workshop on Mining
software repositories, MSR ’05, pages 1–5, New York, NY,
USA, 2005. ACM.

[11] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk a link
discovery framework for the web of data. In 2nd Workshop
about Linked Data on the Web (LDOW2009), Madrid, Spain,
2009.


