
A systematic literature review on the barriers faced by newcomers to open source
software projects

Igor Steinmachera,b,*, Marco Aurelio Graciotto Silvaa, Marco Aurelio Gerosab, David F. Redmilesc

aComputing Department
Federal University of Technology - Parana

bComputer Science Department
University of Sao Paulo

cDepartment of Informatics
University of California, Irvine

Abstract

Context: Numerous open source software projects are based on volunteers’ collaboration and require a continuous
influx of newcomers for their continuity. Newcomers face barriers that can lead them to give up. These barriers hinder
both developers willing to make a single contribution and those willing to become a project member.
Objective: This study aims to identify and classify the barriers that newcomers face when contributing to Open Source
Software projects.
Method: We conducted a systematic literature review of papers reporting empirical evidence regarding the barriers
that newcomers face when contributing to Open Source Software (OSS) projects. We retrieved 291 studies by querying
4 digital libraries. Twenty studies were identified as primary. We performed a backward snowballing approach, and
searched for other papers published by the authors of the selected papers to identify potential studies. Then, we used a
coding approach inspired by open coding and axial coding procedures from Grounded Theory to categorize the barriers
reported by the selected studies.
Results: We identified 20 studies providing empirical evidence of barriers faced by newcomers to OSS projects while
making a contribution. From the analysis, we identified 15 different barriers, which we grouped into five categories:
social interaction, newcomers’ previous knowledge, finding a way to start, documentation, and technical hurdles. We
also classified the problems with regard to their origin: newcomers, community, or product.
Conclusion: The results are useful to researchers and OSS practitioners willing to investigate or to implement tools to
support newcomers. We mapped technical and non-technical barriers that hinder newcomers’ first contributions. The
most evidenced barriers are related to socialization, appearing in 75% (15 out of 20) of the studies analyzed, with a
high focus on interactions in mailing lists (receiving answers and socialization with other members). There is a lack
of in-depth studies on technical issues, such as code issues. We also noticed that the majority of the studies relied on
historical data gathered from software repositories and that there was a lack of experiments and qualitative studies in
this area.

Keywords: Open Source Software, Software Engineering, Newcomers, Beginners, Novices, Joining, Contribution,
Barriers to Entry, Onboarding, Open Collaboration, Socialization, Systematic Literature Review

*Corresponding author [Address: Rua das Cerejeiras, 60 - CEP
87301-350 - Campo Mourao–PR–Brazil – Phone +55(44)88383380]

Email addresses: igorfs@utfpr.edu.br (Igor Steinmacher),
magsilva@utfpr.edu.br (Marco Aurelio Graciotto Silva),
gerosa@ime.usp.br (Marco Aurelio Gerosa),
redmiles@ics.uci.edu (David F. Redmiles)

Preprint submitted to Information and Software Technology November 24, 2014

1. Introduction

Several open source software (OSS) communities rely
on volunteers. According to Qureshi and Fang [33], it is
essential to motivate, engage, and retain newcomers to
promote a sustainable number of developers in a project.
However, newcomers often face barriers for contributing
to a project [12]. On many occasions, these barriers lead
them to give up. Besides, as stated by Fogel [16], “if a
project doesn’t make a good first impression, newcomers
may wait a long time before giving it a second chance.”
Therefore, a major challenge for OSS projects is to pro-
vide ways to reduce these barriers.

Newcomers need to learn social and technical aspects
of a project before making a code contribution. They gen-
erally post their questions and request help in project fo-
rums and mailing lists or send emails to specific develop-
ers who have central roles in the project (e.g., owners and
project leaders) [32, 44]. However, receiving replies that
do not offer guidance or unpolished answers can result in
the dropout of newcomers [40]. Lack of awareness and
guidance during their first steps (setting up and choosing
the right means to start with), for instance, also discour-
age further contributions [41]. Mainly before making their
first contribution, newcomers may be susceptible to several
barriers, such as expectation breakdowns, reception prob-
lems, setup misconfiguration, and learning curves. Each
of these may have varying levels of importance to and im-
pact on the overall joining process [39]. Therefore, it is
important to understand the type of barriers newcomers
face and their influence. This understanding is a start to
making possible the creation of mechanisms and tools to
reduce these barriers.

By lowering the barriers, it is expected that OSS com-
munities will benefit from more contributions. Studies
conducted on open collaboration communities from other
domains showed that it is possible to receive more con-
tributions by lowering the entry barriers. Wikipedia has
been the subject of some of these studies. For example,
Faulkner et al. [15] found that modifying first time warn-
ings prompted additional newcomer contributions. Mor-
gan et al. [30] showed that user-friendly tools, safe spaces
for newcomers, and positive interactions between newcom-
ers and established community members are promising
tools for newcomer retention.

However, to date, to the best of our knowledge, no sin-
gle study has directly focused on identifying and classifying
the barriers faced by newcomers to OSS projects, despite
specific problems being dealt with or reported upon in sev-
eral studies in the literature. Moreover, the knowledge
about the barriers faced by newcomers to OSS projects is
spread across the literature from different domains, such as
Software Engineering, Computer Supported Cooperative
Work, and Information Systems. Therefore, a systematic
review [25] can aggregate in a single location the infor-
mation regarding the barriers that is currently dispersed
across various studies.

Thus, the objective of this research is to identify, by
means of a systematic literature review, the barriers faced
by newcomers when contributing to OSS projects. The pri-
mary studies were identified by querying digital libraries.
We also made use of two snowballing approaches: back-
ward snowballing, i.e., looking at the references of the pa-
pers selected from the digital libraries, and author snow-
balling, i.e., searching for other papers published by the
authors of the selected papers.

After identifying the primary studies, we extracted the
barriers empirically evidenced in the papers and classified
them using a coding approach inspired by the coding pro-
cedures from Grounded Theory [9]. Using this approach,
we categorized the barriers identified by type and accord-
ing to their origin.

The contributions of this paper include (i) summariz-
ing the existing evidence on barriers faced by newcomers
to OSS projects and organizing the barriers into a sin-
gle model, (ii) providing a quick reference for researchers
interested in conducting further studies on newcomers to
OSS, and (iii) providing grounded evidence of barriers and
some guidelines that can be useful for OSS communities in
helping newcomers. We hope that OSS communities and
researchers will take advantage of this paper to better un-
derstand the barriers in their context and design strategies
to address them.

The remainder of this paper is organized as follows.
The protocol of the systematic review is presented in Sec-
tion 2. In Section 3, we characterize the projects con-
sidered by each study. In Sections 4 and 5, we report the
results of the analysis of the selected studies, including the
classification via the type of barrier and the origin of the
barrier. A discussion is presented in Section 6 and threats
to validity are presented in Section 7. Finally, conclusions
and further work are presented in Section 8.

2

2. Research method

This study has been undertaken as a systematic lit-
erature review (SLR) based upon guidelines established
for the Software Engineering domain [25, 27, 26]. In this
section, we provide the protocol used in the SLR, specify
the research question and its components, and establish
the requirements regarding the source and primary study
selection, the evidence collection, and the method of syn-
thesis of such evidences. The results regarding each step
are provided alongside the protocol, except for evidence
extraction and analysis, which are addressed in Section 4.

2.1. Research questions
Newcomers present different technical skills, time avail-

ability, and reasons for joining an OSS project. Notwith-
standing, when developers decide to support an OSS project,
they need to learn social and technical aspects of the project
before making a contribution. During this learning period,
newcomers face barriers that can result in their decision
to give up contributing. Our main goal is to identify the
barriers that are faced by newcomers to make their contri-
butions. We expect that by reducing the barriers, projects
can benefit from both more occasional contributions and
more long-term contributors. Thus, we have defined the
following as our main research question:

∙ RQ 1. What are the barriers that hinder the con-
tribution of newcomers in OSS projects?

By answering this question, we aim to capture barri-
ers that a newcomer faces when contributing in an OSS
project. We are not interested in newcomers’ motivations
for contributing to a project but in the issues they may face
after deciding to contribute to a project. We also make no
distinction regarding the size, quantity, or frequency of
contributions made by newcomers.

When dealing with OSS projects, we are aware that
there are different ways newcomers can start to contribute,
including translation, bug triage, bug reporting, user sup-
port, and coding. In our current study, we focus only
on source code contributions. Therefore, we define new-
comers as developers who want to make their first code
contribution to a project. Moreover, when we refer to
OSS projects, we are talking about community-based open
source projects [8] and open collaboration communities
[17]. Community-based OSS projects rely on the efforts
of volunteers to be maintained. In these projects, mailing
lists, issue trackers, and source code (in versioning sys-
tems) are publicly available. Any skilled person who wants
to contribute can get the current code, choose (or report)
an issue, address it, and submit a patch to be included in
the product.

2.2. Criteria for selection of studies
The search process encompassed two approaches. The

first one was based on queries in digital libraries. However,

as reported in the literature, using just this approach, es-
pecially for systematic reviews in software engineering, is
often inefficient. As suggested by others [22, 26], we used
a single step citation analysis (snowballing), and a single
step author snowballing to complement the search pro-
cess. Details about the way we used such approaches are
described in the following subsections.

Regardless of the mechanism used to search, the stud-
ies were screened according to various criteria pertinent to
the research question. We established the following cri-
teria for the inclusion of studies. Regarding a paper, it
must be available as a full paper, written in English, and
published in a peer-reviewed venue, including workshops,
conferences, and journals. As for the studies reported by
the papers, they must report barriers faced by newcomers
to contribute to open source software projects and present
empirical evidence.

The exclusion criteria consisted of removing duplicate
results and excluding papers regarding newcomers or open
source software projects that were not within the scope of
this research. Papers that were clearly duplicated or for
which we found newer and more complete versions were
excluded. Regarding studies not relevant to the purpose
of this review, we excluded studies regarding newcomers,
but not to open source software; studies about open source
software that do not study newcomers; and studies that do
not provide empirical evidence (studies that present just
methods or unevaluated approaches/tools).

The selection process consisted of the following steps:

1. Search in digital libraries: we queried digital libraries,
and the references of the retrieved studies were stored
in a local repository to be further analyzed.

2. Title, abstract, and keywords analysis: titles, ab-
stracts, and keywords were read to verify which stud-
ies met the inclusion and exclusion criteria.

3. Author snowballing: studies found and selected by
the search in the digital libraries were analyzed re-
garding their authors. We searched for other papers
published by the same authors. Candidate papers
were submitted to the same process used for papers
found in digital libraries: title, abstract, and key-
words analysis (step 2).

4. Introduction and conclusion analysis: the initial and
closing sections of the studies were evaluated regard-
ing their objectives and results. This analysis en-
abled the researchers to further verify if the papers
answered the research question and met all inclusion
and/or any exclusion criteria. When the reading of
the opening and closing sections was inconclusive,
the entire paper was read to decide on its inclusion
or exclusion.

5. Backward snowballing sampling: studies found and
selected by the search in the digital libraries and
by author snowballing were analyzed regarding their
references. Candidate papers were submitted to the
same process used for papers found in digital libraries

3

and by author snowballing: screening by title, ab-
stract, and keywords, followed by analysis of the in-
troduction and conclusion. We ran just one level of
citation snowballing.

6. Full paper reading: finally, after selecting a paper by
its introduction and conclusion, the entire paper was
read to decide on its inclusion or exclusion.

It is important to note that for every step, more than
one researcher read each paper independently. For conflict-
ing evaluations, researchers further discussed the paper to
reach a consensus. In cases where there was no consen-
sus or there was doubt, the study was included to avoid
premature exclusion.

2.2.1. Search in digital libraries
The mechanism available for searching in most digital

libraries is based upon textual search expressions. Thus,
its definition is crucial for the effectiveness of the search-
ing step and the systematic review as a whole. A com-
mon approach regarding the establishment of the search
expression is its characterization based on PICO compo-
nents: population, intervention, control, and outcome [3].
Based upon previous studies, we knew that most papers
on the subject were case studies that employed quantita-
tive, qualitative, or mixed methods. Thus, establishing
a control element was not feasible. It is worth noticing
that recent guidelines on systematic review for Software
Engineering are also oriented to omit this characterization
[26]. Based upon these recommendations, we have kept
the population and intervention components, and omitted
comparison and outcome.

A systematic review for Software Engineering estab-
lishes the problem as the target of the systematic review
and the intervention as what can be observed in the con-
text of the systematic review [3]. Considering such def-
initions, we initially established the population as open
source projects and the intervention as contributions of
newcomers.

After analyzing the terms related to the population
and intervention, we derived the keywords and synonyms
presented in Table 1 to establish the search expression.
The synonyms were suggested by experts and extracted
from papers we used as a control of this study [44, 13, 10,
21, 23].

Using the terms listed in Table 1, we defined a generic
search expression. Considering a set of known studies
(the control group) we had previously established, we per-
formed several trials and iterations until coming to a fi-
nal search expression. Some synonyms, such as “new peo-
ple,” “entrance,” and “new committer,” were removed, as
we could either not find any paper with such terms or the
search result would find too many studies that, by skim-
ming the titles, were considered out of the scope of this sys-
tematic review. Furthermore, we also evaluated whether
the search expression was still effective, i.e., whether it
recovered the studies established as control.

(
("OSS" OR "Open Source" OR "Free Software" OR FLOSS OR FOSS)
AND
(newcomer OR "joining process" OR newbie OR "new developer" OR "new member" OR "new
contributor" OR novice OR beginner OR "potential participant" OR
retention OR joiner OR onboarding OR "new committer")

)

After defining the search expression, we defined criteria
for the selection of digital libraries. The digital libraries
should index papers on open source software research writ-
ten in English, support searching using Boolean expres-
sions, and provide access to the complete text of the pa-
per. Based upon these criteria, we selected four digital
libraries to conduct our search: ACM Digital Library1,
IEEE Digital Library2, Scopus3, and Springer Link4.

Moreover, we consulted several experts regarding rec-
ommended venues for studies relevant to this research.
The specialists provided a set of conferences, workshops,
journals, and specialized websites. Most of them were in-
dexed by the digital libraries we selected. The suggested
venues that were not indexed by the preselected digital
libraries were excluded due to other source selection crite-
ria. For instance, specialists’ indications of conferences in
languages other than English and websites that do not sup-
port searching using Boolean expressions were excluded.

2.2.2. Snowballing sampling
In addition to querying the digital libraries, we con-

ducted a single step snowballing sampling following two
approaches. The first approach consisted of checking if
the authors of the selected studies published other relevant
studies that we could not retrieve from the digital libraries.
To find other publications, we accessed authors’ profiles in
ACM and IEEE libraries and checked their DBLP5 profile
and personal homepages (when available).

The second approach was backward snowballing sam-
pling. We analyzed the reference lists of all selected papers
to find other possible relevant studies. Just one level of
snowballing sampling was conducted, i.e., we did not ap-
ply snowballing sampling for studies found by a previous
snowballing process.

2.3. Study selection
We used the query presented in Section 2.2.1 to retrieve

the candidate papers from the digital library systems in
April 2013, as shown in Fig. 1. We retrieved 291 papers
by searching and 42 other papers by snowballing, totaling
333 papers. After applying the selection criteria, we se-
lected 20 papers for data extraction and analysis. In the
following, we present the detailed results of executing the
steps presented in Section 2.2 and its correlated Fig. 1.

1http://dl.acm.org/
2http://ieeexplore.ieee.org
3http://www.scopus.com/
4http://link.springer.com/
5http://www.informatik.uni-trier.de/~ley/db/

4

Table 1: Terms used to build the queries (terms marked with an * were dismissed in the final query).

Keyword Synonyms
Open Source Software OSS, Open Source, Free Software, FLOSS, FOSS
Newcomers newcomer, newbie, new developer, new member, new contributor,

new people*, novice, beginner, potential participant, joiner, new committer*
Contribution joining*, retention, first steps*, entrance*, initial steps*, joining process, onboarding, contributing*

Search in digital libraries. As a result, we gathered
291 candidate papers: 59 from IEEE, 84 from ACM, 132
from Scopus, and 16 from Springer Link.

Title, abstract, and keywords analysis. For the
first step, the titles, abstracts and keywords were indepen-
dently analyzed by two researchers. During this step, the
researchers identified and dismissed 96 (32.99%) duplicates
gathered from different libraries. From the 195 remaining
entries, 33 papers were selected after a consensus meeting.

Author snowballing. We applied author snowballing
on the selected papers. We checked other papers published
by the authors of these 33 studies, and we found 20 other
candidate papers. After analyzing the abstracts of these
papers, we selected nine relevant papers, bringing us to 42
candidate papers.

Introduction and conclusion analysis. All 42 pa-
pers had their introductions and conclusions analyzed by
the researchers. Among them, 21 were dismissed. We did
not find the full text of three papers; two papers were ex-
tended abstracts; two were proposals to thesis/dissertation
workshops; 10 did not study or present evidence of barri-
ers faced by newcomers (including three papers that only
presented tools with no evaluation); and four papers were
clearly not presenting barriers faced by newcomers to OSS.

Backward snowballing sampling. After reading
the introduction and conclusion sections, we conducted a
backward snowballing sampling on the 21 remaining pa-
pers, looking for papers cited by the selected studies. How-
ever, no additional paper was selected by this approach.
An important thing to note regarding the snowballing sam-
pling is that the previously selected studies appeared re-
peatedly, especially [44, 13, 5, 11].

After the snowballing, the papers had their full content
read by the researchers. One study was discarded because
it was related to user support Q&A forums and not source
code contribution. Therefore, we extracted and analyzed
data from 20 selected studies.

2.3.1. Study Selection Summary
We summarize the total papers found and selected by

each source and approach in Table 2. In the table, it is pos-
sible to check how the studies are distributed according to
their source. Scopus returned the largest number of hits,
but its precision was the lowest amongst the sources we
used. Meanwhile, IEEE, ACM and Springer Link returned
fewer hits but achieved higher levels of efficacy. This can
be explained because Scopus is a meta-search that indexes
the literature from different publishers, including ones not

related to Computing. We can see that Scopus, ACM and
IEEE would independently retrieve more than 40% of the
primary studies, with several studies available simultane-
ously on more than one of them (duplicated).

When a duplicate paper was found, sources that ac-
tually publish the papers were prioritized over those that
just index articles from other publishers. We analyzed
the duplicates to verify where the overlaps among papers
were. The results are shown in Table 3. It is possible
to check that the Scopus meta-search retrieved 81 papers
duplicated from the other 3 sources. We also noticed that
ACM and IEEE index some venues together, such as ICSE
(International Conference on Software Engineering), which
is a co-published conference. Moreover, ACM also indexes
some publications from Springer Link; in this systematic
review, 5 papers from Springer Link were also gathered
from the ACM Digital Library.

Regarding the reasons for excluding papers, we account
for them in Table 4. Once a paper fit any exclusion crite-
rion or did not comply with any inclusion criteria, it was
excluded. For instance, 113 papers were excluded because
they were not related to OSS. Meanwhile, from those that
addressed OSS, 50 papers did not address newcomer is-
sues. It is important to note that we just considered one
reason of exclusion per paper in Table 4, but one paper
could actually be classified under more than one exclusion
reason in the selection process.

The 20 selected studies and their respective identifiers
are presented in Table 5. Throughout the paper, we will
use the identifiers in the format PS? for the papers selected
for analysis in the systematic review.

2.4. Overview of the studies
While reading the papers in full, we collected some data

regarding the type of study conducted, and type of data
analyzed. The data analyzed by the selected studies are
predominantly gathered from source code repositories (12
studies), mailing list archives (12 studies), and bug/issue
trackers (8 studies). Other data used by the studies in-
clude questionnaires, interviews with developers, observa-
tions, and project profiles. Fourteen studies used more
than one data source in their analysis. An interesting fact
here is that the main method used to find issues faced by
newcomers was the analysis of historical data. Only seven
studies report interviews, observations, or questionnaire
results.

Most of the papers reported case studies and gave a
quantitative analysis of collected data. We found that

5

Figure 1: Paper selection process.

19 studies (95%) used the case study method to evidence
the problems. Only one study conducted both an exper-
iment and a case study, and another one conducted only
an experiment. In terms of the type of analysis, 13 stud-
ies (65%) analyzed the data using only quantitative ap-
proaches, as depicted in Fig. 2. Two studies (10%) used
only qualitative methods to analyze the data, and four
studies (20%) used both quantitative and qualitative anal-
ysis to evidence the barriers.

It is possible to see the lack of studies conducting qual-
itative analysis as supporting the existence of problems
that hinder newcomers’ contributions. Quantitatively an-
alyzing historical data can bring highlights of the barriers
faced by newcomers, but conducting qualitative analysis
can enrich the evidence, reveal new facts, and help in find-
ing the issues faced by newcomers. There is still room
available for studies based on observations, interviews and
experiments that can help reveal the barriers faced in prac-
tice.

We also analyzed the primary studies to check how
the publications are distributed in time. Fig. 3 depicts
this distribution. We can see that the topic appeared in
2003, and just a few papers appeared from then until 2010.
The last 3 years contain more than 50% of the relevant
publications for this review (11 out of 20). It is important
to note that the searches were performed in April 2013, so
it is possible that more papers were published in 2012 and
2013 and were not indexed so far.

Out of the 20 papers considered relevant, 5 were pub-
lished in journals, and 15 in conference proceedings. The
primary studies are spread in different forums. Software
Engineering is the area with the highest number of stud-
ies published (9 out of 20). Two articles were published
in Management journals. Forums of CSCW, Information
System, Visualization and Green Computing also appeared.

6

Table 2: Papers found and included per source.
Source Found Relevant Studies % Search Efficacy
IEEE 59 10 16.95%
ACM 84 9 10.71%
Scopus 132 8 6.06%

Springer Link 16 3 12.50%
Sum 291 30 10.31%

Repeated 96 12
Subtotal 195 18
Authors* 20 2

Citation Analysis* 22 0**
Total 20

* Values presented in the column “Found” represent the number of papers considered after title analysis.
** 12 papers previously selected were found during citation analysis.

Table 3: Analysis of Duplicate Source.
Sources Duplicates
ACM & Scopus 43
IEEE & Scopus 16
ACM, IEEE & Scopus 15
ACM & IEEE 6
ACM, Springer & Scopus 5
Springer & Scopus 2
Paper in different venues (Scopus) 1

2.5. Data extraction
Given the set of primary studies, the researchers read

the documents in full and extracted the necessary data.
First, we created a list of barriers that were evidenced
by each paper. Each barrier was related to information
about the study and the type of evidence that was used
to indicate it. After this identification, each barrier was
linked to text segments that supported it in the papers
they were identified in.

Using the text segments, we classified the barriers ap-
plying an approach inspired on open coding and axial cod-
ing procedures from Grounded Theory (GT) [9]. Although
the purpose of the GT method is the construction of sub-
stantive theories, according to Corbin and Strauss [9], the
researcher may use only some of its procedures to meet
one’s research goals.

2.6. Synthesis
Based upon the extracted data, we synthesized the bar-

riers identified by the coding as a set of contribution barri-
ers faced by newcomers in open source software projects. A
hierarchical classification was established for the barriers,
which was represented as a mind map. Such classification,
which is presented and detailed in Section 4, was used to
answer the primary research question of this study. In the
next section, we present a characterization of the projects
considered in the primary studies.

7

Table 4: Excluded papers and exclusion reasoning.
Exclusion reason Excluded Studies

333
Duplicate 108 225
Not in English 1 224
Invalid type 29 195
Full paper not available 3 192
Not related to OSS nor newcomers 101 91
Related to newcomers but not to OSS 12 79
Related to OSS but not tonewcomers 50 29
Previous version of a more complete study 4 25
Not related to source code contributions 1 25
Does not present empirical study 6 20

Table 5: Selected Primary Studies.

Identifier Reference
[PS1] Ben et al. [2]
[PS2] Bird [4]
[PS3] Bird et al. [5]
[PS4] Canfora et al. [6]
[PS5] Capiluppi and Michlmayr [7]
[PS6] Cubranic et al. [11]
[PS7] Ducheneaut [13]
[PS8] He et al. [21]
[PS9] Jensen et al. [23]
[PS10] Midha et al. [29]

Identifier Reference
[PS11] Park and Jensen [32]
[PS12] Qureshi and Fang [33]
[PS13] Schilling et al. [35]
[PS14] Steinmacher et al. [41]
[PS15] Steinmacher et al. [40]
[PS16] Stol et al. [42]
[PS17] Von Krogh et al. [44]
[PS18] Weiss et al. [47]
[PS19] Zhou and Mockus [48]
[PS20] Zhou and Mockus [49]

Qualitative (7)

Quantitative (18)

Experiment (2)

Case Study (19)

0

0

13

1
0

00

0

0

1
1

4 0

0

0

Figure 2: Type of analysis conducted in experiments and case studies.

8

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

0

1

2

3

4

5

1

0

2

1

2

0

1

2

4

5

2

Years

N
um

be
r

of
st

ud
ie

s

Figure 3: Temporal view of the publications (queries from April 2013).

9

3. Projects analyzed in the selected studies

Before analyzing the studies regarding barriers found
by newcomers when contributing source code, it is impor-
tant to characterize the projects considered by each study.
After all, we are interested in a diverse and representa-
tive population of projects. There were 28 projects un-
der investigation, plus studies that analyzed large sets of
projects from Apache Foundation and SourceForge.net. In
Fig. 4 we present a summary of the number of projects ana-
lyzed per selected study. Most of the studies (12) analyzed
three or less projects. Only four studies used a set with
more than seven projects from a given software forge: three
of them analyzed subsets from SourceForge.net projects,
and one analyzed projects from Apache Foundation. The
remaining three studies considered 4, 5, and 7 projects,
respectively.

Regarding the projects analyzed, as presented in Fig. 5,
six projects appeared in more than one study: Apache
httpd (3 studies), PostgreSQL (4 studies), Python (4 stud-
ies), Mozilla (2 studies), Eclipse (2 studies), and Jboss (2
studies). Another 22 projects appeared in the studies, of
which 2 projects were not disclosed by the authors [PS14].
We did not consider the four studies that focus on forges
[PS8, PS10, PS12, PS19], which can include some of the
projects that appeared as objects of other studies.

To verify what types of projects were analyzed by these
studies, we gathered various characteristics of the projects:
activity level (very high, high, low, or very low), number
of developers, size in lines of code (LOC), language, do-
main, typical user community, and age. These data are
presented in Table 6. The data were gathered from Open-
Hub when available. For projects that were not available
on this platform, we extracted the data manually from
the project repository when available. We did not find
information available for three projects: Arla, AVIS, and
MeDiCi.

Considering the projects for which we gathered data,
almost all of the projects analyzed (22 out of 23) had more
than 5 years of development and, according to the classifi-
cation employed by OpenHub and adopted by others [31],
were considered Very Old projects. Seventeen of the 23
projects had more than 500 KLoC, standing in the top 10%
of projects indexed by OpenHub in terms of lines of code
(according to the data reported by Nagappan et al. [31]).
For the number of developers, 13 out of the 23 projects
have more than 50 developers, a number achieved by only
2.6% of the projects analyzed by Nagappan et al. [31]. In
addition, we can see in Fig. 6 (d) that 17 of the projects
studied were written in either Java or C.

Despite the small number of projects, we found a high
diversity of projects. It also seems that most of the au-
thors looked for mature, well-established projects to con-
duct their studies. However, most of the projects chosen
(66.67%) were products used during the development cy-
cle (Application Servers, Frameworks, IDE, etc.). The re-
maining projects (33.33%) had, as their final users, the

general (or ‘non-developer’) public. The higher focus on
established, large projects that focus on products used dur-
ing the development cycle can introduce a bias in the re-
sults of the studies analyzed.

10

1 2 3 4 5 7 > 7

1

2

3

4

5

6
6

3 3

1 1 1

4

Number of projects

N
um

be
r

of
st

ud
ie

s

Figure 4: Number of projects analyzed in the selected studies.

0 1 2 3 4

Postgres

Python

Apache Httpd

Eclipse

Jboss

Mozilla

4

4

3

2

2

2

Number of studies

Figure 5: Projects most analyzed and the number of studies that used them as objects of study.

Table 6: Characteristics of the studied projects (data gathered on Sept. 10, 2013).
Project Activity # of dev LoC Language Domain Final Users Age
Arla NO INFO Filesystem Technical
AVID NO INFO Visualization Tool Technical
CraftBukkit High 51 67,774 Java Game Server General Audience 2 years
Eclipse Very High 115 2,679,475 Java IDE Technical 12 years
FileZilla Very Low 15 250,726 C++ Network system General Audience 12 years
FreeBSD Very High 204 5,013,437 C Kernel Technical > 20 years
Freenet Very High 174 439,184 Java Network system Technical 13 years
Gantt High 27 122,261 Java Proj Management General Audience 10 years
GIMP High 70 731,486 C Image Handling Specific 16 years
Gnome Very High 1053 8,024,516 C GUI General Audience 16 years
Hackystat Very Low 1 296,225 Java Framework Technical 6 years
Hadoop Very High 43 2,277,110 Java Framework Technical 7 years
Httpd Very High 33 22,405,508 C++ HTTP Server Technical 17 years
JBoss # Very High 133 752,477 Java Application Server Technical 14 years
Jonas High 12 9,873,057 Java Application Server Technical 8 years
KDE Very High 663 23,343,508 C++ GUI General Audience 16 years
MediaWiki Very High 172 963,843 PHP Wiki General Audience 10 years
MeDiCi NO INFO
Mozilla Very High 966 9,326,438 C Browser General Audience 11 years
Parrot Very High 31 283,895 Perl Virtual Machine Technical 12 years
Postgres Moderate 23 685,332 C Database Server Technical 17 years
Python Very High 64 866,177 Python Prog Language Technical > 20 years
Samba Very High 66 1,445,110 C File System Technical > 20 years
ServiceMix Very High 7 626,483 Java Integration Container Technical 5 ears
Subversion Very High 37 564,579 C SCM Technical 13 years
Wine Very High 85 2,550,965 C Desktop Emulator General Audience > 20 years
JBoss is now called WildFly

11

Figure 6: Summary of projects characteristics.

(a) Number of project developers

0 1 2 3 4 5

Less than 10

Between 10 and 50

Between 50 and 100

Between 100 and 500

Between 500 and 1000

More than 1000

2

4

5

5

2

1

Number of projects

(b) Project age (in years)

0 1 2 3 4 5 6 7 8 9

Less than 5

Between 5 and 10

Between 10 and 15

Between 15 and 20

More than 20

1

4

9

5

4

Number of projects

(c) Project size in kLOC

0 1 2 3 4 5 6 7 8

Less than 100

Between 100 and 500

Between 500 and 1000

Between 1000 and 10000

More than 10000

1

5

7

8

2

Number of projects

(d) Project language

0 1 2 3 4 5 6 7 8 9

Java

C

C++

Perl

PHP

Python

9

8

2

1

1

1

Number of projects

12

4. Contribution barriers

The main purpose of this systematic review was to find
the barriers faced by newcomers to OSS projects as evi-
denced by the literature. For each selected study, we ana-
lyzed any barrier reported that was empirically identified
or evaluated. The identification and classification of such
barriers were accomplished by using a coding approach
based on procedures of Grounded Theory as described in
Section 2.5. The result of the categorization is shown in
Fig. 7. The figure presents five categories of barriers: So-
cial Interactions, Newcomers’ Previous Knowledge, Find-
ing a Way to Start, Documentation, and Technical Hur-
dles.

In the following subsections we detail each of the cat-
egories of barriers found. Each of the categories and bar-
riers were reported to give a sense of what each of them
represents independently.

4.1. Social interaction
This category represents the barriers related to the

manner in which newcomers interact with the commu-
nity members interact, including issues related to who
the members they exchange messages with are, the size
of newcomers’ contact network, and how the community
communicates with them. This category is the most evi-
denced among the selected studies, appearing in 12 studies
(60%). Within this category, we found evidence of three
different barriers that can influence newcomers: lack of
social interaction with project members; not receiving a
(timely) answer; and receiving an improper answer.

Lack of social interaction with project mem-
bers. This category represents the studies that evidence
role, centrality, and the size of newcomers’ social network
as barriers that can influence their success in long-term
contribution. Ducheneaut [PS7] analyzed the mailing list
archives of the Python project. He made an in-depth anal-
ysis of the socialization history of one successful newcomer
in this community. Based on this individual, the author
identified a set of socialization activities that contributed
to his success in the project. He highlighted the influence
of social and political organization for newcomers willing
to become core developers, emphasizing the need to build
an identity in the project: “what the newcomer has to learn
is how to participate and how to build an identity that will
help get his ideas accepted and integrated.” He also re-
ported on the importance of political support to becoming
a core member: “while proposing sound technical solutions
to problems is an important aspect of Fred’s successful par-
ticipation, these solutions are not enough by themselves:
establishing strategic links with key members of the project
beforehand is what truly allows them to be respected and
accepted.”

The social status and the need to build an identity
is quantitatively supported by the evidence presented by
Bird [PS2]. He analyzed data from mailing lists, source
code repository histories, and bug tracking databases to

understand how successful OSS projects work. To check
the social status of newcomers, he analyzed the indegree
social network metric. This metric represents the breadth
of response to an individual and, thus, status within the
community. Using statistical tools, he found that “the so-
cial network measure, indegree, . . . had a significant effect
on immigration,” which presented very significant influ-
ence in the three projects analyzed.

More quantitative evidence on the effect of the social-
ization was presented by He et al. [PS8]. They conducted a
social network analysis on SourceForge.net projects, look-
ing at the centrality of newcomers’ nodes. They found
that newcomers tend to collaborate more with existing
members than with other newcomers “to enlarge his or
her influence and position, because the veterans often have
more important position and richer experiences.” Zhou
and Mockus [PS20] also found evidence that social inter-
action is correlated with successful newcomers. They did
not look at the centrality of the members that the new-
comers interacted with but instead at the size of the new-
comers’ peer groups. They quantitatively analyzed the
mailing lists of the Mozilla and GNOME projects and re-
ported that “the attributes of her peer group, in particular,
its social clustering and productivity significantly influence
her opportunity to become a Long Term Contributor.”

Other research in this direction was conducted by Qureshi
and Fang [PS12]. A little different from previously pre-
sented studies, these authors were looking for different so-
cialization patterns. They used the number of interactions
between newcomers and core members during a time pe-
riod to quantitatively analyze social relationships of new-
comers. They analyzed trajectories of 133 newcomers in
40 projects from the moment they joined. They identi-
fied four distinct classes of newcomer behavior, considering
their initial amount of interactions with core members and
the growth of these interactions, and reported that “indi-
vidual joiners begin with different initial levels and follow
different growth patterns, suggesting the existence of het-
erogeneity in the socialization trajectories.” By analyzing
these different patterns, they evidenced that “. . . it is im-
portant to recognize that socialization with core developers
has a significant impact on joiners’ status progression. . . it
is perhaps more important to achieve a high level of inter-
action as quickly as possible.”

We can see that all studies that analyzed the impor-
tance of social interactions show a correlation between the
centrality of newcomers’ social relationships and newcom-
ers’ successful permanence as a contributor. However,
there is no clear evidence of the causal relationship be-
tween social network centrality and newcomer success. We
found evidence of the influence of this barrier in seven of
the primary studies [PS2, PS3, PS7, PS8, PS12, PS19,
PS20].

All of them report results from case studies, and only
one brought qualitative evidence of social interaction influ-
encing the contribution process [PS7]. All studies relied on
historical information from mailing lists, issue trackers and

13

Figure 7: Barriers evidenced in the literature.

source code versioning systems. Even Ducheneaut [PS7]
analyzed historical material to conduct his ‘computer-aided
ethnography’ research. It is necessary to conduct more
in-depth interviews and mixed method research to under-
stand the reasons behind the observations made in these
studies.

The level of interaction needed to achieve recognition
or become a contributor of a project can vary according
to the project, due to the heterogeneity of OSS projects.
This is a limitation for most of the studies, since five stud-
ies drew their conclusions based on analysis of three or
less OSS projects [PS2, PS3, PS7, PS19, PS20]. One of
the studies [PS12] analyzed the socialization level quanti-
tatively and determined that there are different types of
interaction behavior that result in long-term contribution.
Even conducting this study, by far, there is still a gap in
understanding the relationship between project character-
istics and the influence of interaction with core members
on becoming a long-term contributor, which is indicated in
some of the studies [PS2, PS3, PS7]. Characteristics such
as project age, community structure, governance model
and existence of sponsors can influence the impact of such
barriers.

Receiving an improper answer. The answers re-
ceived from the community play an important role when
a newcomer is trying to contribute. Newcomers can feel
unwelcome or insulted if they are not answered politely
or positively. Three studies [PS9, PS15, PS16] brought
evidence of the negative impact of the content of answers
received by newcomers in their first interactions.

By qualitatively analyzing mailing list messages from
three different projects, Jensen et al. [PS9] found impolite
replies to newcomers as a potential problem. They report
that “1.5% of newbie replies were rated as rude/profane
. . . flaming was more common than we expected, and the
potential negative effects of such behavior could be signifi-
cant. . . .” Steinmacher et al. [PS15] also conducted a qual-
itative analysis on mailing list messages and drew similar
conclusions as those reported by Jensen et al. In addition,
they conducted a survey with the dropouts and reported
that “from the 13 respondents who intended to contribute
to the project, six sent answers related to reception.” The
authors then concluded that “receiving inadequate answers
and the [level of] experience of the respondent affect the de-
cision of newcomers.” In a study not focused on barriers
to contribution, Stol et al. [PS16] reported on feedback
from a student that dealt with an OSS project and evi-
denced that “the community’s response was not considered
to be very helpful.”

From the studies that reported issues regarding receiv-
ing improper answers, two of them sourced their evidence
from a qualitative analysis of the mailing list history [PS9,
PS15]; the other relied on feedback obtained from semi-
structured interviews with students aiming to identify ar-
chitectural patterns in OSS projects [PS16]. Although
their goal was not making a contribution, the subjects
performed steps that are similar to those performed by
newcomers willing to make their first contribution to a
project.

Generally, newcomers demand attention and friendly

14

hands to start contributing because “humans need atten-
tion from other people, and developers are no exception”
[PS20]. There are cases in which an improper answer or
the lack of an answer can play a role in the decision of a
newcomer to contribute or not. Therefore, the use of in-
depth interviews and more contextualized research (such
as observation or ethnography) need to be conducted to
understand the reasons behind the observations made in
these studies. There are other cases in which newcomers
will keep trying to step on board because people with dif-
ferent profile, skills, cultures, and motivations can feel and
attack this problem differently.

Not receiving a (timely) answer. Just like the bar-
rier presented beforehand, newcomers can be demotivated
or made to feel unimportant when they do not receive
a timely answer. Five studies [PS9, PS15, PS16, PS17,
PS20] reported on the impact of not receiving a timely an-
swer from the community as a problem that can impact
future participation in the project.

Jensen et al. [PS9] used mailing list history to quan-
titatively evidence that “nearly 80% of newbie posts re-
ceived replies, and that receiving timely responses, espe-
cially within 48 hours, was positively correlated with future
participation.” Another piece of quantitative evidence was
given by Zhou and Mockus [PS20]. They analyzed the
time until newcomers receive the first answer and found
that “low attention in the form of too rapid response would
reduce the odds [to become a long term contributor] by 28%
in Mozilla and by 39% in Gnome.”

As part of a broader research, von Krogh et al.[PS17]
analyzed the mailing list history of the Freenet project and
found quantitative evidence that “a high 78% of the popu-
lation of development list participants attempted to initiate
dialogue, via starting a new thread, at least once. Of these
attempts only 29 (10.5%) participants did not receive any
reply to their initial posting and subsequently did not ap-
pear on the developer list again.”

In a qualitative analysis of a debrief session conducted
with newcomers that contributed to OSS projects, Stein-
macher et al. [PS14] found that “many demotivating facts
that occurred. . . : emails not answered after a week could
make the group withdraw; . . . a message posted in a forum
to announce a new translation was not read and resulted
in concurrent work and wasted time.” This provided some
qualitative, contextualized evidence on how the lack of an
answer can impact a newcomer’s contribution in an OSS
project. Stol et al. [PS16] also reported on a debrief from
students: “the community had not replied (yet) on their
request for feedback.”

A contradictory result was presented in a more recent
study by Steinmacher et al. [PS15]. They conducted a case
study using the mailing list and issue tracker history of the
Hadoop Project and, interestingly, found that “the lack
of answer was not evidenced as a problem that influences
newcomers’ decision to remain or abandon the project.”
This finding is opposite that of the other studies presented.
They found that the dropout rate for newcomers that did

not receive answers was not worse than when newcomers
were answered.

There are both quantitative and qualitative results that
support these results. However, the barrier still needs to
be further explored. The quantitative evidence found re-
lies only on mailing list histories from a few projects and is
hard to generalize due to the already mentioned high het-
erogeneity of OSS projects. In addition, both studies that
had qualitative results gathered feedback from students.

4.2. Newcomers’ Previous Knowledge
This category consists of the barriers related to the

experience of newcomers regarding the project and the
manner in which they show this experience when joining
the projects. We classified the barriers found into lack of
domain expertise, lack of technical expertise, and lack of
knowledge of project practices.

Lack of domain expertise. When working on a soft-
ware project, it is important for the developers to have
some previous knowledge of the application domain. It
is no different in OSS projects, and, according to Gacek
and Arief [18], the people who contribute code to an open
source project are always users of the product.

This is evidenced by Von Krogh et al. [PS17], who
claimed that new features added by newcomers “emerge
from the newcomers’ prior domain knowledge . . . ” Stol et
al. [PS16] evidenced it as a barrier to start in a project, as
the subjects of their research “reported their unfamiliarity
with the domain to be a hindrance.”

The evidence found in the literature suggests that pre-
vious domain knowledge can increase the odds of a suc-
cessful joining. However, we found no study that focused
specifically on verifying the influence of this variable in the
success of a newcomer. This is a suitable object of study
for future research.

Lack of technical expertise. To become a devel-
oper, an individual must have (or acquire) some project-
specific technical skills. Schilling et al. [PS13] studied a set
of newcomers to KDE. By analyzing newcomers’ previous
knowledge the authors found that “. . . level of practical de-
velopment experience is strongly associated with their con-
tinued permanence.” Another interesting finding is that
knowledge obtained via academic education is not signifi-
cantly associated with successful contributions. A possible
explanation for this result is that quantity (years of edu-
cation) does not assure quality [36].

Several studies provide more evidence towards techni-
cal expertise and its importance for successful contribu-
tions by measuring software artifacts developed by new-
comers. For instance, some studies reported that sending
messages or patches to a mailing list or issue tracker pre-
senting previous technical skills can benefit the newcomer
when joining. Stol et al. [PS16] evidenced that “when new-
comers mentioned that they had already tried some options
to fix their problem and have put efforts to look for a so-
lution in the forums . . . then the responders were quick to

15

respond and were very helpful.” They explain it as “a mes-
sage of legitimacy from the newcomer along the lines of ’I
have done my homework, can I get some help now.” ’

Von Krogh et al. [PS17] reported that a person who
finds a problem and fixes it, or comes with the issue and
provides a patch to solve it, is more likely to join the
project. “It shows the developer favors hand-on solutions
to technical problem, and that demonstration of technical
knowledge in the form of software code submission matters
more than signaling of interest and experience” [PS17].

Ducheneaut [PS7] reported an ethnographic study pro-
viding evidence that expertise should be demonstrated by
proposing code changes, proving the extent of the technical
experience: “. . . one also has to create material artifacts.”
Ducheneaut reinforced it: “one can submit bug reports and,
simultaneously (this is important), a proposed solution to
fix these bugs.”

Bird [PS2] investigated the issue of technical skill by
measuring the impact of sending patches and its accep-
tance by the project when starting the contribution, and
he found that “community perception of a participant’s
technical skills and knowledge has an effect on becoming
a developer.” This result is based upon a previous study,
where Bird et al. [PS3] ran a quantitative study based on
data mining, the results of which were evaluated using a
statistical hazard-rate model with similar findings.

Therefore, newcomers that want to contribute must
check if the technical skills required for a given task or
project match with their skills. If newcomers are not able
to show their skills, they will not be able to contribute
immediately. Moreover, a newcomer often does not have
enough technical expertise and must develop it within the
project: “For every individual there is a ‘race’ going on:
will s/he become skilled and reputable enough to become
a developer before s/he loses interest?” [PS3]. Actually,
there is a blend of technical expertise and social interac-
tion, where the interactions are driven by artifacts that
reflect the technical expertise: “Therefore we encompass
capacity and willingness into a single dimension” [PS20].
It is the result of these demonstrations that will allow both
newcomers and developers to perceive the level and possi-
bly lack of technical expertise that hinders effective contri-
butions to the project. The results obtained by the quan-
titative [PS3, PS13], qualitative [PS7], and mixed method
studies [PS20] agree to this extent, reinforcing the impor-
tance of technical expertise represented as patches and its
demonstration to the developers.

Lack of knowledge of project practices. We found
just one study presenting evidence of learning project prac-
tices as a problem that influences newcomers not to con-
tribute. The study conducted by Schilling et al. [PS13]
found that previous knowledge regarding the project prac-
tices influences newcomers’ first steps. They reported that
“familiarity with the coordination practices of the project
team has a strong association with the time they spend
on their projects after GSoC [Google Summer of Code].”
The authors used historical data from the project to ana-

lyze the previous interactions of the subjects before they
participated in GSoC to draw their conclusions. Thus, the
evidence regarding previous knowledge of project practices
refers to previous interactions in the project. It would be
interesting to conduct an in-depth investigation on how
previous interactions are related to knowledge of project
practices and also on how previous knowledge of practices
of other projects impacts newcomers.

4.3. Finding a way to start
This category represents the problems related to diffi-

culties that newcomers face when trying to find the right
way to start contributing.

Difficulty to find an appropriate task to start
with. Find the appropriate task to work on was classified
as a problem because new developers have difficulty to find
the bugs that are of interest, that match their skill sets,
that are not duplicates, and that are important for their
future community [45]. Von Krogh et al. [PS17] reported
the impact of the issue of finding the right task to work
on. They found that “in 56.7% of the cases members of the
community encouraged the new participants to find some
part of the software architecture to work on that would
match with their specialized knowledge. In only 16.7% of
the cases new participants were both encouraged to join
and given specific technical tasks to work on.” This occurs
because, according to their interviews, the community ex-
pects new participants to find their own task to work on
instead of receiving a specific piece of work.

Park and Jensen [PS11] reported that “. . . subjects ex-
pressed a need for information specific to newcomers, for
instance, . . . what to contribute to (e.g. open issues, re-
quired features, sample tasks to start with).” We can see
that the community wants the newcomers to pick the task
themselves [PS17]; however, newcomers have no clue of
how to do this [PS11].

Finding the appropriate task is also presented as a bar-
rier by Ben et al. [PS1] and Capiluppi and Michlmayr
[PS5]. They studied the impact that the choice of the
module in which a newcomer worked had on future partici-
pation. Ben et al. [PS1] found that “developer contribution
is influenced by the instability of the code he or she starts
to contribute. The code with more developers involve in
will lead to less contribution in some degree.” After look-
ing at the source code history, Capiluppi and Michlmayr
[PS5] reported that “. . . new developers, when joining the
project, tend to work more easily on new modules than on
older ones . . . potential new developers should be actively
fostered adding new ideas or directions to the project.”

This problem was evidenced by four studies [PS1, PS5,
PS11, PS17] found in this systematic review. The point
of view of communities is that newcomers should be able
to find the most appropriate task themselves, as reported
by von Krogh et al. [PS17]. However, other research stud-
ies show that the projects should give special attention to
this issue [PS1, PS5, PS11]. Three primary studies re-
lied on the analysis of versioning system histories [PS1,

16

PS5] or mailing list archives [PS17], and one study [PS11]
contained feedback from newcomers that were asked to ex-
plore the default environment of OSS projects and report
what they would have wanted to know about the project
before deciding to join. None of them presented evidence
collected from project members or newcomers that actu-
ally faced the issue. Conducting such a study would un-
cover the reasons and enable practitioners to offer bet-
ter support to newcomers. There are some initiatives to
support newcomers on this specific issue. One of them
is OpenHatch6, which tries to identify easy issues in sev-
eral OSS projects and classify them according to language
skills; another project is Mozilla, which also provides an
easy way to identify simple bugs for newcomers 7.

Difficulty to find a mentor. In industrial settings, it
is a common practice to offer mentorship to newcomers to
support their first steps [1]. However, in OSS projects that
rely on volunteers, it is not a common approach to offer
formal mentorship programs. The difficulty to find a men-
tor is evidenced in one primary study [PS4]. Canfora et
al. [PS4] proposed a tool called YODA that aimed to rec-
ommend mentors to newcomers. They evaluated the tool
by surveying some project members identified as mentors
and mentees in the mailing list. They found that “devel-
opers indicated that mentoring is important, although it
seems that developers are more likely to admit that they
performed mentoring than they were mentored.”

Mentorship is presented as a good way to help new-
comers [PS4]. However, it is not clear whether this type of
policy can be applied in OSS communities, as it depends
on experienced developers to perform this task. Although
the entire motivation of the work conducted by Canfora et
al. [PS4] is the difficulty to find a mentor, there was no
previous empirical evidence of this fact. The evidence was
part of the results of the tool evaluation, which was con-
ducted to confirm the mentor recommendations when they
asked potential mentors and mentees about their perceived
importance of mentoring. Two other primary studies made
use of anecdotes to address mentorship; however, they did
not present any evidence regarding it [PS6, PS14].

Some issues related to this barrier are still open and
deserve to be studied further. For example, the following
questions need to be answered: is it really difficult to find
a mentor? Can a proper mentorship improve the odds of
a newcomer becoming a long-term contributor? How can
formal mentorship be adopted in OSS projects?

4.4. Documentation
Documentation is important to newcomers because, in

OSS projects, they are expected to learn about the tech-
nical and social aspects of the project on their own [34].

6http://www.openhatch.org
7https://bugzilla.mozilla.org/buglist.cgi?quicksearch=

sw:[good+first+bug]

The barriers in this category report on which documenta-
tion problems have been evidenced as possible barriers to
newcomers in OSS projects.

Outdated documentation. Providing outdated
documentation can become a barrier to newcomers instead
of helping them. Steinmacher et al. [PS14] reported some
issues that this barrier can cause: “we can see many de-
motivating facts that occurred . . . outdated information in
the issue tracker made the developers waste time on an al-
ready existent feature and on checking each issue they pick
to address. . . ” Stol et al. [PS16] also reported problems
regarding outdated documentation. They reported that
the subjects “. . . were uncertain whether the available di-
agrams were still up to date and relevant for the current
version of the software. . .Another reported challenge was
the uncertainty whether the available documentation was
up to date for the current version of the software.”

Even finding two studies providing evidence of this bar-
rier, we found no study that focused specifically on ver-
ifying the influence of this variable on the success of a
newcomer. In addition, both studies that presented quali-
tative evidence gathered feedback from students after they
worked with OSS projects. It is necessary to conduct more
focused studies to gather more evidence of this barrier and
to better understand what the consequences of this barrier
are.

Too much documentation. In many OSS projects,
newcomers need to explore existing information in mailing
lists, source code repositories, issue trackers, and project
pages. Rich and up-to-date documentation is essential for
newcomers trying to understand the project. However,
overzealous attempts to address this can lead to the oppo-
site problem of overwhelming documentation and sources
of information, resulting in information overload. Two pri-
mary studies [PS11, PS6] identified this overload as a bar-
rier to newcomers. In both of them, the authors conducted
experiments to assess the benefits that tools can bring to
newcomers. Cubranic et al. [PS6] presented and assessed
Hipikat, a tool that supports newcomers by building a
group memory linking information from different sources.
They conducted a study with newcomers (with previous
experience in software development) to evaluate the tool.
They reported that “since the search space is so large, new-
comers tend to have difficulty coming up not only with a
good conjecture, but also the way of searching through the
documentation and code to verify it . . . ” [PS6].

The projects need to provide easy ways to find and
navigate the information provided by the projects, linking
different sources of information and enabling the recom-
mendation of “relevant parts of the group memory given
information about a task a newcomer is trying to perform”
[PS6]. The two primary studies that presented evidence of
information overload were motivated by an anecdote that
there is a need to support newcomers in understanding all
of the information provided by OSS projects. They con-
ducted well-planned studies and showed that it is possible
to make it easier for newcomers to understand projects and

17

navigate through different sources of information, reducing
this barrier.

Unclear code comments. When newcomers want
to contribute to OSS projects with source code, they need
to understand the code. One way to document the code
is by using code comments. By providing unclear code
comments, the newcomers will possibly spend more time
trying to understand the artifacts they need to work with.
This is evidenced in the work by Stol et al. [PS16]. One
of the students who participated in their study reported
that “the code was not very well documented, which made
it more difficult to understand the source code.”

Even providing just a single piece of evidence, in a su-
perficial way, based on feedback from one student who was
working with a specific OSS project, Stol et al. [PS16] re-
vealed this barrier. To better understand the barrier and
provide more conclusive evidence, it is necessary to study
this phenomenon in-depth to answer various questions, for
example, what is an unclear comment? What is the im-
pact of these comments? How is it related to the person’s
characteristics, motivation, and background?

4.5. Technical Hurdles
This category consists of the technical barriers imposed

by the project when newcomers are dealing with the code.
To contribute, a newcomer usually needs to change exist-
ing source code. Therefore, it is necessary for newcomers
to have enough knowledge about the code to begin their
contributions. This category includes barriers related to
issues to set up a local workspace, and to understand and
modify the source code.

Issues setting up a local workspace. The feedback
obtained by Stol et al. [PS16] evidenced that newcomers
have difficulties in setting up their environment. He re-
ported some obstacles, for example, “a challenge was that
some [subjects] did not have any experience or knowledge
on checking out source code from the version control sys-
tem.” They also reported problems in building the project,
which is a step of the workspace setup: “some [subjects]
encountered build errors, which caused them to manually
fix the build configuration.” Another complaint was that
“the compilation process ‘was a nightmare’; this was caused
by the many dependencies on other subsystems that had to
be downloaded in addition.”

Documentation can certainly help newcomers on set-
ting up a local workspace. In fact, some communities
provide tutorials and step-by-step cookbooks on how to
obtain the code, setup up and build a local workspace.
However, some projects have peculiar workspace require-
ments that cannot be ameliorated just by documentation.
For instance, management of required building libraries
can be addressed by employing building systems, with de-
pendency handling mechanisms. Although their usage re-
quires newcomers’ technical expertise, the provision of a
building system is responsibility of the project.

It is worth noticing this barrier was evidenced just by
the study conducted by Stol et al. [PS16]. Conducting ob-

servational studies and interviews with newcomers would
help identifying more specificities of this barrier.

Code complexity. The study conducted by Midha
et al. [PS10] analyzed how code complexity influenced
newcomers contribution to OSS projects. Using statisti-
cal tools to analyze many characteristics of 450 Source-
Forge projects, Midha et al. [PS10] showed that “cogni-
tive [code] complexity has a strong negative influence on
the number of contributions from new developers. As OSS
thrives upon voluntary contributions, the project managers
must actively control the source code complexity in order
to attract contributions from new developers. In a complex
piece of code, it takes longer for a developer to determine
the flow of logic resulting in slower progress of the project.”

This is another case of a barrier supported by evidence
from only one primary study. In this case, the evidence
was obtained from a case study counting on a large sample,
aiming to verify whether source code’s cognitive complex-
ity was negatively associated with the number of contri-
butions to the OSS source code from new developers.

Software architecture complexity. Besides code
complexity (unit level), as in the previous barrier, it is im-
portant to consider the software architecture (integration
and system level). Stol et al. [PS16] highlighted some com-
plaints of newcomers about the project structure of OSS
projects. One subject reported that “the hierarchy of the
source code directory was counter intuitive for someone
with little architecting experience.” Other subjects “also
reported that manually browsing the source code for pat-
terns was ‘tricky’ and very time consuming.” Cubranic et
al. [PS6] also presented an issue faced during their exper-
iment: “We also had reports of a pair missing a relevant
suggestion because they lacked knowledge about the overall
structure of the system. . . ”

Park and Jensen [PS11] analyzed “the potential bene-
fits of information visualization in supporting newcomers
through a controlled experiment.” They found that “the
impact of information visualization. . . suggests that provid-
ing visual information to newcomers may reduce the chal-
lenges they face when learning about a new project.” The
feedback obtained from the subjects revealed that “provid-
ing visual information such as the class diagrams or de-
pendency views . . . would help new developers understand
the structure of existing code and find problems to work
on.”

The main complaint regarding code is that its struc-
ture is hard to understand and that learning it takes too
much time. The difficulty in dealing with this type of
barrier is related to the newcomer’s previous knowledge.
Approaches such as visualization [PS11] and artifact rec-
ommendation [PS6] can support newcomers in overcoming
this barrier, but further solutions should be investigated.

4.6. Summary
Considering the model defined in Fig. 7, based upon

barriers identified by using GT procedures throughout the

18

selected studies, we can summarize the evidence for each
problem as shown in Table 7. In Fig. 8, we also present
the barriers ranked according to the number of studies that
evidence them. The category most thoroughly studied is
social interactions, accounting for 12 studies, followed by
Newcomers’ Previous Knowledge with 8 studies. The other
three categories range from 4 to 6 related studies each. It is
possible to note that, thus far, the literature is focused on
the social issues. The more technical barriers, such as soft-
ware architecture complexity, dealing with the versioning
system, setting up a local workspace, and understanding
the code, are poorly studied.

Considering studied barriers, we found that the most
evidenced were (1) lack of technical experience, from the
Newcomers’ Previous Knowledge category, and (2) lack of
social interaction with project members, from the Social
Interaction category. Overall, barriers related to technical
issues, which include code issues and difficulty to find a
way to start, were individually backed by less evidence.

19

Table 7: Studies that evidence each barrier.
Category Barrier Studies

Social
Interaction
[12 studies]

Lack of social interaction with project members [7 studies] [PS2], [PS3], [PS7], [PS8], [PS12],
[PS19], [PS20]

Not receiving a (timely) answer [6 studies] [PS9], [PS14], [PS15], [PS16], [PS17],
[PS20]

Receiving an improper answer [3 studies] [PS9], [PS15], [PS16]

Newcomers’
Previous

Knowledge
[8 studies]

Lack of technical experience [6 studies] [PS2], [PS3], [PS7], [PS13], [PS17],
[PS20]

Lack of domain expertise [2 studies] [PS16], [PS17]
Lack of knowledge of project practices [1 study] [PS13]

Technical
Hurdles
[6 studies]

Issues setting up a local workspace [1 study] [PS16]
Code complexity [1 study] [PS10]
Software architecture complexity [3 studies] [PS6], [PS11], [PS16]

Finding a Way
to Start
[5 studies]

Difficulty to find appropriate task to start with [4 studies] [PS1], [PS5], [PS11],[PS17]
Difficulty to find a mentor [1 study] [PS4]

Documentation
[4 studies]

Too much documentation [3 studies] [PS6], [PS11], [PS16]
Outdated documentation [2 studies] [PS14], [PS16]
Unclear code comments [1 study] [PS16]
Lack of documentation [1 study] [PS16]

*** Some studies support more than one barrier

0 1 2 3 4 5 6 7

Lack of social interaction with project members

Lack of technical experience

Not receiving a (timely) answer

Difficulty to find appropriate task to start with

Software architecture complexity

Too much documentation

Receiving an improper answer

Lack of domain expertise

Outdated documentation

Code complexity

Difficulty to find a mentor

Issues setting up a local workspace

Lack of documentation

Lack of knowledge of project practices

Unclear code comments

7

6

6

4

3

3

3

2

2

1

1

1

1

1

1

Number of studies

Figure 8: Barriers ranked by the number of studies that evidence each.

20

5. Origin of the barriers and Some Initial Guide-
lines

In addition to the identification and classification of
the barriers based on their type, we organized the barriers
according to their origin, discussing them along with a
initial set of guidelines to help newcomers to overcome the
barriers.

Three different “origins” were identified during our anal-
ysis: newcomers, community, and the product. Some of
the barriers are related to more than one origin because
different actions can be taken to change the barriers’ im-
pact. For example, “setting up local workspace” is a barrier
that can be originated by the newcomer’s profile (e.g., in-
experience, or issues regarding installation of development
tools), but the community can also contribute to the bar-
rier if it does not provide some level of support in preparing
the workspace.

In the following subsections we discuss the barriers
along with some guidelines for supporting newcomers, en-
abling practitioners and researchers to take action and pro-
pose tools and processes targeting the origin of the barri-
ers.

5.1. Newcomers
We classified newcomers as the origin of the barriers

caused by their behavior or profile. By behavior, we mean
the manner in which newcomers interact with the com-
munity, while by profile, we mean newcomers’ knowledge
background. These barriers are mainly under the “New-
comers’ Previous Knowledge” category and are related to
newcomers’ profiles. In this section, we present the barri-
ers and EFOREvarious hints for helping newcomers guide
themselves to overcome these barriers.

We found that in OSS projects, newcomers themselves
play an important role during the contribution process.
This means that before contributing to a project, newcom-
ers must, for example, verify whether their skills match
with the skills needed to work in the project or choose a
project of a known business domain. It is necessary to find
a project that fits a newcomers’ profile to enable their con-
tribution. This type of problem are usually not addressed
by the community directly. Newcomers themselves need
to take action and search for the proper knowledge that is
appropriate when joining the project.

Newcomers’ behavior is also a problem that influences
future contributions. Newcomers that showed proactiv-
ity, sending patches and participating in discussions, were
better received by the community. Some of the primary
studies reported that the content of a message influences
the reception of a newcomer. Being social and acquiring
political supporters is also an important problem when a
newcomer wants to become a core developer. However, it
is important to note that this social and political behavior
was important for newcomers to become long-term con-
tributors or to be accepted by the communities as mem-
bers.

By checking the literature, we observed that good so-
cial skills, allied with the right technical skills and proac-
tivity, can positively influence the contributions.

5.2. Community
Community was considered the origin of the barriers

influenced by the project processes and the behavior of
the community members when interacting directly with
the newcomers. Improvements in community receptivity
and more appropriate collaborative environments for OSS
development can result in better support for newcomers,
positively influencing successful contributions.

We found that lack of information made available by
the project and lack of support given by the community
are important problems that can hinder newcomers when
they want to join a project. For example, Park and Jensen
[PS11] reported that the SourceForge repository could be
made more interactive and user-friendly, making it look
less geeky/daunting for newcomers. Community members
can support newcomers by making it clear what is ex-
pected from them and what the process and practices are
that must be followed to contribute. Thus, a more infor-
mative and less technical initial environment is beneficial
for newcomers.

Community was classified as the origin of some social
interaction barriers. These problems are related to the way
the community interacts with newcomers. OSS communi-
ties need to take special care with the barriers reported by
some authors [PS9, PS14, PS15, PS16] concerning commu-
nity recognition and giving proper answers to newcomers.
They evidenced that the absence of responses, improper
answers, and not receiving recognition from the commu-
nity can lead to newcomer dropout.

Large and more organized projects could nominate peo-
ple with social skills to receive newcomers in the communi-
cation channels. Newcomers need to be welcomed, avoid-
ing the use of project specific terms and jargons, and they
need to receive proper directions in a positive way when
they reach the community. For the community members
who have the opportunity to interact with newcomers, so-
cial skills are required. Improper reception can result in
losing valuable resources. In addition, it is interesting to
make newcomers aware of the average time to receive an-
swers and about the critical periods (such as pre-release)
to help manage their expectations. Newcomers need to be
warned and oriented instead of being improperly received
or dismissed.

5.3. Product
The product was classified as the origin of problems re-

lated to source code and documentation. Regarding source
code, its structure and complexity [PS6, PS10, PS11, PS16]
were the barriers reported by the literature, and the prod-
uct was assigned as their origin. Barriers related to doc-
umentation were also identified in some primary studies
[PS6, PS11, PS14, PS16]. Even knowing that these ar-
tifacts (source code and documentation) are the result of

21

community interaction, we classified these barriers as orig-
inated by the product because our goal is to point to where
practitioners and research community need to pay atten-
tion.

The main product of the OSS projects is the code.
Code complexity was identified as a barrier in the study
conducted by Midha et al. [PS10]. They analyzed a large
set of projects and verified that code complexity nega-
tively influenced newcomers’ decision to contribute to the
projects. To help newcomers in reducing this technical
barrier, Cubranic et al. [PS6] and Park and Jensen [PS11]
conducted experiments to analyze the potential of tools
in supporting newcomers in understanding the code struc-
ture. The former [PS6] proposed and evaluated a tool
(Hipikat) that recommends the source code artifacts that
should be related to the issue a newcomer is working on.
The latter [PS11] evaluated the benefits of source code vi-
sualization tools in supporting newcomers. Both of them
reported good results when newcomers are supported by
the tools.

Documentation is also a product generated by the com-
munity. Stol et al. [PS16] reported some comments from
students that worked with OSS projects. They presented
feedback that raises issues regarding outdated information,
lack of documentation and diagrams, too much documen-
tation, and lack of meaning in the code comments. Stein-
macher et al. [PS14] also presented feedback from new-
comers and reported that “newcomers became demotivated
due to outdated information.” Information overload is also
reported and explored in two experiments conducted with
tools aiming to facilitate newcomers’ joining process [PS6,
PS11].

Keeping the code simple and the documentation orga-
nized and up-to-date potentially increases the odds of re-
ceiving contributions from newcomers. Community mem-
bers need to think of their product from the perspective of
newcomers if they want to receive more contributions. The
source code is the set of artifacts that need to be under-
stood and changed by the members to contribute. Perhaps
keeping the code simple and easy to understand is a good
way to increase the number of newcomers contributing.
Sometimes it is not easy to make it simple because the
core of a large application is inherently complex, and the
code reflects this complexity. However, directing newcom-
ers to peripheral modules (at least warning them of the
complexity) or offering tools to help them find the right
artifacts to work on given a specific task would benefit
newcomers during their first steps.

Regarding documentation, providing easy-to-access, or-
ganized and up-to-date documentation would benefit new-
comers. In the case where there is no way to keep it up-to-
date, it would be a nice policy to make newcomers aware
of the status of the documents (which ones are outdated,
which are still up-to-date). In addition, the use of tools
such as Hipikat that aim to link information from different
sources to build a project memory would be beneficial to
provide newcomers with a way to navigate the information.

22

6. Discussion

For purposes of simplicity, in Section 4, we presented
some of the discussion of our results alongside each of the
barriers, and in Section 5, provided some discussion about
the origins of the barriers and some countermeasures in
the form of guidelines. In this section, we discuss some of
the key findings at a higher-level perspective.

In general, this study identified empirical evidence of
barriers faced by newcomers to OSS projects. This empir-
ical evidence is important, as many studies are motivated
by or deal with anecdotal evidence. This paper brings ev-
idence from reality, which is rarely precisely documented.

As a result of this study, we found that the most ev-
idenced barriers are related to socialization, appearing in
75% (15 out of 20) of studies analyzed, with high focus
on interaction in mailing lists (receiving response and so-
cialization with other members). We also noticed a lack
of in-depth studies on technical issues faced by newcom-
ers. The reason can be attributed to the small number of
qualitative studies found because it cannot be quantita-
tively extracted from mailing lists. For example, technical
hurdles are evidenced by only five studies analyzed. Is-
sues related to workspace setup is reported in only one
study, by one subject in a debrief session. These kinds of
issue deserve more attention, from both practitioners and
researchers.

Some barriers identified in this systematic review are
also reported and analyzed by the literature of other online
communities; the most explored barriers are those related
to community reception issues. For example, not receiv-
ing an answer is well evidenced quantitatively in Q&A
literature [24, 28, 46]. Receiving impolite answers was
also largely studied in the CSCW literature, mainly on
the analysis of reverts in Wikipedia [20, 14, 43]. The pro-
posed strategies of automated answers and feedback used
in Wikipedia [15, 19] can be adapted and then evaluated
in OSS context.

Studies that used mixed methods to draw their conclu-
sions are good examples of how to bring evidence from the
historical data and contextualize them. It is the case of the
studies conducted by von Krogh et al. [PS17] and Duch-
eneaut [PS7]. The former used interviews with project
members and an analysis of issue tracker, mailing list, and
project documents to bring qualitative evidence presented
with and backed by quantitative information mined from
a project’s repository.

On the other hand, studies such as those conducted by
Steinmacher et al. [PS14] and Jensen et al. [PS9] pre-
sented simplistic views of the problem when they drew
conclusions from only analyzing the first messages from
newcomers and their retention. The context is important:
Why did they send the messages? What motivated them?
Did they really want to contribute or just clarify some
doubt? Did they contribute at the end but never got back
to the mailing list? To answer such questions, we need
to merge information from different sources (issue tracker,

mailing lists, documentation, code repository) and verify
the context by talking to practitioners. Another possibil-
ity is to conduct observational and ethnographic studies
by analyzing the barriers and effects for newcomers in real
settings.

It is worth noting that the main focus of analysis were
large projects with a high number of developers and more
than five years of existence. Moreover, projects that fo-
cused on products used during the development cycle and
developed in Java and C were preferred. Such projects
can be classified as clearly successful projects which, com-
bined with the historical data available, provide an easy
target to search for newcomers. We observed that, al-
though projects gain several newcomers, just a small per-
centage are successful in contributing some source code.
Because the identification of barriers faced and surpassed
by such newcomers is important, projects with a high num-
ber of developers (and newcomers) are easier to analyze to
find evidence of such barriers. However, a high number
of OSS projects present different characteristics, such as
small teams and short lifetime, and were not considered
for evaluation. Naturally, such projects provide less data
and are less attractive than large successful projects, but
when considering newcomers, they can account for differ-
ent problems than those identified by our model or mod-
ify their importance. Further investigation is required re-
garding such projects to improve the model of barriers
described in this paper.

We analyzed the characteristics and goals of the new-
comers. However, many of the papers did not explicitly
profile the newcomers they analyzed. This is probably re-
lated to the type of data analyzed and the type of study
conducted, as most of the studies only used data com-
ing from software repositories and did not go deeper in
the analysis of the subjects. The problem is that the term
newcomer can be used in a loose way, which can bias the re-
sults. Newcomers can be novice developers who are start-
ing their career, people who are experienced developers
from industry but are not used to OSS projects, or people
who are migrating from other OSS projects. These three
profiles are different and can face different barriers or expe-
rience barriers differently. Therefore, it would be a better
approach to assess how these different types of developers
see the barriers and what their impressions of them are.
For example, does a novice developer find more issues to
contribute than an experienced developer without an OSS
background?

In one case [PS13], the newcomers analyzed were par-
ticipants of the Google Summer of Code. They were stu-
dents that received a scholarship from Google to develop
for KDE. Experienced KDE developers were assigned as
formal mentors of the participants. There are other cases
where students were the subjects of studies. Steinmacher
et al. [PS15] received some feedback from Ph.D. students.
The subjects were technically skilled and were newcom-
ers to Open Source Software projects. Park and Jensen
[PS11] conducted their experiment on visualization tools

23

with students who had at least two years of experience
with Java programming.

The participants of a Cubranic et al. [PS6] study were
experienced in developing large or medium-sized software
systems and familiar with tools commonly used (versioning
systems, issue trackers, etc.). Ducheneaut [PS7] analyzed
the steps followed by a Python developer from his first
interactions with the project until he became a core devel-
oper. In this case, the subject was experienced and was
motivated to become a core developer from the beginning.

Other studies did not focus on any specific newcomer
profile. They analyzed first posts on mailing lists, his-
tory of socialization in mailing lists, participation in issue
trackers, patches sent, and commits submitted. Therefore,
their focus seems to be on developers that have some tech-
nology skills. As reported by Cubranic et al. [PS6], they
were “interested in studying newcomers, not novices.”

The goals of the studies also differ. The goal of some
[PS3, PS7, PS18] was to provide guidelines or scripts on
“how to become a core member.” Other studies [PS19,
PS20] model the chances of a person becoming a Long-
Term Contributor based on his willingness and the project
environment. Schilling et al. [PS13] analyzed the charac-
teristics of subjects who started as participants of Google
Summer of Code that remained in the project after the
end of the program. Other studies do not mention the
goals of newcomers in terms of their future in the project.

This heterogeneity of profiles, goals, and projects an-
alyzed provides opportunities for future research, such as
analyzing how these barriers are felt by different profiles
and in different types of projects.

OSS researchers can also benefit from these results by
using them to conceive strategies for newcomer support.
To achieve this, it is necessary to put more effort on spe-
cific research topics, such as understanding and creating
ways to measure the influence of the barriers in newcom-
ers’ experience, identifying and creating different strate-
gies to lower each barrier, and proposing metrics to grade
the support offered for each barrier. To gain a better un-
derstanding of the barriers and to what extent they need
to be lowered, it is important to conduct more qualitative
studies because this phenomenon occurs in a complex, so-
cial environment in which the context of its occurrence
is important. Moreover, a qualitative view complements
the existing literature, which relies mostly on quantitative
evidence.

OSS practitioners can take advantage of the barriers
model to organize the project environment and to adjust
their behavior to better receive newcomers. The model
can be used as a guide on what type of information or
tools need to be provided to newcomers. By providing
ways to lower entry barriers, the projects can benefit from
more contributions and, possibly, from more long-term
contributors. Assuming that, as stated by Dagenais et al.
[PS7], “newcomers are explorers who must orient them-
selves within an unfamiliar landscape,” the model of bar-
riers can be used by OSS communities to place the proper

signs and maps to help newcomers orient themselves and
to alert or warn them about the obstacles that they might
face.

Although we considered the barriers as something that
can hinder newcomers’ contributions, some barriers can be
used as filters by the projects. Findings from a Halfaker
et al. [19] study on Wikipedia newcomers revealed that
some entry barriers led to improved contributions in the
future. Moreover, research conducted in the OSS domain
[33, 13] demonstrated that socialization barriers are useful
for maintaining community integration and the quality of
the community’s product. A clear direction for future work
is to explore how the communities perceive these barriers
and how they impact the quality of contributions from
newcomers.

24

7. Threats to Validity

In this section, we identified and described the threats
to the validity of our study. As for the construct validity,
our main concern was to select every relevant study, de-
spite issues regarding the sources of study, nomenclature,
and fairness in the selection process. Regarding internal
validity, the quality of studies we have found are an im-
portant threat. Most papers do not consider barriers as
a main focus. Finally, the external validity is threatened
by the sample of OSS projects considered, as well as the
profiles and motivations of the newcomers considered by
studies. These items pose some difficulties when attempt-
ing to extrapolate current results to other OSS projects.

7.1. Construct validity
Several tactics were employed to assure the construct

validity of this systematic review. The protocol considered
several sources for searching, and we validated them with
five experts (chairs of previous conferences on OSS). In ad-
dition to venues that we had already included, they sug-
gested libraries that, unfortunately, did not provide any
search mechanism. Although that may be considered a
threat, it is reasonable to consider that relevant research,
available in local libraries, will eventually be published in
indexed venues. Moreover, author and citation analysis
can help to retrieve such papers.

We adjusted the search expression to cover all relevant
papers that were of our knowledge and conducted pilot
studies using a group of relevant studies. The same ex-
perts we consulted for sources validated this set of verified
studies. Every step of the selection process was conducted
by two researchers whose decisions always needed to agree
or be made in consensus.

Despite all of those measures, this review may have
missed some papers that address problems faced by new-
comers to OSS projects because we did not perform our
search into every possible source and some relevant papers
may not contain the chosen terms. Moreover, some papers
that address barriers but were not positioned as studies
about newcomers to OSS trying to make code contribu-
tions were not included in this review. This can explain
the lack of studies that investigate technical barriers. The
adoption of authoring and citation analysis, in addition to
searching in digital libraries, contributed to helping miti-
gate this issue. For instance, as reported in Table 2, two
papers were found by author snowballing.

Another threat to our study was that it considered only
newcomers as our object of interest. The selection for bar-
riers was accomplished by the selection criteria of the sys-
tematic review. This was due to known limitation on the
literature available on the topic, with few studies explicitly
regarding barriers to newcomers on OSS projects.

The findings of this review may have also been affected
because classification is a human process and it is based
on some subjective criteria. In particular, the terms of the
area do not have a common definition among all studies.

The problems were classified based on the procedures of
coding from Grounded Theory, which also relies on manual
classification. The use of such an approach is not common
in systematic reviews. However, we employed it because
our goal was to identify and categorize the barriers faced
by newcomers and identifying and categorizing concepts is
one of the key components of grounded theory. To reduce
the bias related to these concerns, this review involved
two researchers cross checking each paper for inclusion and
the coding process, and a third researcher responsible for
reviewing and discussing the information generated after
each step.

Moreover, since our goal was to identify and classify
the barriers evidenced in the literature, we reported each of
the barriers as independent factors that influence newcom-
ers. Therefore, there could be some relationships among
the barriers, since they were not reported by the primary
studies and require further investigation in other sources.

7.2. Internal validity
Most of the studies analyzed did not present as their

main focus the analysis of the newcomers’ needs or the
problems they faced during their first steps. The papers
that aim to analyze barriers faced by newcomers focus on
very specific problems. We know that it would be hard –
or even impossible – to identify every factor that can af-
fect newcomers. The quality of the evidence provided by
the selected studies is also a threat to the internal valid-
ity. There are a small number of studies reporting experi-
ments that address the barriers. One approach employed
by several studies was to identify successful newcomers
and trace the actions they did differently from other new-
comers that did not contribute to the project. However,
although that can show a correlation between them, it may
not necessarily be a barrier. Unfortunately, we could not
find a study that quantitatively analyzed just this factor,
although some qualitative studies did provide some evi-
dence of barriers found by unsuccessful newcomers. With
this paper, we expect to foster more papers addressing
barriers and newcomer contribution, providing empirical
primary studies that can be used to improve our results
with newer iterations of this systematic review.

To this end, one feature we expect from future pri-
mary studies on newcomers contributions is a better de-
scription and control of variables. Arguably, this is not
trivial, as there are several variables at hand. However, it
would be interesting to consider “forks” of projects, such
as OpenOffice and LibreOffice, and how the entry barri-
ers they have chosen to address contributed to newcom-
ers’ success. However, this approach would face the issue
that, in such projects, several interventions are applied at
once, making it difficult to identify the variable that really
caused the effect. Another approach would be creating
controlled experiments using real OSS projects. For ex-
ample, it could provide a new tool, developed to address
one barrier, and evaluate its effectiveness. This might not
be suitable for large projects, but could be provided for

25

smaller projects in software forges such as SourceForge and
GitHub.

Once more studies become available, our systematic
review protocol could be updated to consider barriers or
tools used to mitigate a specific barrier and their effects,
such as patch submissions and code contributions. For
instance, several studies could extract similar information
from the same source and provide evidence towards specific
barriers (such as lack of technical experience and lack of
social interaction with project members), which could be
aggregated to produce stronger evidence.

7.3. External validity
The studies we selected in our systematic review con-

sidered just a small subset of available OSS projects. Al-
though it would be infeasible to select a proper sample
from the population, most papers considered few success-
ful and mature software programs. We could find just four
projects that used a more heterogeneous collection [PS8,
PS10, PS12, PS19], such as those hosted at SourceForge
and Apache Foundation.

The choice of projects considered by most researchers
is understandable. After all, data mining approaches re-
quire a considerable volume of data, which is often pro-
vided by mature and large projects. However, the barriers
identified in them are not necessarily the same as those
of smaller projects. Nonetheless, considering studies with
small code bases [PS16, PS17], the results were compati-
ble with those from studies of larger projects. This does
not mean that the barriers are always the same, but at
least it provides some hint that some barriers are indepen-
dent of a project’s characteristics. Further studies must be
conducted to evaluate whether there are distinct barriers
between such projects and assess the importance among
them.

As discussed in the previous section, most of the pa-
pers did not explicitly profile the newcomers analyzed, and
there is a high diversity of projects studied. Thus, it is
difficult to generalize or to specify the implications of the
results of this systematic review.

Another threat to external validation is that newcom-
ers can be driven by different motivations to contribute
and present different expectations from the project. In
our model, we use the term ‘newcomers to OSS’ to refer
to volunteer contributors. However, OSS is increasingly
being driven by paid employees in commercial companies.
In such cases, some of the barriers can be softened or mit-
igated by the motivation that drives paid newcomers and
by the socialization tactics used by companies.

26

8. Conclusion

In this study, we identified 20 papers that evidence
barriers faced by newcomers while making a contribution
to an OSS project. We aggregated the barriers evidenced
across the related literature in a single place. By using a
coding approach inspired by Grounded Theory procedures
to organize the barriers, we proposed a model composed
of five categories: social interactions, newcomers’ previous
knowledge, finding a way to start, documentation, and
technical hurdles. The model extracted from the litera-
ture (presented in Fig. 7 and discussed in Section 4) is the
main contribution of this systematic review, as it brought
to light the barriers that were already evidenced in the
literature as barriers for newcomers to contribute to OSS
projects. This classification provides a baseline for further
research related to contribution barriers faced by newcom-
ers to OSS projects. We also classified the problems re-
garding their origin: newcomers, community, or product.
Such classification can be used to provide a quick reference
for researchers and OSS practitioners willing to investigate
or implement tools and mechanisms to support newcom-
ers.

Considering the most studied barriers, we found that
the most evidenced are (1) lack of social interaction with
project members; (2) not receiving a (timely) answer, both
from Social Interaction category; and (3) newcomers’ pre-
vious technical experience, from Newcomers’ Previous Knowl-
edge category. It is important to notice that although the
social interaction issues were the most evidenced barri-
ers, we found a lack of evidence of the causal relationship
between these barriers and newcomer success. We also
highlight that, overall, barriers related to technical issues,
which include code issues and difficulty to find a way to
start, are individually backed by less evidence.

We noticed a high diversity of projects studied. Most of
the authors looked for mature, well-established projects to
conduct their studies. In addition, 66.67% of the projects
studied were products used during the development cycle
(Application Servers, Frameworks, IDE, etc.). The higher
focus on established, large projects that deliver products
used during the development cycle can introduce a bias in
the results of the studies analyzed.

Most of the studies analyzed rely on the results of quan-
titative case studies using historical data gathered from
software repositories. Historical data can highlight the real
obstacles and problems faced by newcomers, but conduct-
ing experiments with newcomers, like [32, 11], and gather-
ing information from the project members and newcomers
by means of interviews and surveys can reveal the real
problems and needs of the newcomers.

Based on the analysis conducted, we can conclude that
newcomers that wish to contribute must have a blend of
domain knowledge, technical skills, and social interaction,
which can increase the odds of a successful joining. The in-
teractions are driven by artifacts that reflect the technical
and domain expertise. It is the result of these interactions

that will allow both newcomers and developers to perceive
the level and possibly lack of background that hinders ef-
fective contributions to the project.

It is also important to highlight that improvements in
community receptivity and more appropriate collaborative
environments for OSS development can result in better
support for newcomers. Improper reception can result in
losing valuable resources. Moreover, community members
need to think of their product in terms of newcomers in
case they want to receive more contributions. Keeping the
code simple and the documentation organized and up-to-
date could potentially increase the odds of receiving con-
tributions from newcomers.

Identifying the barriers evidenced by the literature (Sec-
tion 4) and providing some guidelines (Section 5) for com-
munity members and newcomers were the initial steps to-
wards better orienting newcomers’ first steps. OSS projects
can benefit from additional contributions if they offer the
right support specific for newcomers who are trying to con-
tribute to the project. A smooth first contribution may in-
crease the total number of successful contributions made
by single contributors and, hopefully, the number of long-
term contributors.

In the future, we aim to conduct some qualitative stud-
ies to confirm the problems evidenced by the literature.
We are conducting some interviews with experienced OSS
developers and newcomers to verify the main problems
faced by newcomers from their perspective [37, 38]. We
also plan to refine the classification model based on the
results of the interview analysis. Additionally, based on
the model, it is possible to propose awareness mechanisms
and tools to offer better support for newcomers.

Acknowledgements

The authors would like to thank UTFPR, Fundação
Araucária, CNPq (proc. 477831/2013-3), NAPSoL-PRP-
USP, NAWEB, and FAPESP for their financial support.
Igor Steinmacher received grants from CAPES (BEX 2038-
13-7).

27

References

[1] Begel, A., Simon, B., 2008. Novice software developers, all over
again. In: Proceedings of the Fourth International Workshop on
Computing Education Research. ICER ’08. ACM, New York,
NY, USA, pp. 3–14.

[2] Ben, X., Beijun, S., Weicheng, Y., 2013. Mining developer con-
tribution in open source software using visualization techniques.
In: Proceedings of the 2013 Third International Conference on
Intelligent System Design and Engineering Applications. ISDEA
’13. IEEE, Hong Kong, pp. 934–937.

[3] Biolchini, J., Mian, P. G., Natali, A. C. C., Travassos, G. H.,
May 2005. Systematic review in software engineering. Technical
Report RT-ES 679/05, COPPE/UFRJ, Rio de Janeiro, RJ,
Brazil.
URL http://www.cin.ufpe.br/~in1037/leitura/
systematicReviewSE-COPPE.pdf

[4] Bird, C., 2011. Sociotechnical coordination and collaboration in
open source software. In: Proceedings of the 2011 27th IEEE
International Conference on Software Maintenance. ICSM ’11.
IEEE, Washington, DC, USA, pp. 568–573.

[5] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.,
2007. Open borders? immigration in open source projects. In:
Proceedings of the Fourth International Workshop on Mining
Software Repositories. MSR ’07. IEEE, Washington, DC, USA,
pp. 1–8.

[6] Canfora, G., Di Penta, M., Oliveto, R., Panichella, S., 2012.
Who is going to mentor newcomers in open source projects? In:
Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering. FSE ’12.
ACM, New York, NY, USA, pp. 44:1–44:11.
URL http://doi.acm.org/10.1145/2393596.2393647

[7] Capiluppi, A., Michlmayr, M., 2007. From the cathedral to the
bazaar: An empirical study of the lifecycle of volunteer commu-
nity projects. In: Feller, J., Fitzgerald, B., Scacchi, W., Sillitti,
A. (Eds.), Open Source Development, Adoption and Innovation.
Vol. 234 of IFIP – International Federation for Information Pro-
cessing. Springer US, Limerick, Ireland, pp. 31–44.
URL http://dx.doi.org/10.1007/978-0-387-72486-7_3

[8] Capra, E., Wasserman, A. I., 2008. A framework for evaluating
managerial styles in open source projects. In: Russo, B., Dami-
ani, E., Hissam, S., Lundell, B., Succi, G. (Eds.), Open Source
Development, Communities and Quality. Vol. 275 of IFIP – The
International Federation for Information Processing. Springer
US, pp. 1–14.
URL http://dx.doi.org/10.1007/978-0-387-09684-1_1

[9] Corbin, J. M., Strauss, A., 2008. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory,
3rd Edition. SAGE Publications.

[10] Cubranic, D., Murphy, G. C., 2003. Hipikat: recommending
pertinent software development artifacts. In: Proceedings of the
25th International Conference on Software Engineering. ICSE
2003. IEEE, Washington, DC, USA, pp. 408–418.

[11] Cubranic, D., Murphy, G. C., Singer, J., Booth, K. S., Jun.
2005. Hipikat: a project memory for software development.
IEEE Transactions on Software Engineering 31 (6), 446–465.

[12] Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard, M. P.,
de Vries, J. P., 2010. Moving into a new software project land-
scape. In: Proceedings of the ACM/IEEE 32nd International
Conference on Software Engineering. Vol. 1. ACM, New York,
NY, USA, pp. 275–284.

[13] Ducheneaut, N., Aug 2005. Socialization in an open source soft-
ware community: A socio-technical analysis. Computer Sup-
ported Cooperative Work 14 (4), 323–368.

[14] Farzan, R., Kraut, R. E., 2013. Wikipedia Classroom Exper-
iment: Bidirectional benefits of students’ engagement in on-
line production communities. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’13.
ACM, New York, NY, USA, pp. 783–792.
URL http://doi.acm.org/10.1145/2470654.2470765

[15] Faulkner, R., Walling, S., Pinchuk, M., 2012. Etiquette in
wikipedia: Weening new editors into productive ones. In: Pro-

ceedings of the Eighth Annual International Symposium on
Wikis and Open Collaboration. WikiSym ’12. ACM, New York,
NY, USA, pp. 5:1–5:4.
URL http://doi.acm.org/10.1145/2462932.2462939

[16] Fogel, K., 2013. Producing Open Source Software: How to Run
a Successful Free Software Project, 1st Edition. O’Reilly Media.
URL http://www.producingoss.com/

[17] Forte, A., Lampe, C., 2013. Defining, understanding, and sup-
porting open collaboration: Lessons from the literature. Amer-
ican Behavioral Scientist 57 (5), 535–547.
URL http://abs.sagepub.com/content/57/5/535.abstract

[18] Gacek, C., Arief, B., Jan 2004. The many meanings of open
source. IEEE Software 21 (1), 34–40.

[19] Halfaker, A., Geiger, R. S., Morgan, J., Riedl, J., 2013. The rise
and decline of an open collaboration system: How wikipedia’s
reaction to sudden popularity is causing its decline. American
Behavioral Scientist 57.
URL http://abs.sagepub.com/content/57/5/664

[20] Halfaker, A., Kittur, A., Riedl, J., 2011. Don’t bite the newbies:
How reverts affect the quantity and quality of Wikipedia work.
In: Proceedings of the 7th International Symposium on Wikis
and Open Collaboration. WikiSym ’11. ACM, New York, NY,
USA, pp. 163–172.
URL http://doi.acm.org/10.1145/2038558.2038585

[21] He, P., Li, B., Huang, Y., 2012. Applying centrality measures
to the behavior analysis of developers in open source software
community. In: 2012 Second International Conference on Cloud
and Green Computing. CGC. IEEE, Washington, DC, USA, pp.
418–423.

[22] Jalali, S., Wohlin, C., 2012. Systematic literature studies:
Database searches vs. backward snowballing. In: Proceedings
of the ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. ESEM ’12. ACM, New
York, NY, USA, pp. 29–38.
URL http://doi.acm.org/10.1145/2372251.2372257

[23] Jensen, C., King, S., Kuechler, V., 2011. Joining free/open
source software communities: An analysis of newbies’ first inter-
actions on project mailing lists. In: 44th Hawaii International
Conference on System Sciences. HICSS. IEEE, Kauai, HI, USA,
pp. 1–10.

[24] Joyce, E., Kraut, R. E., 2006. Predicting continued participa-
tion in newsgroups. Journal of Computer-Mediated Communi-
cation 11, 2006.

[25] Kitchenham, B., Jul 2004. Procedures for performing system-
atic reviews. Tech. Rep. TR/SE-0401, Department of Computer
Science, Keele University, Keele, UK.

[26] Kitchenham, B., Brereton, P., Dec 2013. A systematic review
of systematic review process research in software engineering.
Information and Software Technology 55 (12), 2049–2075.

[27] Kitchenham, B., Charters, S., 2007. Guidelines for performing
systematic literature reviews in software engineering. Joint Re-
port EBSE 2007-001, Keele University and Durham University.

[28] Lampe, C., Johnston, E., 2005. Follow the (Slash) Dot: Effects
of Feedback on New Members in an Online Community. In:
Proceedings of the 2005 International ACM SIGGROUP Con-
ference on Supporting Group Work. GROUP ’05. ACM, New
York, NY, USA, pp. 11–20.
URL http://doi.acm.org/10.1145/1099203.1099206

[29] Midha, V., Palvia, P., Singh, R., Kshetri, N., 2010. Improving
open source software maintenance. Journal of Computer Infor-
mation Systems 50 (3), 81–90.

[30] Morgan, J. T., Bouterse, S., Walls, H., Stierch, S., 2013. Tea and
sympathy: Crafting positive new user experiences on wikipedia.
In: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work. CSCW ’13. ACM, New York, NY, USA, pp.
839–848.
URL http://doi.acm.org/10.1145/2441776.2441871

[31] Nagappan, M., Zimmermann, T., Bird, C., 2013. Diversity
in software engineering research. In: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2013. ACM, New York, NY, USA, pp. 466–476.

28

URL http://doi.acm.org/10.1145/2491411.2491415
[32] Park, Y., Jensen, C., 2009. Beyond pretty pictures: Examin-

ing the benefits of code visualization for open source newcom-
ers. In: Proceedings of the 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis. IEEE,
Washington, DC, USA, pp. 3–10.

[33] Qureshi, I., Fang, Y., 2011. Socialization in open source software
projects: A growth mixture modeling approach. Organizational
Research Methods 14 (1), 208–238.
URL http://orm.sagepub.com/content/14/1/208.abstract

[34] Scacchi, W., Feb 2002. Understanding the requirements for
developing open source software systems. IEE Proceedings
Software 149 (1), 24–39.
URL http://digital-library.theiet.org/content/
journals/10.1049/ip-sen_20020202

[35] Schilling, A., Laumer, S., Weitzel, T., 2012. Who will remain?
an evaluation of actual person-job and person-team fit to pre-
dict developer retention in FLOSS projects. In: 45th Hawaii
International Conference on System Sciences. IEEE, Washing-
ton, DC, USA, pp. 3446–3455.

[36] Schmidt, F. L., Hunter, J. E., Sep. 1998. The validity and util-
ity of selection methods in personnel psychology: Practical and
theoretical implications of 85 years of research findings. Psycho-
logical Bulletin 124 (2), 262–274.

[37] Steinmacher, I., Chaves, A. P., Conte, T. U., Gerosa, M. A.,
Sept 2014. Preliminary empirical identification of barriers faced
by newcomers to open source software projects. In: 2014 Brazil-
ian Symposium on Software Engineering (SBES). pp. 51–60.

[38] Steinmacher, I., Conte, T. U., Gerosa, M. A., Redmiles, D. F.,
March 2015. Social barriers faced by newcomers placing their
first contribution in open source software projects. In: 18th
ACM Conference on Computer-Supported Cooperative Work
and Social Computing (CSCW 2015). p. 14pp, to Appear.

[39] Steinmacher, I., Gerosa, M. A., Redmiles, D., 2014. Attracting,
onboarding, and retaining newcomer developers in open source
software projects. In: Workshop on Global Software Develop-
ment in a CSCW Perspective held in conjunction with the 17th
ACM Conference on Computer Supported Cooperative Work
& Social Computing (CSCW’14).
URL http://143.107.45.80/public/papers/15705/NEXGSD.
pdf

[40] Steinmacher, I., Wiese, I., Chaves, A. P., Gerosa, M. A., 2013.
Why do newcomers abandon open source software projects? In:
6th International Workshop on Cooperative and Human As-
pects of Software Engineering. CHASE’13. IEEE, Washington,
DC, USA, pp. 25–32.

[41] Steinmacher, I., Wiese, I. S., Gerosa, M. A., 2012. Recommend-
ing mentors to software project newcomers. In: 3rd Interna-
tional Workshop on Recommendation Systems for Software En-
gineering. IEEE, Washington, DC, USA, pp. 63–67.

[42] Stol, K.-J., Avgeriou, P., Ali Babar, M., 2010. Identifying ar-
chitectural patterns used in open source software: approaches
and challenges. In: Proceedings of the 14th International Con-
ference on Evaluation and Assessment in Software Engineering.
EASE’10. British Computer Society, Swinton, UK, UK, pp. 91–
100.
URL http://dl.acm.org/citation.cfm?id=2227057.2227069

[43] Suh, B., Convertino, G., Chi, E. H., Pirolli, P., 2009. The singu-
larity is not near: Slowing growth of Wikipedia. In: Proceedings
of the 5th International Symposium on Wikis and Open Collab-
oration. WikiSym ’09. ACM, New York, NY, USA, pp. 8:1–8:10.
URL http://doi.acm.org/10.1145/1641309.1641322

[44] Von Krogh, G., Spaeth, S., Lakhani, K., 2003. Community, join-
ing, and specialization in open source software innovation: A
case study. Research Policy 32 (7), 1217–1241.
URL http://www.sciencedirect.com/science/article/pii/
S0048733303000507

[45] Wang, J., Sarma, A., 2011. Which bug should I fix: Helping new
developers onboard a new project. In: Proceedings of the 4th
International Workshop on Cooperative and Human Aspects of
Software Engineering. CHASE ’11. ACM, New York, NY, USA,

pp. 76–79.
URL http://doi.acm.org/10.1145/1984642.1984661

[46] Wang, Y.-C., Kraut, R., Levine, J. M., 2012. To stay or leave?:
The relationship of emotional and informational support to
commitment in online health support groups. In: Proceedings
of the ACM 2012 Conference on Computer Supported Coopera-
tive Work. CSCW ’12. ACM, New York, NY, USA, pp. 833–842.
URL http://doi.acm.org/10.1145/2145204.2145329

[47] Weiss, M., Moroiu, G., Zhao, P., 2006. Evolution of open source
communities. In: Damiani, E., Fitzgerald, B., Scacchi, W.,
Scotto, M., Succi, G. (Eds.), Open Source Systems. Vol. 203
of IFIP International Federation for Information Processing.
Springer Boston, Como, Italy, pp. 21–32.
URL http://dx.doi.org/10.1007/0-387-34226-5_3

[48] Zhou, M., Mockus, A., 2011. Does the initial environment im-
pact the future of developers. In: Proceedings of the 33rd Inter-
national Conference on Software Engineering. ICSE ’11. ACM,
New York, NY, USA, pp. 271–280.
URL http://doi.acm.org/10.1145/1985793.1985831

[49] Zhou, M., Mockus, A., 2012. What make long term contributors:
Willingness and opportunity in OSS community. In: Proceed-
ings of the 34th International Conference on Software Engineer-
ing. ICSE ’12. IEEE Press, Piscataway, NJ, USA, pp. 518–528.
URL http://dl.acm.org/citation.cfm?id=2337223.2337284

29

