
Innovation in Open Source Software Development:
A Tale of Two Features

John Noll

Santa Clara University

Computer Engineering Department

500 El Camino Real, Santa Clara, CA USA

jnoll@cse.scu.edu

Abstract. Open Source Software Development appears to depart radically from

conventional notions of software engineering. In particular, requirements for

Open Source projects seem to be asserted rather than elicited.

This paper examines two features of selected open source products: “tabbed

browsing” as realized in the Firefox web browser, and “edge magnetism” found

in the Gnome desktop environment’s Metacity window manager. Using archives

of mailing lists and issue tracking databases, these features were traced from first

mention to release, in attempt to discover the process by which requirements are

proposed, adopted, and implemented in their respective Open Source projects.

The results confirm the importance of user participation in Open Source projects.

1 Introduction

A common view states that open source projects begin as the need for “scratching
a developer’s personal itch [20],” in other words, to fill a need that is not addressed
by a current commercial or free product. This lead developer then becomes the shep-
herd of a growing community of volunteers who contribute programming labor to the
project until it evolves into a useful product. But once started, how do open source
projects continue to innovate? How do they stay competitive with, and even dominate,
their commercial competition? Empirical studies of open source software development
suggest that open source projects follow different processes than traditional textbook
approaches [24].

This paper examines the history of two features of two open source software prod-
ucts — “tabbed browsing” in the Mozilla project’s Firefox web browser, and the “edge
magnetism” behavior of the Gnome desktop environment’s Metacity window manager
— to see how new features are proposed, debated, and finally adopted for release. This
examination shows that innovation occurs in a variety of ways, sometimes following a
conventional software engineering approach, other times resembling Raymond’s itch
scratching. Perhaps most interestingly, these differing processes can coexist in a single
project, providing multiple sources for innovation.

Krishnamurthy’s study of projects hosted by Sourceforge.net supports Raymond’s
idea of project initiation: of the 100 most active projects marked mature in the Source-
forge coding scheme, the median number of developers on a project was four [12],



John Noll

confirming that many projects start small, but also suggesting that many projects never
grow beyond a handful of developers.

But the itch scratching explanation does not fit all open source projects, nor does
it explain how at least some open source software grows and evolves past the initial
release into feature-rich products; many open source projects continue to evolve into
comprehensive products that have capabilities far beyond their original conception.
They have excellent quality and sometimes dominate their markets.

For example, the Apache web server has grown to include numerous innovative
features including a built-in Java virtual machine, Perl interpreter, and database ac-
cess, that extend Apache’s functionality far beyond its original purpose as an HTTP
server of HTML home pages. The Apache server is reported to host the majority of the
world’s web sites [29, 15]. The Apache foundation now includes projects far beyond
the Apache web server product, encompassing such diverse elements as XML process-
ing libraries and parsers, software build tools, and email processing software [5].

Open source projects based on formerly proprietary products also continue to inno-
vate. The Firefox web browser is considered to be one to the most secure web browsers
available and is actually gaining market share compared to its chief commercial com-
petitor (Internet Explorer) [10, 22]. Firefox evolved from the Mozilla codebase, which
in turn is a descendant of the Netscape Navigator code that was released as open source
by Netscape Communications, Inc. [6]

Similarly, OpenOffice was created as an open source version of Sun Microsystem’s
StarOffice commercial office automation product [18]; it now has many innovative
features including an XML-based storage format and plug-in “channels” for importing
other file formats. In both cases, these products have evolved into feature-rich products
that take them far beyond mere copies of their commercial competitors.

The goal of this paper is to discover how mature Open Source Software projects
develop new features. Toward this end, the history of Firefox’s tabbed browsing and
Metacity’s edge magnetism was traced by examining discussions of each feature in
project mailing lists, web logs, issue tracking systems, and other on-line forums. The
results provide a snapshot of how new ideas are incorporated into products, providing
further insight into Open Source development processes.

The next section describes the projects and features studied. Following that is a dis-
cussion of observations and their implications. The last sections present related work
and conclusions.

2 Background

Two open source software products were chosen to study: the Firefox web browser, and
the Metacity window manager for the Gnome desktop environment. These projects
represent different types of open source projects: Firefox has roots in a proprietary
product (Netscape Navigator), while the Gnome project was open source from its in-
ception. Firefox has at least one serious proprietary competitor, while Gnome is target-
ted for Unix and Linux platforms, and thus its chief competitor is another open source

110



Innovation in Open Source Software Development: A Tale of Two Features

product (KDE). The Firefox architecture incorporates extension mechanisms that al-
low programmers to add new functionality without modifying the core source code.
Gnome, being an environment for managing multiple applications on a user’s desktop,
provides services and libraries that programmers use to create applets and applications
that may cooperate with other Gnome programs. Metacity is one such program, created
with simplicity as a goal and thus providing minimal customization options.

These two projects also have significantly different organization and management
structure. The Mozilla development organization has a substantial co-located work-
force that can hold traditional face-to-face meetings; these are used for release plan-
ning. Gnome is a “pure” open source project with a governing board and foundation
to accept contributions from commercial firms. The project management and labor re-
main completely distributed. Open Office falls in between these extremes: it receives
significant support from Sun microsystems, including funds and labor, but the project
management and programming effort are widely distributed.

In order to understand how each project develops new functionality, a single feature
of each product was chosen from a current release:

1. “Tabbed browsing” in the Firefox web browser, which allows users to open and
manage multiple web pages within a single browser window.

2. “Window magnetism” (also called “edge resistance” and “window snapping”) in
Gnome’s Metacity window manager, which helps users place windows on the
desktop in a “tiled” arrangement.

Archives of project discussion forums were then examined to determine when the
feature was first proposed, how it was debated, and when it was ultimately adopted
to be delivered in a specific release. Because a typical open source project involves
widely distributed programmers, testers, and users, management and technical discus-
sions are conducted using digital communication technology such as email lists, news
groups, issue tracking systems, and increasingly “chat” channels and web logs. With
the exception of chat channels, these discussions are archived and made available to
the general public, as a way of preserving the history of design decisions and to provide
a means for newcomers to understand how a given project conducts its business. Dis-
cussions conducted via chat channels are sometimes archived as well, but this practice
does not seem to be as common as archiving other media.

The details of each feature are explained in the following sections.

2.1 Firefox Tabbed Browsing

Firefox is a web browser developed by the Mozilla foundation. The Mozilla foundation
was created to oversee the continued evolution of Netscape Navigator and Communi-
cator when Netscape Communications, Inc. decided to transition development of their
web browser and related software to an open source model. The Mozilla foundation’s
orginal product, Mozilla, is an integrated web browser, email client, and web page
composer; while it is still being distributed and maintained, the Mozilla foundation’s
long term strategy is to replace the monolithic Mozilla product with separate, single-
purpose programs: the Firefox web browser, and the Thunderbird email client [1].

111



John Noll

Firefox has been highly successful, earning praise for its innovative features as well as
robustness [10, 22].

Fig. 1: Tabbed Browsing in Firefox

Tabbed browsing is a feature available in several comtemporary web browsers that
allows the presentation of multiple web pages in a single window (Figure 1). Each page
is identified by a “tab” resembling the label tab of a paper file folder; users can switch
the window’s display from one page to another by clicking on the page’s associated
tab. In the current version of Firefox (version 1.5 as of this writing), the pages can be
re-ordered by dragging the tabs to the right or left; new pages can be opened in an
existing tab, a new tab, or a completely new browser window.

2.2 Metacity Edge Magnetism

Metacity is the default window manager for the Gnome desktop environment. Unlike
Microsoft windows and other window-based user interfaces that are part of the operat-
ing system, the X Window System — the windowing platform on which Gnome runs
— is a set of user-space programs that work together to create the windowing environ-
ment. A window manager for the X window system is the program that is responsi-
ble for creating windows and decorating them with borders and buttons to minimize,
maximize, and close windows; the window manager is also responsible for moving
windows in response to mouse or keyboard events, and to provide keyboard shortcuts.
As such, the window manager has a significant effect on the appearance and operation
of a user’s desktop.

Because a window manager is separate from the operating system, users are free
to choose any window manager that suits their needs and taste; a variety of window
managers for the X window system have been created to satisfy different user require-
ments.

112



Innovation in Open Source Software Development: A Tale of Two Features

Metacity was created as a replacement for Sawfish, the previous default window
manager for the Gnome desktop environment. Metacity could be seen as a reaction to
Sawfish’s complexity and lack of stability; Sawfish was highly configurable, having a
built-in Scheme interpreter, but had a high fault rate which many considered to be a side
effect of its rich functionality. This excerpt from a posting to the Gnome support forum
illustrates [3]: “... people praise Sawfish features yet they hate the massive amount of
bugs. These two things go hand in hand. There is a reason Sawfish is practically not
maintained anymore.” Metacity was designed to include the minimum set of useful
features, with minimal configurability; the emphasis was on robustness rather than
richness.

(a) Initial layout. (b) Tiled left to right edges.

(c) Tiled corners. (d) “Snapping” to Gnome toolbar.

Fig. 2: Window edge magnetism in Metacity.

Window edge magnetism, also called edge resistance or snapping, makes position-
ing a window on the desktop easier by changing the behavior of a window when it is
moved near another window: the moving window will resist overlap of another win-
dow, and will try to align its edges with that window (Figure 2). The windows behave
as if they were magnetized; like real magnets, they resist certain arrangements and
“snap” to a tiled arrangement where window sides (Figure 2b) and corners (Figure 2c)

113



John Noll

are aligned, and windows do not overlap other windows. This makes organizing the
desktop for maximum window visibility easier.

3 Observations

3.1 Tabbed Browsing

The first reference to tabbed browsing on a Mozilla-oriented newsgroup appears to
be June 23, 1999, when a Mozilla user posted a note to netscape.public.
mozilla.wishlist requesting the ability to download a new web page while
viewing another page [16]:

One thing that I would really want to see is the ability to open a link in the new
window in background (i.e. the focus should remain in my current window,
and new window should load silently, without bothering me until it is ready
and I am ready to read it).

This spawned a discussion of the merits of tabbed browsing; the following poster is
referring to the Opera web browser’s tabbed browsing feature: [7]

Have you tried tabbed browsing? Now that I’ve tried it, I won’t go back to
windows everywhere. The idea is that pages have their own tabbed windows.
Instead of juggling windows, you just click their tabs. The beauty part is new
pages open in the background, just as you requested. The tab tells you when
the page is done loading. Then you just click over. Shweet!

H.J. van Rantwijk claims to have proposed addition of tabbed browsing to Mozilla
on the Mozilla developer’s chat forum (#mozilla at irc.mozilla.org), but got
no positive response. The Mozilla foundation does not make public its archives of
chat channels, so this claim is difficult to verify. Regardless, using Mozilla’s extension
mechanism, he was able to implement and distribute this functionality anyway. The
result, an extension called MultiZilla, implemented the first tabbed browsing function-
ality for the Mozilla browser. This project began in April 2000 [28].

Subsequently, David Hyatt implemented tabbed browsing for Mozilla (version
0.97, released in December, 2001) directly, influenced by MultiZilla. But this imple-
mentation was done from scratch without using any code from MultiZilla [27]. Hyatt
went on to create the Firefox browser (with Blake Ross); the first implementation of
Firefox (then called “Phoenix”) to feature tabbed browsing was the 0.3 milestone of
October, 2002, which led to the first official Firefox product release (1.0) in November
of 2004 [9].

What this suggests is that new features can follow several paths from suggestion
to release. Tabbed browsing first appeared in Mozilla as an extension written by a
volunteer who was unsuccessful getting acceptance from the core Mozilla developer
community. The extension proved to be useful enough that one of the core developers
incorporated it into the main Mozilla code base, which eventually led to its inclusion
in Firefox.

114



Innovation in Open Source Software Development: A Tale of Two Features 115

An important aspect of this path is that it is enabled by the Firefox architecture:
because Firefox’s user interface implementation allows user interface behavior to be
defined using a specification language called XUL [2], writers of extensions to the
user interface don’t have to change any of the core code; rather, they write a new XUL
specification.

3.2 Edge Resistance

Edge resistance was available in other window managers, including the existing
Gnome window manager (Sawfish), when Metacity was released. Many users missed
this feature in Metacity; the following quote1 from a posting to the gnomesupport.
org forum illustrates [13]

Recently, I updated my box to Redhat 9.0 and dropped Sawfish in favour of
Metacity. However, there are two things I used to use in Sawfish I am not able
to use in Metacity:
- Configure keys to move the cursor.
- Switch on windows ”magnetism” to help a easy windows placement.
I didn’t find any option, does anybody here know where to touch?

This comment sparked a debate on the GNOME support forum (gnomesup-
port.org) centered on the tension between feature richness and maintainability. Another
poster echoed the above sentiments [30]:

Fly has a point about the usability of Metacity. I understand the complaints
about the ”bloat” in Sawfish, but as far as memory footprint is concerned,
there is very little difference between Sawfish and Metacity. To claim that
including sensible features is adding bloat is just feeding us a line of bullshit.
I’ve been using Metacity since Gnome 2.0, mainly because it is now incon-
venient to manage themes properly with Sawfish in the picture, but it would
be very nice if Metacity would remember window sizes and placement. As
far as I’m concerned, that is a window manager’s job, and Metacity is clearly
shirking that job.
If it wasn’t for those apps that remember their own window geometry, I would
be getting quite fed up with Metacity by now.

Then, “Fly” followed his earlier posting with some general comments

... I understand that many features in Sawfish [are] excessive or unrelated to
WM, but 80% of Sawfish features very useful and I need it - you not?

In response, “Dbrody” (a ‘guru’ on this forum) said

But if only > 5% of people need > 80% of those features then you have just
proved that it is bloat. Bloat dosn’t mean memory foot print. That is NOT what
anybody cares about the extra 1k of ram. Bloat means the maintainer needs
to start maintaining more features. More bug reports. More tweaking of those

1 Original spelling and proper name capitalization in quoted excerpts has been corrected.



John Noll

advanced features. etc... etc... Metacity is not even 1.0 yet. There are many
changes that are planned to go into Metacity but haven’t yet because things
go a little slowly, or because it will make Metacity incompatible with themes
and so forth.
Also, many of these feature can be done with external programs, like devil-
spy. Certainly things like edge flipping, advanced focus management, etc...
are easily done using libwnck and a little hacking.

This debate is interesting because it takes place in a public forum where anyone -
users, developers, interested third parties - can participate. The discussion of require-
ments is therefore completely transparent, and also recorded in significant detail, so
that the rationale behind any decision can be discovered later if necessary.

The creator of Metacity agreed on the usefulness of edge magnetism almost a year
earlier; he filed the following Request for Enhancement (RFE) in the Gnome project’s
issue tracking system in May 2002 [19]:

Add some kind of mild ”attraction” to window/screen edges, perhaps only
after a timeout. Need to experiment.

This entry stimulated a lengthy discussion of exactly how this behavior should work,
which continued for over three years until the feature was incorporated into the release
code-base in November of 2005.

Again, the discussion takes place in a public forum (the Gnome issue tracking
database is readable by anyone, and anyone who registers can post issue reports or
comments), and is recorded for future reference.

The history of edge magnetism in Metacity represents a combination of two phe-
nomena that appear to be characteristics of Open Source development projects. First,
the significant, lively participation by users of Metacity in the discussion about the
merits of and desire for edge magnetism are an example of the essential role that users
play in Open Source projects [4]. Second, Havoc Pennington’s RFE is an example of
an asserted requirement: the developer of a product has stated the need for a particular
feature; this is consistent with observations made by other researchers [8, 23].

3.3 Discussion

Gnome and Metacity closely resemble the common notion of open source develop-
ment, where features are proposed in an on-line forum (newsgroup, mailing list, issue
database), debated by users and programmers, and ultimately adopted or rejected. A
feature may be adopted by virtue of having a working implementation, regardless of
its merits.

In contrast, Firefox follows an almost traditional process involving regular face-
to-face release planning meetings. But Firefox’s extension mechanism allows features
that are initially rejected to “prove” their worth by demonstrating adoption by real
users.

The openness of various communication channels employed by open source projects
enables and encourages enthusiastic participation by users of the product, as well as

116



Innovation in Open Source Software Development: A Tale of Two Features

developers. This provides early feedback about a product’s functionality and short-
comings, as well as a way to capture users’ ideas and needs.

Likewise, open issue tracking mechanisms provide a way for end users to voice
their concerns about product functionality, and participate in the discussion about res-
olutions and enhancements. This has advantages for both the developers and users:
the developers can potentially seek clarification through the discussion feature of issue
tracking systems like Bugzilla, while users seem to develop a sense of ownership as
they see their concerns actively considered and their participation encouraged.

4 Related Work

Studies of open source software projects address a wide range of topics from eco-
nomics [29] to maintainability [25].

A number of case studies have examined open source development processes, in-
cluding those employed by Apache and Mozilla [14, 21, 24]. In particular, Reis and de
Mattos Fortes, in their study of Mozilla development processes, report that high level
requirements are specified by the mozilla.org management, but all development
on the Mozilla code base originates with a “bug” report, which might be submitted by
another developer, tester, or end user [21]. These reports may document some product
failure, or a request for enhancement.

Feller and Fitzgerald note that users are a “critical feature” [4, 10] of OSSD
projects, as the source of new requirements. Scacchi has made several studies of re-
quirements acquisition in open source software development; he observes that require-
ments “emerge” from on-line discussions which are usually open forums, rather than
through traditional requirements elicitation processes, but that this emergent process,
though less formal, is also effective [24, 23]. He also notes that requirements are “as-
serted” after the fact; other researchers have echoed this observation. In particular,
German reports a similar situation in the Gnome project [8]. This seems to contradict
conventional understanding that cites failure to understand requirements as a major
source of software project failure.

But Trudelle notes, in his discussion of lessons learned from experience working
on Mozilla, that this approach led to rework of some of the Mozilla implementation in
response to user-submitted bug reports; his view is that this rework could have been
avoided with traditional up-front requirements analysis and design activities [26]. Hen-
derson echoes this view, claiming that open source projects do not employ “require-
ments elicitation,” but that this could (and should) be easily added to open source pro-
cesses [11]. Further, Nichols and Twidale observe that usability requirements are not
captured well by OSSD projects, due to the mismatch between developers and users;
their view is that the OSSD approach of “coding as early as possible” violates “good
interface design.” [17]

These observations run counter to the prevailing OSSD view that de-emphasizes
formal design and requirements gathering. Trudelle’s view — that OSSD projects
need an overarching UI design and design function — seems to contradict the cur-
rent success of Firefox, which is widely recognized as among the most innovative web

117



118 John Noll

browsers. In particular, Nichols and Twidale’s assertion that “commercial software es-
tablishes the state of the art” [17] seems to be contradicted by Opera and Firefox, both
of which included UI features (tabbed browsing, for example) well before Internet
Explorer.

5 Conclusions

Much has been made of the advantages open source development might give to com-
mercial for-profit enterprises, including high quality, free labor, and quick response
to critical failures. But the observations presented above reveal some practices that
could be useful to any software development effort, including traditional closed source
products:

1. Open communication channels between users and developers. This gives users
a greater stake in the future of the product, and provides feedback without the
overhead of conducting surveys or convening focus groups.

2. Extension mechanisms that allow users with programming skills to demonstrate
ideas by contributing working functionality.

3. Alternate paths for ideas to become released features.

Open source projects are far from uniform in their process for conceiving and real-
izing new features. But they seem to share a common aspect — close involvement of
end users in the development process — that is less common in conventional develop-
ment environments.

Acknowledgments

This work was supported in part by a grant from the School of Engineering at Santa
Clara University. No endorsement is implied.

References

1. Alex Bishop. Major roadmap update centers around Phoenix, Thunderbird; 1.4 branch to

replace 1.0; changes planned for module ownership model. MozillaZine (online), April 2

2003. http://www.mozillazine.org/articles/article3042.html.

2. Peter Bojanic. The joy of XUL. Web page, cited september 6, 2006., Mozilla Foundation,

June 2006. http://developer.mozilla.org/en/docs/The_Joy_of_XUL.

3. Dbrody. no title. http://gnomesupport.org/forums/viewtopic.php?t=
3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb, Septem-

ber 2003. Posting to the Gnome desktop user support forum.

4. Joseph Feller and Brian Fitzgerald. A framework analysis of the open source software

development paradigm. pages 58–69, 2000.

5. The Apache Software Foundation. About the Apache HTTP server project. http://
httpd.apache.org/ABOUT_APACHE.html. Web page, cited January 16, 2007.



Innovation in Open Source Software Development: A Tale of Two Features 119

6. The Mozilla Foundation. About the Mozilla foundation. http://www.mozilla.org/
foundation/, November 2006. Web page cited January 16, 2007.

7. Gboone. Open new window in background (tabbed browsing). http:
//groups.google.com/group/netscape.public.mozilla.wishlist/
tree/br%owse_frm/thread/ef62c3307e2a7a32/4ec071eae14082ff?
rnum=1&hl=en&_done=%2Fgroup%%2Fnetscape.public.mozilla.
wishlist%2Fbrowse_frm%2Fthread%2Fef62c3307e2a7a32%2F%
4ec071eae14082ff%3Ftvc%3D1%26hl%3Den%26#doc_4b33ef52c30564cf.

8. Daniel M. German. GNOME, a case of open source global software development. In

Proceedings of the 6th International Workshop on Global Software Development, Portland,

OR USA, May 2003.
9. Ben Goodger. Firefox 1.0 roadmap. http://www.mozilla.org/projects/

firefox/roadmap-1.0.html, 2004. Web page describing release history of Fire-

fox, cited March 1, 2007.
10. Steve Hamm. A Firefox in IE’s henhouse. Business Week, September 17 2004.
11. Lisa G. R. Henderson. Requirements elicitation in open-source programs. CrossTalk - The

Journal of Defense Software Engineering, 13(7):28–30, July 2000. http://www.stsc.
hill.af.mil/crosstalk/2000/07/henderson.html.

12. Sandeep Krishnamurthy. Cave or community?: An empirical examination of 100 mature

open source projects. First Monday, 7(6), June 2002.
13. Lou. Metacity configuration. http://gnomesupport.org/forums/viewtopic.

php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb,

August 4 2003. Posting to the Gnome desktop user support forum.
14. Audris Mockus, Roy T. Fielding, and James Herbsleb. A case study of open source software

development: The Apache server. In Proceedings of the 22nd International Conference on
Software Engineering, pages 263–272, Limerick, Ireland, May 2000.

15. Netcraft, Ltd. September 2006 web server survey. http://news.netcraft.com/
archives/2006/09/05/september_2006_web_server_%survey.html,

September 2006.
16. Vladimir Neyman. Open new window in background. http://groups.google.

com/group/netscape.public.mozilla.wishlist/tree/br%owse_frm/
thread/ef62c3307e2a7a32/4ec071eae14082ff?rnum=1&hl=en&_done=
%2Fgroup%%2Fnetscape.public.mozilla.wishlist%2Fbrowse_frm%
2Fthread%2Fef62c3307e2a7a32%2F%4ec071eae14082ff%3Ftvc%3D1%
26hl%3Den%26#doc_4ec071eae14082ff, June 23 1999. Message posted to

netscape.public.mozilla.wishlist mailing list.
17. David M. Nichols and Michael B. Twidale. The usability of open source software. First

Monday, 8(1), January 2003.
18. OpenOffice.org. About us: OpenOffice.org. http://about.openoffice.org/

index.html, January 2007. Web page, cited January 19, 2007.
19. Havoc Pennington. Bug 81704 - Edge magnetism/resistance/snapping/etc. http://

bugzilla.gnome.org/show_bug.cgi?id=81704, May 2002. Request for en-

hancement (RFE) entered into the Gnome project’s issue tracking system.
20. Eric S. Raymond. The cathedral and the bazaar. In The Cathedral and the Bazaar. O’Reilly

and Associates, October 1999.
21. Christian Robottom Reis and Renata Pontin de Mattos Fortes. An overview of the software

engineering process in the Mozilla project. In Proceedings of the Open Source Software
Development Workshop, Newcastle upon Tyne, UK, February 2002.

22. Rachel Rosmarin. Mozilla Firefox gaining ground on Microsoft IE. Forbes.com, August 1

2006.



120 John Noll

23. Walt Scacchi. Understanding the requirements for developing open source software sys-

tems. IEE Proceedings – Software, 149(1):24–39, February 2002.

24. Walt Scacchi. Free and open source development practices in the game community. IEEE
Software, pages 59–66, January 2004.

25. Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Jefferson Offut.

Maintainability of the Linux kernel. IEE Proceedings – Software, 149(1), February 2002.

26. Peter Trudelle. Shall we dance? Ten lessons learned from Netscape’s flirtation with open

source UI development. Technical report, Mozilla.org, 2002. Presented at the Open Source

Meets Usability Workshop, Conference on Human Factors in Computer Systems (CHI

2002), Minneapolis, MN. Accessed December 28, 2006.

27. unknown. A guide to Mozilla 1.0. http://www.mozilla.org/start/1.0/
guide/, 2002. Web page describing release 1.0 of Mozilla.

28. H.J. van Rantwijk. MultiZilla’s home page. http://multizilla.mozdev.org,

February 24 2006. Home page for the MultiZilla project, cited September 6, 2006.

29. David A. Wheeler. Why open source software / free software (OSS/FS, FLOSS, or FOSS)?

Look at the numbers! Technical report, dwheeler.com, 2005.

30. WonkoTheSane. Untitled. http://gnomesupport.org/forums/viewtopic.
php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb,

September 22 2003. Posting to the Gnome desktop user support forum.




