
Introducing Usability Practices to OSS:
The Insiders’ Experience

Stanis�law Osiński1 and Dawid Weiss2

1 Poznan Supercomputing and Networking Center,
stanislaw.osinski@man.poznan.pl

2 Institute of Computing Science, Poznan University of Technology,
dawid.weiss@cs.put.poznan.pl

Abstract. This paper presents a case study of introducing usability
practices to a small open source project called Carrot2. We describe
our experiences from a point of view of an active Carrot2 developer,
who is at the same time a usability enthusiast and practitioner. We
perform a critical analysis of the system’s original user interface and
describe the steps we took to improve it. We also analyse the success
factors and the impact of the whole redesign process.

1 Introduction

The growing reliability of open source software (OSS) has led to widespread
adoption of OSS server-side packages, such as the Apache web server or MySQL.
At the same time, debates continued on whether OSS can also effectively replace
proprietary end-user applications [1]. One important factor determining the
success of the latter is the quality of their user interfaces (UIs). As opposed
to traditional OSS users, who like taking on technical challenges, typical non-
experts will simply want to complete their tasks quickly, minimising the effort
required to learn and operate the software. Consequently, while the low quality
of UI is unlikely to discourage experts from using OSS, it can potentially prevent
massive adoption among end-users. Thus, problems of usability, i.e. the ease of
learning and efficiency of using, of OSS are becoming increasingly important.

This paper is a case study of introducing usability practices to a small open
source project called Carrot2. We describe our experiences from a point of view
of an active Carrot2 developer, who is at the same time a usability enthusiast
and practitioner.

2 Improving the user interface of Carrot2

The aim of the Carrot2 project is to provide a flexible framework for building
search results clustering engines. Search results clustering is a web mining tech-
nique that simplifies browsing of search results by dynamically organising them
into thematic folders (Fig. 1(d)). In response to the query ‘tiger’, for example,



the user would be presented with search results divided into such topics as ‘Mac
OS’, ‘Tiger Woods’, ‘Security Tool’ or ‘Tiger Attack Helicopter’.

Carrot2 started in 2002 with a primary goal to enable rapid experiments
with novel web mining techniques [2]. But as the project matured, we de-
cided to place greater emphasis on supporting end-users, which required making
Carrot2’s web-based interface easier to learn and use. We divided the process
of redesigning the UI into four major stages: evaluation of the original design,
prototyping of the new design, usability testing, implementation and evaluation
of the redesigned version, all of which we describe below.

2.1 Evaluation of the original design

The original design of the user interface was aligned with the system’s primary
goal at that time – attract text mining researchers – and it perfectly served
its purpose. After shifting the emphasis to end-users, however, some elements
of the UI would not be appropriate anymore. Below we summarise the most
important problems that we planned to address.

Choosing sources of search results. The original UI combined two different
aspects – choosing the source of search results and the clustering algorithm
– into one Process combo-box (Figure 1(a)). One problem with this approach
was that these two choices are independent, and the original UI made it impos-
sible to use certain combinations of search sources and clustering algorithms.
A more serious problem, however, was that many end-users would care less
about changing the clustering algorithm than the search source. Unfortunately,
the original UI would force them to choose e.g. between: ‘GoogleAPI, English
stemmer, Tf Terms weighing, AHC, Dynamic Tree’ and ‘YahooAPI, LINGO,
Dynamic Tree’, both of which are meaningless for a non-expert.

Choosing search results sorting order. The presentation of search results
and thematic folders in the original UI was based on a variant of the two-panel
selector pattern, in which the folders were shown on the left-hand side of the
screen and the corresponding search results appeared on the right (Fig. 1(b)).
One element of this interface that might be confusing to non-expert users was
the choice of results sorting method located above the folder list. Not only was it
put in the inappropriate visual context (sorting order referred to search results
shown on the right and not to the folder list), but also it was not clear what
different sorting orders meant and which of them was currently selected.

Technical jargon. At a few places the original UI used technical and spe-
cialised vocabulary not easily understood by non-experts. One example is la-
beling the combo box for choosing the search results source (Yahoo!, Google,
MSN) as Process1. The combo box itself contained hard to understand items
such as: ‘Carrot2.input.snippet-reader.alltheweb’ (internal identifier of a search
results source) or ‘Rough-KMeans’ (name of a text clustering technique).

1 The internal architecture of Carrot2 is based on pipelines called processes.

314 Stanis�law Osiński and Dawid Weiss



Introducing Usability Practices to OSS: The Insiders’ Experience 315

(a) Startup screen of the original user interface.

(b) Results page of the original user interface.

(c) Startup page of the new design.

(d) Results page of the new design.

Fig. 1. Carrot2 user interface screenshots, available on-line at http://www.carrot2.org.



The good points. Despite the deficiencies highlighted above, the original de-
sign had many elements worth preserving in the improved UI. The most impor-
tant one was the ‘stateless operation’ paradigm – all search results and cluster
folders should be fetched in one request. With this approach the users would
not experience any delays caused by additional communication with the server
while browsing the folder list.

2.2 Prototyping of the new design

To allow ourselves a large degree of flexibility while brainstorming and polishing
the new UI, we decided to use a prototyping technique based on static HTML
files. This approach let us keep the cost of changing the user interface to a
minimum and perform usability testing before writing any code. Over a few
weeks, we worked on the prototype in an iterative fashion, increasing its fidelity
and fixing problems identified by usability tests. In the last step, we ensured that
the prototype displayed correctly on the major web browsers. Below we highlight
the most important changes we introduced to the Carrot2 user interface.

Search results sources as tabs. To address the most important problem with
the previous UI, we decided that different data sources should be represented as
‘tabs’ (Fig. 1(c)), like in conventional search engines. The choice of a clustering
algorithm, previously integrated with the search source, was delegated to a sep-
arate UI component. With this approach users can try all possible combinations
of data sources and clustering algorithms.

Hidden clustering algorithm choice. As the majority of end-users will not
have enough technical knowledge to purposefully select the clustering algorithm,
this choice is only available in the block of ‘advanced options’, shown after
selecting the Show options link placed next to the query field.

Polished startup and results pages. The redesigned user interface offers an
enhanced startup page with a one-sentence description of what Carrot2 will
do with the query typed in by the user. The search results page, apart from
the introduction of search source tabs, has not undergone any major paradigm
changes. We preserved the previous layout (Fig. 1(d)) and stateless behaviour of
the original UI. Minor improvements included: enabling independent scrolling of
search results and folders by putting them in separate internal frames, making
folder selection easier by slightly increasing the font size and spacing, adding
icons to strengthen the ‘foldering’ metaphor. The the choice of search results
sorting method was removed entirely, and the results are always shown in the
order they were received from the search engine.

2.3 Usability testing of the new design

Following the experiences of Jacob Nielsen [3], who showed that testing a UI
even with a handful of people can detect the most important design flaws, we
performed a number of informal usability tests of the new UI. For each test
participant, we briefly introduced the Carrot2 clustering engine and explained

316 Stanis�law Osiński and Dawid Weiss



Introducing Usability Practices to OSS: The Insiders’ Experience

the goal of the tests, emphasizing that it is the UI that is being evaluated and
not the participant’s actions. Then, we asked to perform a number of search
tasks using the UI, e.g. query Google for ‘data mining’ and find results related to
the field of text mining. Throughout the tests, we did not help the participants
to complete their tasks, but only carefully observed their actions and took notes
of their interaction with the system.

The most important observation we made during the usability tests was that
for some specialised data sources the users did not know what type of queries
they could submit. To give such users some guidance, on the startup page we
included example queries for each search tab.

2.4 Implementation and evaluation

An important input for the implementation phase was the static HTML proto-
type of the UI. With a high-fidelity prototype covering all the details of the UI,
the implementation work could concentrate on providing an efficient technical
backbone for the already designed graphics and interaction schemes.

A rather imperfect (but valuable) test of the impact of the new design is
comparing the number of queries the public demonstration of Carrot2 handled
before and after the UI change. Before the first beta release of the improved
user interface, which happened in August 2006, the monthly number of queries
did not exceed 5 000. The query rate soared to over 13 000 in August 2006 and
it further increased in September, when the new release of Carrot2 was officially
announced. Although the numbers at the end of 2006 may still to some extent
be a result of the new release advertising, the popularity of Carrot2 on-line demo
seems to have stabilised at a much higher level. In addition to pure numbers,
we also received quite a few favourable comments from users who liked the
improved concepts and graphical finish of the new UI, which is a very important
motivating factor for future work on the project.

The whole process of user interface redesign took a total of about 200 work-
ing hours spent between March and September of 2006. The two largest work
items involved were building a prototype of the new UI and its actual imple-
mentation. The former took about 80 working hours spent between March and
June of 2006, while the latter required about 120 working hours in the period
between July and September of 2006. Compared to the total effort put into
Carrot2 since 2002, the UI-related work does not seem very costly.

3 The success factors of usability practices in Carrot2

While open source developers declare that usability has a high or very high
priority for them, they rarely apply it in practice with respect to their own
projects [4]. One reason for this is, as explained in [5], that most work on open
source projects is voluntary, developers work on the topics that interest them
and this may well not include features for novice users and usability. Below we

317



summarise the factors that we found important for a successful introduction of
usability practices to Carrot2.

Usability enthusiast among project developers. One of Carrot2’s developers,
in addition to being interested in web and text mining problems, is a usability
enthusiast. This made the voluntary work on user interface aspects both inter-
esting and rewarding. Moreover, by combining the role of a developer knowing
Carrot2’s internals and a usability expert, we could avoid, for example, design-
ing a UI that is impossible to implement due to technical reasons.

Usability work was part of a major system architecture change.The user
interface redesign was carried out as part of a major refactoring of the system
core. As a result of the change, we would have to make a large number of
changes to the implementation of the original UI. This gave us a good reason to
completely abandon the original UI and its implementation and create the new
one from scratch. Unfortunately, throwing away large parts of code is a situation
which many open source projects, especially those with public programming
interfaces (APIs), simply cannot afford.

Very simple user interface. The new Carrot2’s UI we designed contained
only two screens, which made it relatively easy to pay attention to every detail.
For projects with larger UIs or a large number of distributed contributors, it
may not be possible to carry out the usability work in a similar way.

4 Conclusions and future work

In this paper we described the process of introducing usability practices to
a small OS project called Carrot2. A number of favourable factors, such as
having a project member who shared the developer and usability expert roles,
contributed to the success of the UI improvement process. One lesson we learned
during our work on usability is that creating a high-quality user interface does
not necessarily have to cost much and can bring substantial benefits.

References

1. Relevantive: Linux Usability Study Report. On-line: http://www.linux-usability.de/
download/linux usability report en.pdf (2003)

2. Weiss, D.: Carrot2: Design of a Flexible and Efficient Web Information Retrieval
Framework. In: Proceedings of the Third International Atlantic Web Intelligence
Conference, AWIC-2005, �Lódź, Poland. Volume 3528 of Lecture Notes in Computer
Science., Springer (2005) 439–444

3. Nielsen, J.: Why You Only Need to Test With 5 Users. On-line: http://www.useit.
com/alertbox/20000319.html (2003)

4. Andreasen, M.S., Nielsen, H.V., Schroder, S.O., Stage, J.: Usability in Open Source
Software Development: Opinions and Practice. Information Technology and Con-
trol 35A(3) (2006) 303–312

5. Nichols, D.M., Twindale, M.B.: The Usability of Open Source Software. First
Monday, On-line: http://www.firstmonday.org/issues/issue8 1/nichols/ 8(1) (2003)

318 Stanis�law Osiński and Dawid Weiss




