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Abstract—Continuous integration is a software engineering

practice of frequently merging all developer working copies

with a shared main branch, e.g., several times a day.

With the advent of GITHUB, a platform well known for its

“social coding” features that aid collaboration and sharing, and

currently the largest code host in the open source world, collab-

orative software development has never been more prominent.

In GITHUB development one can distinguish between two types

of developer contributions to a project: direct ones, coming

from a typically small group of developers with write access

to the main project repository, and indirect ones, coming from

developers who fork the main repository, update their copies

locally, and submit pull requests for review and merger.

In this paper we explore how GITHUB developers use contin-

uous integration as well as whether the contribution type (direct

versus indirect) and different project characteristics (e.g., main

programming language, or project age) are associated with the

success of the automatic builds.

I. INTRODUCTION

Continuous integration (CI) is a software engineering
practice of frequently merging all developer working copies
with a shared main branch [1], e.g., several times a day,
or with every commit. CI is typically supported by build
servers that verify each integration automatically, running
unit tests and reporting the results back to the developers.
The concept, often attributed to Martin Fowler based on
a 2000 blog entry [2] but known as “synch-and-stabilize”
or “nightly build” already in 1997 [3], is a recommended
best practice of agile software development methods like
eXtreme Programming [4]. This continuous application of
quality control checks aims to speed up the development
process and to ultimately improve software quality, by
reducing the integration problems occurring between team
members that develop software collaboratively [1].

CI as a quality control mechanism in distributed, col-
laborative contexts is common to both commercial (e.g.,
Microsoft [5], [6]) and open source software (OSS) devel-
opment (e.g., FreeBSD and Mozilla [7]). However, CI is
especially relevant to OSS projects, due to the difficulties
typically associated with imposing structured processes in
such projects and on their contributors [7]: requirements doc-
uments are often lacking [8] and project contributors are of-
ten volunteers [9], typically geographically distributed [10],
and rarely motivated by working in a team [11].

With the advent of social media in (OSS) software de-
velopment, recent years have witnessed many changes to
how software is developed, and how developers collaborate,
communicate, and learn [12]–[14]. One such prominent
change is the emergence of the pull-based development
model [15], [16], made possible by the distributed version
control system Git, and made popular by the “social coding”
platform GITHUB, currently the largest code host in the
OSS world. In this model one can distinguish between two
types of developer contributions to a project: direct ones,
coming from a typically small group of developers with
write access to the main project repository, and indirect
ones, coming from developers who fork the main repository,
update their copies locally, and submit pull requests for
review and merger.

GITHUB’s implementation of the pull-based development
model enables anyone with an account to submit changes
to any repository with only a few clicks. This represents an
unprecedented low barrier to entry for potential contributors,
but it also impacts testing behavior [12], [17]. For example,
GITHUB project owners interviewed by Pham et al. [17]
reported scalability challenges when integrating (many) out-
side contributions, driving them towards automated tests.
Automated CI services, such as TRAVIS-CI1—integrated
with GITHUB itself—or JENKINS2, facilitate this process
by automating a number of steps: whenever a commit is
recorded or a pull request is received, the contribution is
merged automatically into a testing branch, the existing
test suite is run, and the contribution author and project
owner are notified of the results. However, despite these
potential benefits, CI services are reportedly underused both
on GITHUB [17] as well as in OSS in general [18].

In this paper we focus on TRAVIS-CI, arguably the most
popular CI service on GITHUB.3 Specifically, we quanti-
tatively explore to what extent GITHUB developers use the
TRAVIS-CI service, as well as whether the contribution type
(direct versus indirect) or project characteristics (e.g., main

1https://travis-ci.com
2http://jenkins-ci.org
3As supported, e.g., by the blog entries https://blog.codecentric.de/en/

2012/05/travis-ci-or-how-continuous-integration-will-become-fun-again/
and https://blog.futurice.com/tech-pick-of-the-week-travis-ci, acc. June
2014



programming language, or project age) are associated with
the success of the automatic builds.

The remainder of this paper is organised as follows.
After discussing the methodology followed in Section II, we
present our results in Section III. Then, we review threats to
validity in Section IV, and finally we conclude in Section VI.

II. METHODOLOGY

To understand usage of the TRAVIS-CI service in
GITHUB projects, we extracted and integrated data from
two repositories: (i) GHTORRENT [19], [20], a service
collecting and making available metadata for all public
projects available on GITHUB; and (ii) the TRAVIS-CI API4.
This section describes how we collected and analysed these
data.

A. Sample Selection

Due to limitations of querying the TRAVIS-CI API, we
restricted our attention in this study to a sample of large
and active GITHUB projects. Using the GHTORRENT web
interface5, we selected all GITHUB repositories that: (i) are
not forks of other repositories; (ii) have not been deleted;
(iii) are at least one year old; (iv) receive both commits
and pull requests; (v) have been developed in Java, Python
or Ruby; (vi) had at least 10 changes (commits or pull
requests) during the last month; and (vii) have at least 10
contributors. We choose projects that receive both commits
and pull requests, since we want to understand whether
the way modification has been submitted (commit or pull
request) can be associated with the build success. Our choice
of the programming languages has been motivated by the
history of TRAVIS-CI: TRAVIS-CI started as a service to
the Ruby community in early 2011, while support for Java
and Python has been announced one year later (February
21, 2012 and February 27, 2012, respectively). We expect
therefore the use of TRAVIS-CI to be more widespread for
Ruby than for Java and Python.

The data were extracted on March 30, 2014.
After filtering our sample contained 223 GITHUB

projects, relatively balanced across the three programming
languages (Figure 1): 70 (31.4%) were coded in Java, 83
(37.2%) in Python, and 70 (31.4%) in Ruby. The sample
includes many large and popular OSS projects, such as
rails, ruby, elasticsearch, or gradle.

B. Data Integration

To extract data about the automatic builds, we started by
querying the repos endpoint of the TRAVIS-CI JSON API
(using the repository slug—username/repo—as argument),
to determine whether TRAVIS-CI is configured for a par-
ticular project. Then, if the response was not empty, we
iteratively queried the builds associated with this project (25

4http://docs.travis-ci.com/api/
5Accessible from http://ghtorrent.org/dblite/

at a time as per the TRAVIS-CI API) from the builds

endpoint, collecting the event_type fields (that distin-
guish pull requests from pushes) and the result fields
(that specify whether the build succeeded—0, or failed—1).
Ongoing builds, for which the result fields are not set,
were ignored.

C. Statistical Analysis

We aggregated the data collected from the TRAVIS-CI
API into contingency tables, one for each GITHUB project,
with rows corresponding to commits and pull requests, and
columns—to passed and failed builds. Then, to test whether
the success/failure of the build is independent from the way
the modification has been proposed, we applied the 2 test
of independence. Next, to formalise the strength of this
dependence, we calculated the odds ratios and corresponding
p-values. Finally, to aggregate the results of the 2 tests (one
per project), we applied the Stouffer test using the weighted
Z-score method [21], [22]. This allows us to lift the results
of the individual 2 tests to the group level.

III. RESULTS

A. Direct Versus Indirect Contributions

We start by investigating the preference for direct (pushes)
and indirect (pull requests) contributions among the projects
in our sample. Java projects used the fewest pull requests
during the observation month (March 2014), with a max-
imum of 26. Among the Java projects are also the most
projects that do not use pull requests at all out of the
3 languages. Python and Ruby projects both have higher
counts of pull requests, with maxima of 97 and 236, respec-
tively. Some Python and Ruby projects even have more pull
requests than commits.

The shared repository model (with contributors having
write access to the repository) is more popular among
Java projects, while Python and Ruby projects have more
contributors submitting pull requests. Overall, we see that
commits (direct code modifications) are more popular than
pull requests (indirect code modifications), with only a small
number of projects having more pull requests than commits.
Similar findings have been reported by Gousios, Pinzger,
and van Deursen in their exploratory study of the pull-based
software development model on GITHUB [16].

Direct code modifications (pushed commits) are more
popular than indirect code modifications (pull requests).

B. Usage of TRAVIS-CI

Next we investigate usage of TRAVIS-CI among the
projects in our sample. First, we observe that an overwhelm-
ing majority of the projects are configured to use TRAVIS-CI
(206 out of 223 projects, or 92.3%), confirming the anecdotal
popularity of the CI service among GITHUB developers.
However, slightly less than half of the 206 projects (93, or



0

20

40

60

80

Java Python Ruby
P i l

co
un
t

Figure 1. Distribution of the GITHUB projects considered per program-
ming language: while many Ruby projects are configured for TRAVIS-CI
and use it (dark green), most Java projects are configured for TRAVIS-CI
but do not use it (middle green). Eleven Java projects are not configured
for TRAVIS-CI (light green).

45%) have no associated builds recorded in the TRAVIS-CI
database. This shows that while most projects are ready to
use continuous integration, significantly fewer actually do.
When we look into the distribution of these projects with no
builds with respect to programming language, we observe
that Java projects are overrepresented (69.5% of the Java
projects configured to use TRAVIS-CI are not actually using
it), while Ruby projects are underrepresented (Figure 1).

Although most GITHUB projects in our sample are
configured to use the TRAVIS-CI continuous integra-
tion service, less than half actually do. In terms of
languages, Ruby projects are among the early adopters
of TRAVIS-CI, while Java projects are late to use
continuous integration.

C. Contribution Type and Build Success

We have observed that the median success rate of 79.5%
for commits and of 75.9% for pull requests. To obtain a
more refined insight in whether the success or failure of a
build is independent from the way the modification has been
proposed, we focussed on projects that had at least 5 failed
and at least 5 successful builds for each contribution type, as
required by the 2 test of independence (cf. Section II-C).
Out of 113 GITHUB projects configured to use TRAVIS-CI
and actually using it (206  93, cf. the discussion in the
previous subsection), 84 projects had sufficient data for the
2 test. Among the remaining 29 projects to which the 2

test could not be applied, in most cases it was the failed pull
requests cell that had insufficient data. In other words, builds
fail less frequently when contributions are submitted via pull
requests. We believe this is because when a developer does
not have commit rights and she suggests a change via a
pull request, she will try harder to make sure the change is
valid change and it will not break the build. However, when

instead a developer has commit rights, she can try out new
things more freely, since she also has the power to reverse
the change, if necessary.
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Figure 2. Beanplot [23] of the distribution of p-values resulted from
applying the 2 test to 84 GITHUB projects. The thick vertical line
represents the median value.

Finally, we lift the results of individual 2 tests to the
group level by applying the Stouffer procedure to obtain
a combined significance level, i.e., “overall probability in
favor of the outcome of the majority of the studies” [24].
The Stouffer test statistic Z was calculated as 18.34 and
the corresponding p-value was too small to be calculated
precisely (see Figure 2 for the distribution of p-values of
the individual 2 tests). This implies that taken together, the
data indicates dependence of the build success on the way
the modification has been proposed.
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Figure 3. Beanplot [23] of the distribution of ratios between the odds
that commit builds succeed and the odds that pull request builds succeed
for 45 GITHUB projects that showed statistically significant 2 test results
(p < 0.05). All odds ratios have p < 0.05. The thick vertical line represents
the median value.

To investigate the directionality of this dependence we
compute the odds ratios (i.e., the ratios between the odds that
commit builds succeed and the odds that pull request builds
succeed) for the GITHUB projects that showed statistically
significant 2 test results at 95% confidence level. Figure 3
displays the distribution of the resulting odds ratios (all
statistically significant at 95% confidence level). Inspection
of Figure 3 reveals that for the overwhelming majority of
projects (39 out of 45, or 87%), builds corresponding to
pull requests are much more likely to succeed than builds
corresponding to direct pushes (since the odds ratios are
greater than 1). This suggests that the pull request model
made popular by GITHUB serves as an effective quality
control mechanism: not only are pull requests reviewed and
discussed at length [16], [25], but also the corresponding
builds tend to be successful.



Pull requests are much more likely to result in success-
ful builds than direct commits.

D. Impact of Project Differences on the Contribution
Type/Build Success Relation

The 84 projects subjected to the 2 test in Section III-C
have been developed in different languages, have different
ages and involve different numbers of contributors. Table I
summarizes differences between those languages, ages, and
numbers of contributors in terms of rejecting the null-
hypotheses of the 2 test, i.e., independence of the build
success from the way the modification has been proposed.
We have used the common threshold of 0.05. The thresholds
of 17 and 33 contributors correspond to the 33% and 67%
percentiles. Performing Stouffer tests for each group led to
very small p-values, indicating that results obtained for the
majority of individual experiments can be lifted to the group
level. The data suggests that null hypotheses can be rejected
(3) for Python and Ruby projects, but cannot be rejected
(7) for Java projects; can be rejected for older projects but
not for younger ones; and can be rejected for projects with
not too many contributors as opposed to projects with many
contributors.

Next we conducted odds ratio tests for projects where the
null hypothesis has been rejected (7) for the group level: all
odds ratio tests turned out to be statistically significant (p-
values never exceeded 0.05) and in almost all cases the odds
ratios exceeded 1. This means that whenever build success
depends on the way the modification has been performed,
pull requests are much more likely to result in successful
builds than direct commits.

For Python and Ruby projects, projects older than two
years, and projects with not too many contributors, pull
requests are much more likely to result in successful
builds than direct commits. No such impact of the way
the modification has been performed can be observed
for Java projects, projects younger than two years, and
projects with many contributors.

IV. THREATS TO VALIDITY

In this section, we discuss the threats to construct validity,
internal validity and external validity [26].

Prog. lang. Age (years) Contributors
Java Python Ruby <2 2–4 >4 17 17–33 >33

# projects 10 34 40 24 42 18 29 27 28
. . . s.t. p < 0.05 3 19 23 9 25 11 18 15 12
H0 7 3 3 7 3 3 3 3 7
%odds ratio>1 n/a 89 87 n/a 92 82 89 80 n/a

Table I
COMPARISON OF SUBGROUPS OF 84 GITHUB PROJECTS BASED ON THE
PROGRAMMING LANGUAGE, AGE AND THE NUMBER OF CONTRIBUTORS.

Construct validity assesses whether the variables we con-
sidered accurately model our hypotheses. One of the threats
to construct validity pertains to pull requests that appear as
not being merged even if they have been merged [27].

Internal validity means that changes in dependent vari-
ables can be attributed to changes in independent variables
instead of to something else. Specifically, we considered if
the number of successful and failed builds are related to
the type of contribution, the main programming language,
the project age, or the number of contributors. We did not
consider if other variables can confound this relationship. If
such variables exist, they may invalidate our results.

External validity means that the results we found can be
generalized to real-world settings. Since we acquired a large
set of data from a general-purpose website like GITHUB, we
feel that our results can be generalized to large and active
open-source projects developed in Java, Python or Ruby and
using TRAVIS-CI. Closed-source projects, small projects,
projects in very different programming languages or using
different CI services, such as JENKINS, may not show the
same patterns.

V. FUTURE WORK

We plan to triangulate our quantitative findings through
qualitative analysis, such as interviews and questionnaires.
Conducting surveys can allow us to obtain insights in the
ways continuous integration is used in open-source and
proprietary development. A complementary approach will
consist in performing a more detailed analysis of the Travis
CI configuration files. Finally, we plan to consider a larger
sample of GITHUB projects, including those developed in
additional programming languages.

VI. CONCLUSIONS

In this paper we have studied a sample of large and active
GITHUB projects developed in Java, Python and Ruby. We
started by observing that direct code modifications (com-
mits) are more popular than indirect code modifications (pull
requests). Next, we have investigated the use of TRAVIS-
CI: although most GITHUB projects in our sample are
configured to use the TRAVIS-CI continuous integration
service, less than half actually do. In terms of languages,
Ruby projects are among the early adopters of TRAVIS-CI,
while Java projects are late to use continuous integration.
Next, for those projects that actually use TRAVIS-CI, we
have studied whether the success or failure of a build
is independent on the way code modification has been
proposed. Our overall conclusion is that success or failure
of a build does depend on the way the code modification
has been proposed: pull requests are much more likely to
result in successful builds than direct commits. However,
we observe differences for projects developed in different
programming languages, of different ages, and involving
different numbers of contributors.
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