FLOSSSim: Understanding the Free/Libre Open Source Software (FLOSS) Development
Process through Agent-Based Modeling
by

Nicholas Patrick Radtke

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved October 2011 by the
Graduate Supervisory Committee:

James S. Collofello, Co-Chair
Marco A. Janssen, Co-Chair
Hessam S. Sarjoughian
Hari Sundaram

ARIZONA STATE UNIVERSITY

December 2011

ABSTRACT

Free/Libre Open Source Software (FLOSS) is the product of volunteers collaborating to
build software in an open, public manner. The large number of FLOSS projects, combined
with the data that is inherently archived with this online process, make studying this phe-
nomenon attractive. Some FLOSS projects are very functional, well-known, and successful,
such as Linux, the Apache Web Server, and Firefox. However, for every successful FLOSS
project there are 100’s of projects that are unsuccessful. These projects fail to attract suf-
ficient interest from developers and users and become inactive or abandoned before useful
functionality is achieved. The goal of this research is to better understand the open source
development process and gain insight into why some FLOSS projects succeed while others
fail.

This dissertation presents an agent-based model of the FLOSS development pro-
cess. The model is built around the concept that projects must manage to attract contri-
butions from a limited pool of participants in order to progress. In the model developer
and user agents select from a landscape of competing FLOSS projects based on perceived
utility. Via the selections that are made and subsequent contributions, some projects are
propelled to success while others remain stagnant and inactive.

Findings from a diverse set of empirical studies of FLOSS projects are used to for-
mulate the model, which is then calibrated on empirical data from multiple sources of pub-
lic FLOSS data. The model is able to reproduce key characteristics observed in the FLOSS
domain and is capable of making accurate predictions. The model is used to gain a bet-
ter understanding of the FLOSS development process, including what it means for FLOSS
projects to be successful and what conditions increase the probability of project success. It

is shown that FLOSS is a producer-driven process, and project factors that are important

for developers selecting projects are identified. In addition, it is shown that projects are
sensitive to when core developers make contributions, and the exhibited bandwagon effects
mean that some projects will be successful regardless of competing projects. Recommen-
dations for improving software engineering in general based on the positive characteristics

of FLOSS are also presented.

ii

To my family
who have supported me on my Ph.D. journey,

that I might one day be able to return the favor,

and

to Larry Caves
who has provided a welcome and much-needed distraction

when graduate work was overwhelming.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. James Collofello, who saw potential in me as an undergraduate
student completing an honors thesis. I would not be where I am today save for his encour-
agement to seek a higher degree and guidance thereafter. In addition to providing advice
when I was unsure of the direction of my research, he has done his best to make sure that I
have been financially supported throughout my graduate journey.

I am also grateful to my co-chair Dr. Marco Janssen, who was willing to take on
a student outside of his field. He has introduced me to modeling and helped me navigate
the social science theory and other concepts necessary for creating a high quality model
but unfamiliar to a computer scientist. I appreciate the many brainstorming sessions with
him that helped push me off dead center when ideas were running scarce and his general

availability between regularly scheduled meetings, should the need for consultation arise.

v

TABLE OF CONTENTS

Page

LISTOFTABLES e Xii

LISTOFFIGURES e Xiv
CHAPTER

1 INTRODUCTION e e e 1

1.1 Research Motivation 4

1.1.1 Positive Characteristicsof FLOSS 4

1.1.2 Benefits of Predicting FLOSS 8

1.2 Understanding FLOSS 12

2 BACKGROUND ON EXISTING FLOSS MODELS 16

2.1 Existing FLOSSModels 17

2.1.1 Statistical Models 18

2.1.2 Machine Learning 19

2.1.3 System DynamicsModels 22

2.1.4 Dynamic System Models 22

2.1.5 Agent-BasedModels. 25

2.2 Comparison of FLOSSSim to Existing Models 29

2.3 Recommendations for Modeling FLOSS 32

2.4 Choosing a Modeling Technique 37

2.5 Conclusion L 38

3 QUANTIFYINGFLOSS o e 40

3.1 Measuring SUCCESS« v v v v e e e e e e e 40

CHAPTER Page

3.1.1 Traditional Software Engineering Success Metrics 41
3.1.2 Proposed FLOSS Success Metrics 44
3.2 Factors Influencing FLOSS Project Success 56
32.1 TypesofFactors 56
3.2.1.1 Technical Factors 57

32.12 Social Factors 57
3.2.1.2.1 FLOSS as a PublicGood 59

3.2.1.2.2 The Tragedy of the Commons 61

3.2.2 Existing Researchon Factors 63
3221 Licensingo 63

3.2.2.2 Organization Sponsorship. 69

3223 TargetAudience 74

3.2.24 Governance and Coordination 75

3225 Documentation 78

3.2.2.6 Systematic Testing 79

3227 Quality 81

3.2.2.8 Programming Language 82

3.2.2.9 Target Operating System 83
3.2.2.10 Portability 84

3.2.2.11 Version Control and Software Configuration
Management 85

3.2.2.12 Mailing Listsand Forums 85

vi

CHAPTER Page

3.2.2.13 Development Stage 87

32214 ActivityLevel 0oL 88

3.2.2.15 Number of Developers 89

3.3 Developer Motivation 90
33.1 Similarity 92

332 CurrentResources oL 94

3.3.3 Cumulative Resources 96

334 DownloadCount 97

335 Maturity e 99

34 Conclusion L 103
4 DATA . . . e 105
4.1 DataSourceso 105
4.1.1 Surveys and Literature 106

4.1.2 FLOSS Hosting Sites 107

4.13 Databases 112
4.1.3.1 SourceForge Research Data Archive 113

4132 FLOSSmole 114

4133 FLOSSMetrics 116

4.1.4 ExtractionTools 117

415 DataSourcesUsed, 119

42 DataCaveats e e 119
4.2.1 Problems with OnlineData 119

vii

CHAPTER Page
4.2.2 Problems with FLOSS Data 121

4221 HistoricalData 121

4222 CleansingData 125

4223 Missing and Misleading Data 126

4224 IntegratingData 132

43 Conclusion L 133

5 FLOSSSIMPLE e 134
5.1 Characteristics of FLOSS Contributions 134
5.2 Model Description 135

5.3 Model Analysis 140
5.3.1 Cumulative Resources and Consumer and Producer Distributions 140

5.3.2 Projects’ Needs Vector Distributions 146

54 Conclusion L 152

6 FLOSSSIM DESCRIPTION 153
6.1 Model Description 153
6.2 Model Evaluation. 164
6.2.1 Validation Method 166

6.2.2 Calibration Method 169

6.22.1 Mined Values 169

6.2.2.1.1 Maturity Stage Importance 169

6.2.2.1.2 Maturity Stage Thresholds 173

6.2.2.1.3 New Project CreationRate 175

viii

CHAPTER Page
6.2.2.1.4 New Project Cumulative Re-

sources and Maturity 176

6.2.2.2 Defined Parameter Values 177

62221 Q..o 177

6.2.2.2.2 Needs Vector Dimension 178

6.2.2.2.3 Starting Memory Size 179

6.2.2.2.4 Memory Change Probability 179

62225 € ... 179

6.2.2.2.6 Number of Agents and Projects 180

6.2.2.2.77 Maximum Resources 181

6.2.2.3 Genetically Evolved Values 181

6.2.3 SetupforTesting 183

6.3 Modeling Environment L. 185

6.3.1 Modeling Platform 185

6.3.2 Execution Environment 188

6.3.3 Verification L 189

7 FLOSSSIM ANALYSIS o 190

7.1 Results oL 190

7.1.1 Matching Distributions00 L. 190

7.1.2 Predictive Validity 195
7.1.2.1 Project Development Stage and Developers

per Project Distributions 195

ix

CHAPTER Page

7.1.2.2 Downloads Distribution 197

7.1.3 Evolved Parameters 200
7.1.3.1 Utility Weights 201
7.1.3.1.1 wy Similarity, 204

7.1.3.1.2 wp Current Resources 205

7.1.3.1.3 w3 Cumulative Resources 205

71314 wgDownloads 206

7.1.3.1.5 wsMaturity, 206

7.1.3.2 Producer and Consumer Numbers 207

7.1.3.3 Maximum Number of Projects Producing and

Consuming 209

7.1.4 Success Metricso 210
7.1.4.1 Comparing Success Metrics 210

7.1.4.2 Target Audience Size versus Success 213

7.2 Sensitivity Analysis 220
T201 W oo 222
7.2.2 Needs Vector Dimension. 225

7.2.3 Starting Memory Size oL 225

7.2.4 Memory Change Probability 227

7.2.5 Number of Agents and Projects 227

7.3 Scenario Analysis Lo 229
7.3.1 Effectsof Consumers 230

CHAPTER Page

7.3.1.1 Separate Selection Criteria for Consumers

and Producers 230

7.3.1.2 Random Project Selection by Consumers 236

7.3.1.3 NoConsumers 238

7.3.1.4 Conclusion 239

732 NoNewProjects 240

7.3.3 Effects of Core Developers 248

7.4 Discussion and Future Work oo 255

7.5 Conclusion 267

8 CONCLUSION e 270

REFERENCES e 283
APPENDIX

A COPYRIGHTED MATERIAL REUSE PERMISSION 304

xi

LIST OF TABLES

Table
2.1. Comparison of Existing FLOSSModels
2.2. Noteworthy Features of Existing Models that are Borrowed and Incor-

porated into FLOSSSim
3.1. Non-Exhaustive Sample of Technical Factors Available from Source-

Forge onaper Project Basis
3.2. Number of Projects in Each Development Stage as of April 2009 ver-

sus Projects’ Development Stages When First Added to SourceForge
4.1. Per Project Data Tracked by SourceForge
6.1. AgentProperties
6.2. ProjectProperties
6.3. Development Stage of Projects When First Added to SourceForge
6.4. Defined FLOSSSim Model Parameters
6.5. Descriptions and Value Ranges for Model Parameters that are Evolved
7.1. Mean Fitness Scores of the Best Performing Parameter Set for the

Three Emergent Properties
7.2. Range of Fitness Scores and Percent of Scores Exceeding 0.98 for a

Random Sample of 1000 Parameter Sets
7.3. Utility Weight Cluster Sizes
7.4. Evolved Producer/Consumer Number Distributions Parameters
7.5. Percentage of Successful Projects Based on Different Success Metrics

7.6. Jaccard Similarity Between Different Sets of Successful Projects

Xii

Table Page

7.7. Producer Utility Weight Cluster Sizes 232
7.8. Consumer Utility Weight Cluster Sizes 234
7.9. Comparison of Fitness Values of the Top 1% of Parameter Sets When

There Are No Consumers versus the Base Version of the Model 238
7.10. Comparison of the Average Evolved Producer-Related Input Param-

eters from the Top 1% of Parameter Sets When There Are No Con-

sumers versus the Base Version of the Model 239
7.11. Change in the Average Percentage of Projects with N Developers

When No New Projects Are Created for 500 Time Steps 246

xiii

Figure
3.1. Types of Goods Based on Rivalry and Excludability
5.1. Example of Mapping an Agent’s Producer and Consumer Numbers to

itsNeeds Vector
5.2. Fraction of Projects as a Function of Cumulative Resources
5.3. Fraction of Projects as a Function of the Number of Consumers
5.4. Fraction of Projects as a Function of the Number of Producers
5.5. Fraction of Surviving Projects as a Function of Projects’ Needs Vectors
5.6. Project Needs Vectors versus Cumulative Resources
5.7. Project Needs Vectors versus Cumulative Consumptions
5.8. Histogram of Agents’ Needs Vectors
5.9. Project Needs Vectors versus SUCCesS v v v v v v v v v v
6.1. Resources Number Distribution Based On Weekly Time Spent Devel-

oping FLOSS
6.2. Percentage of SourceForge Projects in Development Stages in 2004

and 2009
6.3. Percentage of SourceForge Projects with N Developers in 2004 and 2009
6.4. Mean Percentage of Code Commits That Occur in Each Development Stage . .
6.5. The Number of Projects on SourceForge with Respectto Time
6.6. Standard Error of the Mean Fitness Based on 256 Random Parameter Sets . . .
7.1. Percentage of FLOSS Projects in Development Stages
7.2. Percentage of Projects with N Developers

LIST OF FIGURES

X1v

Page

59

137
142
144

145

. 147

148

149

150

151

156

167

. 168

174

175

184

Figure

7.3.

7.4.

7.5.

7.6.

1.7.

7.8.

7.9.

7.10.

7.11

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

Percentage of Developers Working on N Projects
Predicted versus Empirical Percentage of FLOSS Projects in Develop-

ment StAgeS e e e e e e e e
Predicted versus Empirical Percentage of Developers per Project
Predicted versus Empirical Downloads Distribution
Determining the Number of Clusters for the Evolved Utility Weights
Evolved Utility Weight Clusters
Distribution of Nearby Agent Counts when the Distance Threshold is 0.15 . . .
Binary Logistic Regression for Maturity Threshold Success Metric

versus Number of Nearby Agents

. Binary Logistic Regression for A Maturity Success Metric versus

Number of Nearby Agents.
Binary Logistic Regression for A Developers Success Metric versus
Number of Nearby Agents.
Binary Logistic Regression for A Downloads Success Metric versus
Number of Nearby Agents. i
Binary Logistic Regression for A Percent Complete Success Metric
versus Number of Nearby Agents.
Binary Logistic Regression for Completed Projects Success Metric
versus Number of Nearby Agents.
Effects of Varying i on the Fitness of the Model

Effects of Varying the Needs Vector Dimension on the Fitness of the Model . .

XV

Page

193

196

197

199

202

203

215

216

217

218

219

220

221

223

226

Figure Page

7.18. Effects of Varying the Agents-to-Projects Ratio on the Fitness of the Model . . 228
7.19. Producer Utility Weight Clusters when Producers and Consumers Use

Separate Utility Weights L. 233
7.20. Consumer Utility Weight Clusters when Producers and Consumers

Use Separate Utility Weights 235
7.21. Change in the Percentage of FLOSS Projects in Development Stages

when No New Projects Are Created for 500 Time Steps 242

7.22. Effects of Core Developer Contribution Period on Project Success 251

XVvi

CHAPTER 1

INTRODUCTION

Free/Libre Open Source Software (FLOSS) is the product of volunteers collaborating to
build software in an open, public manner. Specifically, FLOSS includes a liberal license
that makes the source code available to the public, with the intent of allowing others to
examine, modify, and improve the software. Although technically not a software engineer-
ing technique, FLOSS is often developed in a public and collaborative setting, relying on
volunteers to make contributions to the project and often, at least to outsiders, resembling
chaos. This form of developing software has been in use since the dawn of computing,
when early programmers freely shared their code with others for the purpose of using and
improving programs. However, the term open source software wasn’t coined until 1998 [1],
[2].

In order to be considered open source software, a program’s license must meet

certain criteria, including the following [3]:

« The source code must be available for minimal or no charge.

« Free redistribution of the software, as source code or binaries, must be permitted.

« Distribution of modified and derived works must be permitted without discrimination

and under the same license as the original work.

The Open Source Initiative! maintains a list of licenses that meet the open source definition.
As of July 2011 there are 69 verified open source licenses, excluding those that have been
superceded or retired [4].

A separate but similar concept to open source software is free software. The main
differences between these two categories are philosophical; those involved in the free soft-
ware movement believe that providing free software is an ethical issue [5], [6] while the
open source movement is interested in open development strictly for practical reasons [2].
The Free Software Foundation? maintains a definition for free software [6]; the criteria
listed for a license to be considered free software are almost identical to the criteria included
in the open source definition. Although those involved in the free software movement prefer
to be treated separately from the open source movement, even the Free Software Foundation
admits that most open source software is also free software and vice versa® [7]. Indeed, the
most popular license is the GNU General Public License which, while created and endorsed
by the Free Software Foundation as the preferred free software license, is also categorized
as an open source license by the Open Source Initiative.

For the purpose of this document, no differentiation is made between free versus
open source software. References to open source are intended to include both free and

open source software unless explicitly noted otherwise. The term Free/Libre Open Source

Thttp://www.opensource.org
http://www.fsf.org

3The overlap can be seen by comparing the Free Software Foundation’s approved li-
censes (http://www.gnu.org/licenses/license-list.html) with the Open Source Initiative’s list
(http://www.opensource.org/licenses/alphabetical/).

Software (FLOSS) has been adopted for this document because it encompasses both types
of software and is the most accepted term internationally*. The term “free” is meant as in
“freedom”, acknowledging the ability of anyone to examine and modify the source code.
It does not refer to free as in price, as is commonly assumed, although most free and open
source software is available without cost. The term “libre”, similar to “liberated” in the
English language, is included to accommodate Romance languages that do not include a
base word similar to free’. To differentiate from FLOSS, software that does not make the
source code available is referred to in this document as traditional, proprietary, or closed
source.

The popularity of FLOSS is growing, and it has become common to encounter

FLOSS in many situations. Examples of well-known FLOSS projects include:

« Operating systems: Linux, FreeBSD, OpenBSD, and NetBSD.

« Internet: Apache Web Server, sendmail, BIND, Mozilla, Firefox, SeaMonkey, Kon-

queror, Chromium, Links, and Lynx.
o Programming:

— Web Engines: Perl and PHP.
— Languages: Python, Ruby, and Tcl/Tk.

— Tools: GCC, Make, Autoconf, and Automake.

40SS, FOSS, and F/OSS are other common abbreviations used to refer to free and/or
open source software.

5e.g., free (EN), frei (DE), and vrij (NL) versus libre (ES/FR), livre (PT), and libero
7).

— Modeling: MASON, Repast, and Swarm.

1.1 RESEARCH MOTIVATION

Although it employs unconventional techniques, the FLOSS development process undeni-
ably produces software that includes many positive properties. A better understanding the
FLOSS development process may result in improving software engineering in general. In
addition, as FLOSS has matured, more and more individuals and companies are relying on
open source software. Being able to predict the future of certain components of FLOSS
may benefit all the stakeholders involved, including both those who are using and devel-
oping the software, and may even lead to better software being produced through a more
efficient distribution of resources (e.g., not wasting resources on inappropriate or doomed

projects).

1.1.1 Positive Characteristics of FLOSS

Software engineering remains a developing field. There is an ongoing search for techniques
and methodologies that can be applied to software engineering processes to improve the
software produced. Building software that is high quality and reliable in reduced time are
just a few of the goals for improving the software engineering process. Interestingly, many
of the activities and techniques that are part of the collaborative FLOSS development pro-
cess contradict traditional software engineering best practices, yet certain characteristics of
FLOSS are highly desirable. Notable positive properties of software developed as FLOSS

include:

« Some FLOSS projects have been shown to be of very high quality [8], [9] and to have
low defect counts [10]. Indeed, Linux has been found to have a very low bug density

that is less than 1/5 of the industry average for commercial software [11].

o FLOSS is able to exploit parallelism in the software engineering process, resulting
in rapid development [12], [13], [14]. Unlike closed development, FLOSS is able
to tap into a very large user- and developer-base, allowing design, development, bug

identification, bug fixing, etc. to all occur simultaneously.

o FLOSS sometimes violates the bottleneck known as Brooks’ law [15], [16], which

states that “adding manpower to a late software product makes it later” [17].

« As group size increases, cooperation tends to decrease [18] and the incentive to free-
ride increases, yet FLOSS development thrives on an increasing user- and developer-

base [15].

« FLOSS has produced reliable, robust, portable, scalable, and complex software, and

is even used in mission/safety critical applications [14], [19].

In addition, in some instances FLOSS projects have managed to successfully com-
pete with commercial software, sometimes obtaining a greater market share than pay op-
tions, and in the process adding a level of legitimacy to a software engineering technique
that is largely based on the contributions of volunteers. Examples where FLOSS success-

fully competes with commercial products include:

« Approximately 1/3 of one million surveyed web servers run Linux [20].

o Approximately 2/3 of web servers run the Apache Web Server [21], [22]. The next
most popular server is Microsoft IIS with less than 20% of the market [21], [22],

making the open source solution the most popular choice.

« Of the top 10 most reliable hosting sites, 50% run Linux and 40% run FreeBSD [23].

o The OpenDocument Format (ODF), an open standard and implementation-neutral
file format for word processing, spreadsheet, presentation, and other office docu-
ments, has been adopted by many governments, including the state of Massachusetts
and many countries in Europe [24]. Although not software itself, ODF was devel-
oped in an open manner and is based on the original XML file format generated
by the FLOSS project OpenOffice.org® [25], which was also developed via an open
community effort [26]. Since OpenOffice.org was one of the first projects to support

ODF, some governments have also switched to using OpenOffice.org [24].

« The open source project Mozilla Firefox’ has captured 26% of the browser mar-
ket®, making a significant dent in Microsoft Internet Explorer’s market share. Google
Chrome® has captured another 17% of the browser market!® [27], [28], [29], [30].
Ranking as the 2nd and 3rd most popular web browsers respectively, Firefox and
Chrome have eroded the market such that the once-dominant Internet Explorer, while

still the most popular browser, no longer is the choice of the majority [27], [28], [29],

bhttp://www.OpenOffice.org

"http://www.mozilla.org/firefox

8Based on the mean values from [27], [28], [29], [30] in June 2011.
“http://www.google.com/chrome

10Although Chrome operates under a non-FLOSS license, Google has released most of
the code as a separate open source project called Chromium (http://www.chromium.org).
Essentially, Chromium is the development version of the browser and Chrome is Google’s
rebranded stable release. Sites calculating browser statistics do not appear to differentiate
between the two versions of the browser, which appear to share the bulk of their codebase
(Chrome includes additional features such as auto-updating, built-in plug-ins, and Google
branding).

[30]; by a slim margin more people use FLOSS browsers than Internet Explorer [27],

[28], [29], [30].

« BIND'!, a FLOSS Domain Name Server (DNS), accounts for 57% of DNS’s in a
random survey and an astounding 93% for the more stable .com, .net, and .org do-
mains'? [31]. By comparison, Microsoft DNS software is running on only 1% and

0.1% of the servers surveyed respectively [31].

The positive characteristics of FLOSS are appealing to software engineering in gen-
eral. The fact that certain FLOSS projects are able to compete with commercial projects
further speaks to the legitimacy of the FLOSS development process. Furthermore, unlike
closed source development where processes and data may be highly guarded by the com-
panies developing software, FLOSS development tends to be an open process, resulting
in data being readily available for research purposes. By better understanding the FLOSS
development process, it may be possible to incorporate the FLOSS practices responsible
for these highly desirable traits into traditional software engineering in order to achieve
similar benefits. Indeed, a report from the Workshop on Advancing the Research Agenda
on Free/Open Source Software recommends that the production and organization methods
utilized by FLOSS be studied in order to understand if they can be applied to other fields as

well [32].

http://www.isc.org/software/bind

12Timed-out requests and responses where the DNS could not be determined are omitted
from these statistics.

1.1.2 Benefits of Predicting FLOSS

As open source has become a prominent player in the software market, more individuals
and companies are faced with the possibility of using open source projects, which often
are seen as free or low-cost solutions to software needs [33]. In the right situation, this
can benefit all parties involved. For example, IBM is a company that has embraced and
benefitted from FLOSS. When IBM chose to become involved in open source software, it
required the company to perform an 180 degree change in thinking and policy, since IBM’s
business model has traditionally been to create proprietary systems that lock customers into
IBM products for generations, whenever possible [34]. IBM has donated time, in the form
of paid programmers, and code to the FLOSS community, including proprietary code that
was previously owned and guarded by IBM [34]. Of course none of this was done strictly
to benefit the FLOSS community. In return, IBM has used FLOSS as a mechanism to
help unseat competitors, such as Microsoft, in markets where IBM’s own products were
failing [34]. For example, IBM’s web server, Domino, held less than 1% of the market
in 1998 while the Apache Web Server had roughly 50% [34]. Rather than fighting an
uphill and losing battle to gain a foothold in the web server market, IBM joined Apache,
contributing code and money to the project. While there were some initial concerns'?,
three months later IBM declared it would ensure the Apache Web Server ran on all of

IBM’s hardware [34]. In return, IBM was able to tailor and include Apache in their own

WebSphere product, which subsequently became successful [34].

13IBM was concerned about legal issues in developing Apache software [34] while the
Apache community was leery of having their reputation tainted by Big Blue [34].

IBM also contributes to Linux, estimating it saves nearly one billion dollars per year
by using the FLOSS operating system rather than developing its own software to meet the
company’s needs [34]. In essence, the cost to IBM is roughly $100 million per year [34]
and the time and resources of a handful of IBM developers who are assigned to work with
the Linux community. Beyond the monetary savings, IBM receives other benefits as well,
such as gaining respect from the open source community [35], which likely leads to more
IBM products sold. In addition, via submitting code to Linux, IBM is also able to ensure
that Linux is compatible with hardware sold by IBM. Indeed, IBM advertises that all the
company’s servers are Linux compatible [34], a campaign the company started in 2000
[35]. Meanwhile, the Linux community benefits from greater portability of their operating
system, resulting in a win-win situation.

A key to IBM’s success in working with the FLOSS community is the projects
the company selected to be involved in. In the case of Apache and Linux, both of these
projects have evolved to be wildly successful. Linux is the dominant open source operating

system, putting a dent in the commercial operating systems market!*

, and Apache is the
dominant web server period, even when considering commercial products [21], [22]. In
2011, it is easy to see that both of these projects are formidable forces and are likely to
remain so in the future, but what about when Apache and Linux were new projects? For

every successful FLOSS project there are dozens that are unsuccessful. Indeed, only 14%

of projects on SourceForge, the largest repository of FLOSS projects, were updated in a

“Even Microsoft has cited Linux as the main competition for Windows and a viable
threat [14], [19], [36].

year'>. If IBM had instead chosen different projects and those projects shortly later failed,
it would have been a waste of IBM’s resources. Contributing significant resources to a
soon-to-be-irrelevant project is arguably worse than not getting involved in FLOSS in the
first place [37]. Indeed, the uncertainty of the survival of FLOSS projects and worries about
being able to obtain support are cited as concerns by I'T managers considering using open
source [38].

Selecting the wrong FLOSS project to be involved with is a more significant prob-
lem for small companies than with large companies. First, small firms are more likely to
adopt open source software [39] simply because they have fewer resources to begin with

and therefore see the potential for larger gains!'®

. In many cases, it may be impossible
for a small business to write the software itself that is necessary to meet the company’s
needs. The company may have insufficient resources, including time, money, and/or em-
ployees with the necessary expertise. FLOSS is seen as a low-cost option [33] compared
to developing a full in-house solution or buying a commercial product, assuming one is
even available. If open source software with the necessary functionality already exists, a
firm may free-ride. If no such software exists, it may be possible to select a close match
from existing open source software and tailor it to meet the specific requirements. Either
option is less resource intensive than writing the software from scratch and likely cheaper

than buying a commercial solution. However, there is a significant level of risk involved

in becoming involved with FLOSS, considering that most FLOSS projects fail [37]. For

I5Based on the time interval from November 28, 2007 to November 27, 2008.

16Surveys have found that firms typically contribute less to FLOSS projects than individ-
uals yet still receive the same benefits [40].

10

example, a small firm may invest in a FLOSS solution only to find the FLOSS project aban-
doned a year later, at which point there will be no further enhancements to or support for
the project. Another iteration of selecting and enhancing a replacement project might be
too costly for the business to survive. Although the stakes may be lower in the case of indi-
viduals using FLOSS, adopting an open source project and then shortly later having it fail
still has negative consequences. FLOSS developers may also be interested in knowing what
projects have a greater chance of survival so that the likelihood of their contributions being
wasted is minimized. Even FLOSS projects, which often rely on other FLOSS projects,
could benefit from accurate forcasting. Thus, the ability to predict the future of a project
would be beneficial to anyone, firms and individuals alike, considering using or contributing
to a FLOSS project.

Knowing the future of a project is still beneficial even if a firm only intends to use
the software, but not actively contribute to it. Integrating software into a company comes
with costs, including the initial selection of the software, installing and configuring the soft-
ware, learning to use the software, etc. If the chosen FLOSS project becomes inactive in the
future, a replacement project may need to be selected. Even if the original project fulfilled
all the users’ needs before it was abandoned, it may still be necessary to replace the soft-
ware, partially because any form of support for the existing project has ceased to exist and
partially because software and hardware are constantly evolving; sooner or later something
will occur — a bug will be discovered, a computer will be upgraded to hardware that is not
supported — that forces the users to find a replacement project. The costs associated with
switching projects could be minimized if the future of projects could be predicted, allowing

selection from a subset of projects with expected long lives. If project lifespan wasn’t as

11

important as, say, new features and functionality being added, a subset of projects predicted
to be very active could be chosen from instead.

In some cases firms don’t use the FLOSS software themselves. Instead, companies
sell components or services that are complementary to FLOSS. For example, Red Hat sells
support services for Red Hat Enterprise Linux (previously, Red Hat Linux). Likewise, a
company may market software that is complimentary and/or compatible with certain open
source projects. Again, being able to predict the future of projects allows firms to better
position their own marketable products and services. If a FLOSS project dies, commercial
products that are linked to the FLOSS project will likely die as well.

In summary, FLOSS has a number of benefits associated with it, from the poten-
tial to develop rapidly and be very high quality, to the low cost of usage and ability to
customize if necessary. However, choosing to use open source software is risky business,
partly because it is unclear which FLOSS will succeed. To choose an open source project,
only to find it stagnates or fails in the near future, could be disastrous. Accurate predic-
tion of a project’s likelihood to succeed/fail would therefore benefit those who choose to
use or develop FLOSS, allowing more informed selection of open source projects. Unlike
closed source development, where project data may be heavily guarded, data on FLOSS
projects is often public, making it easier to obtain for research purposes. Better understand-
ing the FLOSS development process may also allow all software engineering processes to

be improved.

1.2 UNDERSTANDING FLOSS

The many positive aspects of FLOSS make it worth studying from a software engineering
standpoint in order to better understand what causes these characteristics, so that similar

techniques may be applied to all forms of software engineering. However, in reality it

12

is only successful FLOSS projects that exhibit these positive characteristics. In fact the
majority of FLOSS projects are abandoned before developing useful functionality. Thus
understanding why some projects are successful while most are not is also important. Ar-
guably, understanding the differences between successful and unsuccessful projects may be
at the crux of determining the mechanisms responsible for the positive characteristics of
FLOSS.

This research is built around the simple observation that projects must receive con-
tributions from developers in order to progress. Projects that are able to attract and retain
a large number of developers have greater prospects of maturing into useful software than
projects that are unattractive to the contributor community. As such, the approach taken in
this research is to specifically model the project selection process of FLOSS development.
Individuals working on FLOSS do not necessarily receive direct material incentives for
their actions; many are volunteers donating their time, energy, and skills to software devel-
opment without receiving traditional compensation. Therefore, it is critical to understand
what motivates developers to choose projects in order to understand why some projects
are successful. For example, are developers attracted to popular projects, projects with the
most potential for reputation gain, projects which offer the ability to hone and improve
one’s skills, or any number of other potentially motivating factors?

To increase the understanding of FLOSS, this research uses modeling in an attempt
to answer the following questions: Using publicly available data, is it possible to develop
an empirically-grounded agent-based model that can explain historical patterns present in
the FLOSS ecosystem? Can such a model be used to gain insight into components of
the FLOSS development process, such as how developers select projects and why some

projects are successful? What does it mean for a project to be successful in the FLOSS

13

domain? What data on FLOSS is available, what methods exist for obtaining data, and
what methodological challenges exist with using the data to calibrate and validate a model?
With sufficient calibration, can a model be used to accurately predict components of the
FLOSS ecosystem?

Based on these questions, the main contributions of this dissertation to the field of

Computer Science are:

1) Creating and validating an empirically-grounded agent-based model of the FLOSS

development process.

2) Confirming existing hypotheses and qualitative data presented in literature, including:

« Showing that FLOSS development is a producer-driven process.

« Determining which factors are important to developers when selecting amongst

projects.

3) Investigating the role of consumers in the FLOSS development domain and conclud-

ing that users exhibit only a minor influence on the FLOSS development process.

4) Determining that there are differences among proposed success metrics in the FLOSS

domain.

5) Demonstrating that core developer involvement has the greatest probability of in-
creasing the chances of project success if it occurs during the mid-stages of develop-

ment.

The remainder of this document is laid out as follows: a literature review of existing
FLOSS models is presented in Chapter 2, along with recommendations and justification

for why FLOSS should be modeled. Existing work is compared and contrasted to this

14

research, highlighting where important concepts from existing models have been borrowed
and incorporated into this research.

Methods for quantifying FLOSS are discussed in Chapter 3, including exploring
what success means in the FLOSS domain, what factors potentially affect FLOSS, and
what motivates developers to contribute to FLOSS.

A review of FLOSS data sources, including coverage of what data is typically avail-
able for projects, already existing databases, and techniques for mining data, is contained
in Chapter 4.

Chapter 5 presents FLOSSSimple, a very simple, theoretical model of the FLOSS
development process. FLOSSSimple is based on public goods theory and is used to explore
the impact of different definitions of success in the FLOSS environment and draw some
high-level conclusions about characteristics of the FLOSS development process.

A goal of this research is to demonstrate that key characteristics of the FLOSS de-
velopment process can reproduced via modeling. With a well-calibrated model, it may
even be possible to make predictions about the FLOSS development process. FLOSSSim-
ple is sufficient to explore the impact of different definitions of success, but it lacks many
necessary components to demonstrate reproduction of key characteristics or prediction in
the FLOSS domain. Chapter 6 therefore presents FLOSSSim, an enhanced model of the
FLOSS development process that includes additional components necessary to validate the
model with empirical FLOSS data and produce predictions about the FLOSS process. Once
FLOSSSim is calibrated and validated using publicly available data, Chapter 7 analyzes the
model and uses it for prediction, to understand the importance and influence of develop-
ers and users, and to understand which factors influence the success of projects. Several

scenarios are explored and directions for future work are presented.

15

CHAPTER 2

BACKGROUND ON EXISTING FLOSS MODELS

As FLOSS has become more popular and a formidable force in the software market, it has
become important to better understand the FLOSS development process. One method to
derive additional understanding of the FLOSS development process is through the use of
formal models.

At a workshop for advancing FLOSS research, a group of well-known FLOSS re-
searchers inquired if it might be possible to learn more about FLOSS, or even predict the
behavior of FLOSS communities, through simulation [32]. Acknowledging that FLOSS
software is sometimes as good or better than commercial software in terms of quality, func-
tionality, and maintenance, [41] considers the economics of companies continuing to de-
velop their own software or embracing a more open source process. [41] states that the next
step should be to create analytical models of open source to explore conditions for compa-
nies adopting FLOSS techniques. [42] argues for creating generalized, quantitative models
of FLOSS that could serve as prediction tools for project factors such as the success/failure
of a project, the evolution of source code, the design quality, the number of developers
attracted to a project, and the distribution of work on a project’s components.

Due to complexity, the overwhelming amount of data, time constraints, etc., [43]
suggests studying virtual communities, such as FLOSS, via models. The alternative of
running real-life experiments is both costly and requires substantially high motivation from
the participants [43]. Therefore, modeling is seen as a more promising and lower-risk

technique to gain an understanding of virtual communities [43].

16

While an idea about the stability of commercial software may be obtained by an-
alyzing the vendor, for volunteer-driven FLOSS projects predicting the stability and oc-
currence of future releases may be very difficult [37]. Although nontrivial to create, [37]
indicates simulation might be a good option to help answer these types of questions. In-
deed, simulation is needed to fully understand FLOSS due to its “inherent complexity and
large heterogeneity when it comes to motives of participants, size of participation, methods
of coordination, quality of output etc.” [44].

Despite the need for high quality models of the FLOSS development process, there
are not many researchers working on simulating FLOSS [45]. Modeling and simulating the
open source development process thus remains an open research problem [46].

The following sections highlight existing work on the topic of modeling FLOSS.
Section 2.1 presents a literature review of existing FLOSS models, with many models focus-
ing on predicting aspects of FLOSS. Section 2.2 compares FLOSSSim to existing models,
highlighting what makes FLOSSSim unique from earlier work. Section 2.3 contains rec-
ommendations to follow when creating FLOSS models and includes information on how
FLOSSSim adheres to these recommendations when possible. Finally, the reason agent-

based modeling is chosen for FLOSSSim over other techniques is discussed in Section 2.4.

2.1 EXISTING FLOSS MODELS

This section provides an overview of existing FLOSS models in order to familiarize the
reader with the various FLOSS modeling efforts that have already been attempted. Con-
cepts are borrowed from these previous research examples in developing FLOSSSim, and
thus highlighting some of the different approaches to simulating and predicting FLOSS de-
velopment should make it easier to understand the components and design of the model

presented in Chapter 6.

17

It should be noted that different types of models, e.g., system dynamics, agent-
based, etc., have different strengths and weaknesses and therefore the types of questions
being addressed may influence the modeling technique applied. Although agent-based mod-
eling is chosen for FLOSSSim, this section includes a review of FLOSS models regardless
of the goal or type of model in order to provide a better understanding of what has occurred
in the field. For an explanation of why FLOSSSim is implemented as an agent-based model,
see Section 2.4.

Models have been grouped according to the modeling technique. Many, but not all,

include prediction as a goal of the model.

2.1.1 Statistical Models

[47] analyzes public FLOSS data in an attempt to create a FLOSS lifespan model while
identifying FLOSS lifecycle characteristics. The ratio of downloads to page views is used
as an indicator for how many people become interested enough to download a project after
visiting the project’s homepage. In addition to downloads and page views, the number of
commits and bugs reported over time are collected for projects, and the shape of the plotted
data is analyzed. It is found that projects progress through up to four phases: 1) develop-
ment, where views, downloads, commits, and bugs increase as rapid development and fre-
quent releases occur, and the project receives good publicity; 2) stabilization, where commit
and bug counts increase less quickly while the audience shifts to only serious users; 3) ma-
turity, where the downloads-to-page-views ratio stabilizes, and the project mostly focuses
on maintenance tasks; and 4) stagnation, where the project becomes inactive. Example
projects that are in each of the phases are identified, along with some exceptions which

violate the identified lifecycle patterns. This work also identifies a number of considera-

18

tions and caveats about the data. For example, FLOSS projects vary widely in code size,
audience size, etc., making it impossible to directly compare data across projects. Phase
lengths, rates of change, etc. all vary by project. However, comparisons can be made by
looking at the overall shape of the plotted data. Future work includes using trend analysis
and decision support methods for prediction purposes, with the possibility of seeding the

model with multiple projects.

2.1.2 Machine Learning

[48] uses machine learning to predict the success of FLOSS projects. Motivated by the
fact that there is no way to predict the success or failure of a project at the early stages
of development, this research attempts to forecast the success of FLOSS projects by using
data from the first nine months of development. Project data was mined from SourceForge
using scraping tools from the FLOSSmole project! and then filtered to eliminate projects
with fewer than seven developers” and fewer than 100 bug reports’. Projects were then
hand-sorted into successful and unsuccessful categories using five selection criteria. Next,
a k-means clustering algorithm was used to categorize projects into two groups (i.e., k =
2), where the project vectors were comprised of the following six believed-to-be-relevant

factors:

1) Number of distinct email posters

"For a description of both SourceForge as a data source and FLOSSmole, as both a data
source and data collection tool, see Chapter 4.

2This restriction was because the researchers were interested in FLOSS projects that
included a team development effort.

3 A sufficient number of bugs was required for the analysis performed.

19

2) Number of distinct bug reporters

3) Number of distinct bug fixers

4) Number of distinct CVS/SVN committers
5) Project outdegree®

6) Number of releases

The classifier was seeded with centroids calculated from three projects that were well-
recognized as successful and two unsuccessful projects. The classifier correctly categorized
95% of the 42 projects into successful and unsuccessful groups, and it was demonstrated
that its performance exceeded that of random classification. Reducing the number of fac-
tors necessary for prediction was then explored. The number of distinct email posters, bug
reporters, bug fixers, and committers was shown to be pairwise highly correlated, indicating
all four factors measure the same component of a project. Principal Component Analysis
was used to systematically reduce the number of factors to the most important ones. A rerun

of the classification was performed using the following revised vector components:
1) Number of distinct email posters or bug reporters or bug fixers or committers
2) Project outdegree

3) Developer outdegree’

4Borrowing a concept from social networking, this is the number of other projects de-
velopers on the current project have worked on and is a measurement of the centrality of
the project with respect to the FLOSS developer network.

>The number of developers on the current project who are also involved in the develop-
ment of other open source projects.

20

4) Number of releases

Using fewer factors, the clustering algorithm miscategorized different projects but still cor-
rectly classified 95% of the data.

[49] attempts to create rules that can predict the future of projects using data from
SourceForge. First, 63 attributes were collected for a six month timespan for 55,723 projects
hosted on SourceForge. Non-negative Matrix Factorization was then used to identify sig-
nificant independent features, reducing the number of factors from 63 to 10. Attributes
found to be the most significant through this process were number of file releases, num-
ber of developers, number of help requests, and number of opened and closed tasks. The
attributes were then automatically clustered into 10 groups using the k-means algorithm
(k=10). Based on the automatic clustering, manual rules were then created to sort projects
into their automatic categories. To test the performance of these rules, a subset of projects

was manually sorted into the following categories:

o FAIL: The project was a failure, having zero developers after six months.

o TOP10: The project ranked in the top 10.

o TOP500: The project ranked in the top 500.

« NORMAL: All remaining projects belong to this category.

Support and confidence values were calculated by comparing the results of the manual rules
to the automatic clusters. Support was very low for the TOP10 and TOP500 groups because
the number of projects in these clusters was small. The rules had much higher support for

predicting the failure of a project, with up to 78% confidence in the best case.

21

2.1.3 System Dynamics Models

[43] uses system dynamics to study the behavior of participants in virtual communities.
While the study focuses on Comtella, a proprietary collaboration tool used by students at
the University of Saskatchewan, there are some common elements that apply to other virtual
communities like FLOSS, such as the inequality of contributions to the community and the
temptation to free-ride®. The goal of the model is to provide insight into the motivation
and incentive mechanisms that cause communities to develop, including the reasons why
people participate in virtual communities. In particular, the model explores different levels
of participation by users, where those that contribute are promoted to higher positions and
offered more rewards. This is similar to a FLOSS developer hierarchy, where the continuum
stretches from users, who participate at a minimal level, to core developers, who participate
fully and are also awarded the ability to commit changes to the code and make design
decisions, to possibly a “dictator” or leader of a project, such as Linus Torvalds of Linux,
with the final say on anything related to the project. The model predicts the promotion
of individuals to higher positions based on their contributions to the community. The first
iteration of modeling shows the model matches relatively well to empirical data that was

collected from students using Comtella.

2.1.4 Dynamic System Models

[42] points out the need for a category of FLOSS prediction models that can forecast
the success/failure of projects, evolution and quality of the code, bug counts, number of

programmers, etc. The authors first present a general framework and recommendations for

®For a discussion on the temptation to free-ride, see Section 3.2.1.2.2.

22

building dynamic simulation models of the FLOSS development process’; they then create
and partially validate a model that follows the framework. The model is built around the

principle that crowds of developers are able to decide:
« Which projects to contribute to
o Which modules to contribute to
o Which tasks to perform
« When and how often to contribute

In the model, developers may perform four actions: 1) design and implement the first ver-
sion of a module; 2) fix an existing defect; 3) test the software; or 4) add functionality and
improve existing code®. The number of developers working on a project is determined by
both the profile of the developer and the quality of the software being developed. Evaluat-
ing the quality of an open source project is based on other studies’ findings and is measured
in the model using the increase in lines of code (LOC) between releases, the total project
averages for the rate of change of LOC and number of tasks completed, and a short-term
“interest boost factor” that occurs when a well-known hacker contributes to a project [50].
The model is calibrated for the Apache Web Server using data from [51], occasionally bor-
rowing values from other studies or making educated guesses when values are not specif-

ically available for the Apache project. The model was able to predict values three years

"Recommendations from the framework presented in [42] are included in Section 2.3.

8 Although the developer preferences for each of these activities is unknown, through an
interactive calibration technique it was found that the model performed best when 6.5% of
the developers were interested in writing new code, 3.89% in debugging, 53.7% in testing,
and 35.9% in improving functionality.

23

into the future’ that matched well with the actual values of the Apache project, including
LOC, defect statistics, and statistics pertaining to the four types of tasks. The model also
showed super-linear growth periods at the beginning of a project’s lifespan followed by re-
duced rates as a project matured, matching case studies of FLOSS. To demonstrate that the
good model performance on the Apache project was not the exception, the authors recali-
brated the model for the gtk+ project. The predicted values were not as close for gtk+ as
for Apache, but were still respectable.

[52] creates a model of FLOSS based on public goods theory. Specifically, the
authors model the open source phenomenon as a “game of the private provision of a pub-
lic good” [52], borrowing and adapting many assumptions and results from [53], which
looks at the “private provision of a public service,” i.e., public services that no one wants
to provide but are best created by an individual. In the model, individuals have complete
information and there is no centralized control of FLOSS projects. The model is driven
by strategies outlining when it is beneficial for an agent to immediately develop the soft-
ware versus waiting for another agent to develop it. This includes calculating an expected
lifetime utility from using the software to decide if it is advantageous to invest in devel-
oping the software now, and thus start benefiting from it immediately, or to free-ride until
someone else implements the functionality, thus avoiding the cost of writing the software
but also suffering from a delay that reduces the lifetime utility of the software. In addition,
agents’ decisions to work on a particular project are influenced by the number and quality
of other volunteers’ contributions. Data from developer surveys is used to validate part of

the model. The model finds that FLOSS projects exhibit bandwagon dynamics; a program-

9The model run started in 1996 and predicted values for 1999.

24

mer joining a project increases the likelihood of other developers also joining. Likewise,
when a developer leaves a project, the probability increases that other volunteers will also
abandon the project. In addition, the model demonstrates that good programmers attract
other skilled programmers and that projects with large numbers of complimentary modules

are more likely to thrive in an open source environment.

2.1.5 Agent-Based Models

One of the earliest attempts at modeling FLOSS is SimCode [45], a model of developers
selecting and contributing to modules within a single FLOSS project. In the model, devel-
opers’ efforts are afforded to the most rewarding tasks. The model assumes that developers
are more attracted to generic and low-level modules than high-level and highly specific
modules. For example, writing code in the Linux kernel, which is likely to be included in
many future releases and used by many users, is more rewarding than contributing code to
a file system driver, which is more rewarding than contributing code to a driver for a newly
released, obscure printer. Similarly, creating a new module is more rewarding than con-
tributing to an existing module, as there is more reputation gain from being first (similar in
the academic world to being the first to publish a paper). Finally, active and popular mod-
ules are more rewarding than stagnant modules, as there is a larger user base to notice the
contributions. In the model, agents have perfect knowledge of all modules and contribute
their individually allocated efforts to probabilistically chosen modules, where more reward-
ing modules have a higher likelihood of being selected. No attempt to match a module’s
characteristics with a developer’s skills is made. The model endeavors to replicate the high
Gini coefficients for the size of modules found in some FLOSS projects (e.g., Linux [54]).

That is, there is a huge inequality in module sizes, with most modules being very small and

25

only including a single developer’s code, while a few modules grow very large and contain
contributions from multiple developers!'®. Although the first version of the model considers
where developers focus their code-writing efforts within a project, future work may include
modeling which competing projects developers select to receive their contributions.

The authors of [37] are motivated to predict aspects of FLOSS, such as the stabil-
ity of a project’s developer community and potential for future releases, and have created
an initial model that aims to demonstrate how developers choose projects and the global
effects of these choices. The model is able to successfully replicate certain known phe-
nomena present in FLOSS development. The authors include a social networking aspect
in their model and start development by collecting data from Advogato'!, FLOSS mailing
lists, and FLOSS developers’ blogs. The data collected are used to recreate the underlying
social networks. The resulting networks are analyzed and the empirically derived network
size and density parameters are included in the model. Called OSSim, the model consists
of multiple projects, developers, and users. Developers and users are modeled as agents
with sets of software-related problems they are interested in solving, such as desiring a text
editor that can be used to modify web pages. Each of these abstract problems is then fur-

ther broken down into individual features, represented as a string from all possible features.

10SimCode studies this inequality of size and developer involvement at a micro level,
seen when looking at the modules within a project, but this phenomenon also appears at
a macro level, when looking across a group of FLOSS projects. That is, most FLOSS
projects are small and contain the work of a single developer, but a few are large and include
contributions from many developers.

http://advogato.org is a social networking website for FLOSS developers that allows
individuals to rate FLOSS developers’ abilities; essentially, FLOSS developers’ work is
peer reviewed and the results are published for everyone to see.

26

Agents select desireable projects by comparing their own problems to the features offered
by projects, using Kauffman’s NK model [55] to evaluate the fitness. The distribution of
developers’ level of skills follows data mined from Advogato. Agents learn about other
projects through the social network, and if an agent becomes dissatisfied with the project
he/she is currently working on, the agent will search for another project. The model was
explored via two experiments. In the first experiment, two competing projects were cre-
ated: one was primed with highly skilled developers while the other was assigned poorly
skilled developers. The model demonstrated the intended behavior of all agents abandon-
ing the project stocked with low skill level developers. In a second experiment, the effects
of negative interactions between features developed by different developers was explored.
Four projects were created and the effects and coupling between features was varied across
model runs. When there were high degrees of interaction between the features, development
slowed and developers more frequently changed projects. This matched expected behavior,
where large, complex, and highly coupled projects tend to progress at a slower rate than
small, simple projects. Although the authors’ goal was to model across a large number of
competing FLOSS projects, the maximum number of projects included in their published
work is four — a small number compared to the actual number of FLOSS projects in reality
that are competing for developers.

[56], [57], [58], [59] are a series of papers that use a combination of agent-based
modeling and data mining. Specifically, these papers model FLOSS social networks, where
developers and projects act as nodes and developers participating in projects form links. By
understanding the characteristics of the networks, the authors hope to gain insight into why
some projects are successful (e.g., examining the network characteristics around successful

projects). In the model, at each time step an agent chooses to create a new project, join an

27

existing project, abandon a project the agent is already involved in, or do nothing, where
the probability of each of these actions is based on empirical data mined from SourceForge.
Network metrics, such as degree distribution, diameter, and clustering-coefficient, are then
collected from the simulated network and compared to data mined from SourceForge. Mod-
ifications to the model are made and then the process is reiterated, fine tuning the model to
produce networks with characteristics similar to SourceForge. [57] notes that the Source-
Forge network is scale-free and exhibits small world phenomenon (i.e., a high clustering
coefficient and small diameter). [S7] also finds that core developers keep the otherwise
sparse network well-connected and these highly-connected nodes keep the degree of sep-
aration between developers low, aiding in fast communication which may help developers
make well-informed decisions when choosing open source projects.

Although [60] does not focus on predicting success, the model presented does suc-
cessfully reproduce several FLOSS characteristics. Using agent-based modeling, the model
focuses on individuals® behavior and considers the development of FLOSS an emergent
property. Software projects are modeled as collections of modules where each module has
a fitness and complexity associated with it. Fitness is a measure of a module meeting the
users’ needs and decays over time, representing the changing needs of the users. Unlike
many FLOSS models, this model includes users, who are responsible for adding new re-
quirements to random projects. Developers also randomly move from module to module.
When a developer encounters an unfulfilled requirement, he/she may choose to develop the
code to meet the requirement. When a developer encounters an already-developed module,
he/she may refactor the code, reducing the complexity of the module but leaving the fitness
unchanged. A refactoring attempt may fail if the module is already too complex. Finally,

a developer may choose to further develop an existing module, increasing the module’s

28

fitness and complexity. If a module’s fitness is already above a boredom threshold, the de-
veloper will find the work remaining on the module uninteresting and will move to another
module. To validate the model, data from the four successful FLOSS projects Arla, Gaim,
MPlayer, and Wine were collected. The following components were compared between the

model and empirical data:

1) Size: Measured by number of functions in the source code.

2) Complexity: McCabe’s cyclomatic complexity.

3) Complexity change: An indication of whether the code became more or less complex

between releases.

4) Touches: The number of times a file was added, modified, or deleted.

With calibration, the model matched well with three of the empirical data, including the
growth spurts and stagnation periods seen in the four selected projects. Touches did not
match well. The authors found that including refactoring in the model was necessary to
match the data, and users were key to causing the growth spurts through their clustering
around projects. Finally, the model was sensitive to the developers’ boredom threshold;
when set high, high-fitness modules attracted and retained developers. When low, few

projects attracted developers and those that did were eventually abandoned.

2.2 COMPARISON OF FLOSSSIM TO EXISTING MODELS

Chapters 6 and 7 include a description and analysis respectively of a new model called
FLOSSSim. FLOSSSim borrows components from some of the existing literature and
includes unique components as well, attempting to address some of the shortcomings of

existing models. Similarities to the existing models are outlined below:

29

« Like [47], FLOSSSim is based on projects progressing through development phases
during the lifecycle of the project. FLOSSSim refers to these as development or
maturity stages and includes six stages in the model rather than the four outlined

in [47].

o FLOSSSim includes the concept that developers’ (and potentially users’) choices in-
fluence FLOSS development. Like [42], FLOSSSim is designed around developers
choosing both how frequently to contribute and what projects to contribute to. As
in [45], agents use probabilistic choice mechanisms to select projects based on the

perceived reward or utility of each project.

« Like [37], FLOSSSim uses a mathematical abstraction of developer’s problems and
interests (albeit the abstraction is implemented differently between FLOSSSim and

[37]) which may then be used to compare the similarity between projects and agents.

« Like many of the models, FLOSSSim is calibrated and validated using empirical data;
when data is not available, estimates are used and/or searches are performed to find

values that perform well.

Some of the key differences between existing models and FLOSSSim are the fol-

lowing:

« FLOSSSim does not use machine learning. While machine learning has been shown
to be effective for predicting the future of projects [48], [49], this technique does not
provide insight into the FLOSS development process itself, such as understanding
why some projects are successful and others are not. In other words, machine learning

acts as a black box, receiving input and producing output without providing details

30

of what occurs internally. Since understanding what causes success and failure in the

FLOSS domain is part of the goal of this research, a white box approach is taken.

FLOSSSim is designed around the concept of projects attracting developers. Namely,
if a project can attract and retain developers, then the project will progress. Including
this concept in the model means there must be a large landscape of varying projects
for developers to choose from. Almost all of the existing models that allow agents
to choose projects include only a small number of FLOSS projects, e.g., [45] focuses
on where developers contribute within a single project and [37] considers developers
choosing from up to only four projects. Yet existing literature indicates that multiple
projects, including competing projects, are relevant in a model attempting to mimic
real-world conditions. For example, [37] showed that developers switch to different
projects based on conditions of current and competing projects. To allow for the
dynamics of agents choosing from multiple, competing projects, FLOSSSim includes

a large pool of FLOSS projects.

Several models focus on the social network formed by FLOSS developers and
projects, either modeling the network directly (e.g., [56], [57], [58], [59]) or including
the network as a medium of communication for developers in the model (e.g., [37]).

FLOSSSim does not directly include a social network component in the model.

Many FLOSS models do not include users and none explicitly include passive users
— that is, users that contribute nothing directly to the project (e.g., they do not report
bugs, request new features, provide help to others in forums, etc.). FLOSSSim in-
cludes passive users with the intent of better understanding what impact, if any, this

group has on open source development.

31

« The bulk of existing models focus heavily or exclusively on the technical factors of a
project while ignoring the surrounding social factors that may impact the FLOSS de-
velopment process'2. FLOSSSim incorporates both types of factors in order to more

accurately model and therefore better understand the FLOSS development process.

A summary comparing features of existing FLOSS models is contained in Table 2.1,
while notable features borrowed from existing models and adapted for use in FLOSSSim

are summarized in Table 2.2.

2.3 RECOMMENDATIONS FOR MODELING FLOSS

There have been a number of general recommendations for modeling FLOSS. Where pos-
sible, these recommendations are followed in FLOSSSim, thus avoiding some of the prob-
lems encountered by other researchers and benefiting from concepts that have already been
peer reviewed.

It is recommended that historical data be used to calibrate FLOSS models [42].
This recommendation is followed by making extensive use of the data that is available from
the FLOSS development process itself. See Chapter 4 for an overview of data sources and
Sections 6.1 and 6.2.2.1 for details on calibrating the model with historical data. In addition,
historical data is used for validation purposes, as outlined in Section 6.2.1.

Unlike closed source software projects, [42] notes that the number of contributors
to an open source project varies widely with time and cannot be predicted. Therefore, it
is recommended that models have a function to control the number of contributions based

on project factors, such as developer interest in the project [42]. FLOSSSim provides this

I2The differences between technical and social factors are outlined in Section 3.2.1.

32

$5900ns 309(01d Jo seouryd 9sBAIOUL IR

[9A9] skaoaans 1odojorap SUONIPUOD UIWIA)AP pue $s201d Juswdororap paseq
SOX | [enprArpuy pue 3310,{90In0S Aue] SSOTA 9y Jo SuIpue)ISIOpUN JSBAIOU] -Juasy wISSSOT1d
[oA9] QUIAL pue ‘IoARIJIN uorjenuis era ssadoid juswdorersp SSOTI oW paseq
ON | Tenpraipuf ‘wren) ‘e[Iy woij eye(1 Ur SI0}OBJ PaynuapI Jo doueltodurr oy a1epIfeA -ualy [09]
[9A9] s100fo1d pue s1odojeasp Sunoouuod paseq [6S] ‘[8S]
ON | [enpIAIpup 9310499100 AueN ylomiau SurAropun ay) Apms pue ayedrdoy -uady ‘(5] ‘[9¢]
QIBM)JOS [BIOIQUILIOD
[9A9] woIj 93pa[mouy| pue S9O101]D 53} JO SIOY [8qO[3 A poseq
ON | Tenprampuy WOPSIM [BUOTJUIAUO) y01dn | pue soeloxd ssooyo redofarsp Moy pueisIopun -juaSy [L€]
[9A9] 109foad 9[3urs € unym paseq
ON | [enpraipuf XUl woij ejeq 1 01 9INqINuod s19do[aAdp sa[npowr Jeym JIpAId -Jualy [st]
[9A9] viep Aoains 1odofoasp 1 s109fo1d 3uraes] pue SW)SAS
ON | [enpiaIpup UM UOnepI[BA [e1Ied uey) 10l | Sururof szadojeaap Jo somureuAkp 9y) puelsiopun) orweuA(q [zs]
[9A9] +118 100foxd SUWIQ)SAS
ON | 91e3a133y pue ayoedy woij vle(q 1 oy10ads ® 10} 919 ‘AIISUAP 109J9p ‘DT 0IPAId orureukq [z¥]
SONIUNUIWOD dAT)RI2d00D
[9A9] juowrradxa QuIUO UI sIoquiawi jo uonjowoxd pue | sorweukp
ON | 91830185y | Qe[WOy pajda[[od BlR(] V/IN ‘SWISTUBYOOUWI SATIUSOUT ‘UOTIBATIOW PUB)SISPUN) waISAS [¢v]
[9A9] $$200nS Surureg|
ON | 9132133y 9810,J901n0g V/N | 101pai1d pue ssooons Jurouanpgur s10joej AJnuapy QUIYORIA [6t]
[9A9] juswdoraAap Jo a3eis A[Iea U JB $$9001S Surureq|
ON | 9132133y 93104901n0¢ V/N | 101pa1d pue ssaoons Surouanpur s1ojoej AJjnuopy QUIYOBIA [8¥]
ON ON a3104201mo0g VIN 9[2£00J1] SSOT AY) pueIsIopu) | [ednsnelg (L]
s19s) SI9 s109lo1g
QAISSB] -dofeasg oomog | Sunadwo) odA],
sapnpouf S[OPOIN BIR(] UOTJBPI[EA UIR] | JO Ioquinn [eon [°POIN [°POIN

S[OPOIA SSO T Sunsixa jo uosuredwo))

['CHTdVL

33

TABLE 2.2
Noteworthy features of existing models that are borrowed and incorporated into

FLOSSSim.
Previous | Noteworthy features Incorporation into FLOSSSim
model

[47] Work based on projects Projects progress through six
progressing through four development stages.
development stages.

[42] Designed around developers Developers and users choose projects
choosing preferred projects and based on projects’ potential utility.
tasks.

[45] Agents employ probabilistic Agents employ probabilistic choice
choice when selecting modules. when selecting projects.

[37] Mathematical abstraction of Different mathematical abstraction of
agents’ needs and the ability of agents’ needs and the ability of
projects to address those needs. projects to address those needs.

functionality by allowing developers to choose which project(s) they will work on, where
a developer’s choice is based on a number of factors including the similarity between the
developer’s interests and the project.

Closed source software projects tend to have developers that are assigned to specific
tasks. In FLOSS, this is not the case, and developers are free to pick and choose the tasks
that hold their interest — or perform no tasks whatsoever if nothing appeals. [42] recom-
mends there be a mechanism to control the number of contributions from different classes
of developers, such as new, old, and core developers. FLOSSSim does not differentiate
between different types of developers. However, FLOSSSim does allow developers to join
and leave projects freely. In addition, developers may choose how little or much of their
resources they will contribute to a project, forming a continuous gradient from fringe to

core developers.

34

Since developers are free to choose the tasks they are interested in working on, their
choice may be made based on two types of factors: factors based on the developer’s profile,
such as the personal interests and aptitude of the developer, and factors based on the project,
such as what tasks are incomplete [42]. In FLOSSSim, developers take into account both
personal and project level information when selecting which projects to contribute to.

The LOC contributed by FLOSS developers varies widely, so a model should draw
from probability distributions for the amount of code contributed by each developer [42].
Instead of LOC, in FLOSSSim developers are endowed with resources that are drawn from
a probability distribution. Developers may then contribute some or all of their resources to
the project(s) of their choice.

FLOSS projects do not include the traditional schedules and deadlines seen in
closed source software engineering. However, the amount of time to complete project
deliverables has a large variance in FLOSS and thus should be drawn from a probability
distribution when modeling open source development [42]. In addition, large tasks should,
on average, take longer to complete than small tasks [42]. FLOSSSim respects both of these
recommendations. The amount of work necessary to complete a project is drawn from a
probability distribution. Developers then work on projects, with their contributions moving
projects closer to completion, resulting in large projects on average taking longer than small
projects to complete.

FLOSS models are likely stochastic simulations. When measuring the performance
of the model, multiple runs should be averaged [42]. This is done when evaluating FLOSS-
Sim, as described in Section 6.2.3.

In the FLOSS engineering process, volunteers develop software often without

strong centralized control [13], [61]; rather, much of the code is developed in a decen-

35

tralized manner by individuals. Furthermore, the participants are heterogeneous, differing
in their interests, needs, skills, etc. The focus on individuals and their behaviors makes
agent-based modeling an excellent choice for this scenario [60]. Logical rules governing
heterogeneous agents’ behavior may be implemented programatically, and the FLOSS soft-
ware produced becomes an emergent property of the collective action of the agents [45].
Following these recommendations, agent-based modeling is used in this research.

There exist many FLOSS projects and the existence of one FLOSS project is not
completely independent of other projects. Together, all projects form a software ecosys-
tem [46], where changes to one project may propagate, in one form or another, to other
projects [62]. For example, many open source projects include other open source software
as subcomponents [46]; consequently, for two linked projects a change in either project
may affect the other project. As another example, there are often multiple projects trying
to provide similar functionality. These projects may be viewed as competing and as such, a
change in one project may affect if individuals choose this or another project instead. For
this reason [46] recommends FLOSS be modeled using multiple projects, accounting for
coevolution/codevelopment links between projects. Although FLOSSSim does not include
explicit project-to-project links, multiple projects are included in the model along with the
dynamics of agents evaluating projects with respect to one another and moving between
projects based on the changing conditions.

Much of the research on FLOSS has focused on very limited groups of projects [42].
Case studies, for example, typically include only one or a few projects. While interest-
ing qualitative results have been obtained from these studies, the conclusions reached are
not necessarily globally true, or even true for most FLOSS projects [42]. For example,

many case studies examine highly successful projects but ignore obsolete or failed projects,

36

bringing into question if the conclusions drawn from these studies can be universally ap-
plied. There is a need to move from project-specific models to more general models based
on quantitative data [42]. Following this recommendation, FLOSSSim avoids using highly
specific data, such as conclusions from case studies, whenever possible. When calibration
data is being collected and analyzed, care is taken to use large sample populations whenever

possible in order to keep the conclusions more general and applicable to a generic model.

2.4 CHOOSING A MODELING TECHNIQUE

The modeling technique chosen is based on the research goals and data availability. Impor-

tant items that influenced the choice include the following:

« Based on empirical evidence and findings of existing research, the model needs to
include heterogeneous attributes of the actors. Agent-based models are able to eas-
ily capture heterogeneity while other modeling techniques, such as those based on

systems of equations, are more appropriate for modeling homogeneous populations.

o While quantitative data exists, much of the available data from FLOSS developer
surveys is qualitative. Therefore, a modeling technique that can easily capture this
qualitative information is preferred. Agent-based modeling provides a natural method
to translate qualitative data into a model since rules, behaviors, etc. can be coded
programatically. Some modeling techniques, such statistical models, are driven by

quantitative data and ill-suited for capturing qualitative data.

« A goal of this research is to simulate phenomena that can be tested on empirical data,
and to explore the consequences of different assumptions on future trends. Agent-

based modeling provides a transparent, white box modeling approach that allows

37

changes to be made and the effects observed. Black box modeling approaches, such
as machine learning, are unable to meet these goals and therefore are not used in this

research.

In the case of FLOSS, there is knowledge about the actions of individual developers
based on surveys and observations, but not about the interdependencies at a global
level. When low-level data is available, bottom-up modeling techniques should be
chosen over top-down techniques. Agent-based models have been shown to be ap-
propriate in situations where there is insufficient knowledge about the interactions at

an aggregate level but there exists information about the low-level interactions [63].

There exist aggregate FLOSS data that can be used to validate the model from the

emergent properties of an agent-based model.

Because of these requirements and data availability, agent-based modeling is se-

lected for this research.

2.5 CONCLUSION

The popularity of FLOSS has recently grown, and while the development process is rather

unconventional, it has managed to produce very high quality software. For this reason

FLOSS warrants further study in order to gain a better understanding of a different method

to develop software. Many researchers have concluded that additional knowledge can be

derived through modeling FLOSS. A limited number of attempts to model different aspects

of FLOSS have already occurred, but modeling, and predicting, FLOSS remains an open

research question. The research presented in this dissertation borrows components from ex-

isting FLOSS models, along with adding new concepts, to create a new FLOSS model that

38

addresses some of the shortcomings of existing models. Agent-based modeling is chosen
as the technique that best fits the research being performed. Best practices and recommen-
dations from literature in regards to modeling FLOSS are included whenever possible when

designing FLOSSSim.

39

CHAPTER 3

QUANTIFYING FLOSS

The focus of this research is to better understand the FLOSS development process, with
a particular interest in gaining insight into why some projects succeed while others fail.
This chapter provides information about FLOSS necessary to reach this goal. Section 3.1
considers what it means for an open source project to be successful, noting that traditional
software success metrics may not apply and thus new definitions of success must be created.
Section 3.2 examines a set of factors that may influence the success of a project. Finally,
Section 3.3 briefly discusses developer motivations, noting that this research aims to better

understand how developers choose which projects to join.

3.1 MEASURING SUCCESS

Being able to predict which FLOSS projects survive and which are abandoned clearly has
utility. In order to proceed, what constitutes success in a FLOSS project must first be
defined.

Inherently, FLOSS engineering is a very different process than traditional software
engineering; it is not simply traditional software engineering poorly implemented [46]. [46]
characterizes FLOSS as “a different, somewhat orthogonal approach to the development of
software systems where much of the development activity is openly visible, development
artifacts are publicly available over the Web, and generally there is no formal project man-
agement regime, budget or schedule.” In fact, much of what is considered best practices

in proprietary software engineering is completely ignored in the open source world (e.g.,

40

providing known-to-be-buggy releases of commercial software is frowned upon as doing
so can substantially drive up maintenance costs while tarnishing a company’s image, yet
FLOSS encourages the release of incomplete, immature software). Therefore, it should
come as no surprise that the set of commercial software success metrics may not be entirely
applicable to FLOSS.

Section 3.1.1 outlines traditional success metrics while Section 3.1.2 introduces

success metrics proposed for the FLOSS domain.

3.1.1 Traditional Software Engineering Success Metrics

The following are metrics frequently used when evaluating the success of commercial soft-

ware projects:

Meets requirements specification [64]: The traditional software engineering process in-
cludes generating documents formally specifying the requirements of the system.
Thus, a system’s level of success can be ascertained by comparing the software func-
tionality to the requirements specifications. FLOSS projects, on the other hand, in-
frequently generate specifications for requirements of the system, at least not in the
sense of traditional specification documents [65]. Part of this may be because the
developers of FLOSS are typically also the users [13], [52], [65], [66]; there is no
incentive, and arguably less or no need, to formally capture the requirements since
those who are writing the code are also the ones who conceive the requirements
based on their own needs. [65] finds that FLOSS projects avoid the formal require-
ments elicitation, analysis, specification, validation, and management processes used
in traditional software engineering, instead developing requirements through “soft-

ware informalisms.” While some of the informalisms may produce documentation

41

(e.g., discussions on mailing lists, howto guides), no single, formal specification is
generated, nor are a set of specifications deposited in a central location, making this

metric difficult to apply to open source projects.

Completed on schedule [64]: Proprietary software has schedules and deadlines that must
be met. To remain competitive in today’s fast-paced world of computers, software
must be delivered on-time to the customer in order for it to be relevant and success-
ful. Shipping a buggy or incomplete product in order to meet a deadline can, and most
likely will, lead to higher costs through maintenance and support, as well as a loss of
customers, who are displeased with the software, leading to a failed project. Interest-
ingly, FLOSS avoids this problem because there are no hard deadlines [46]. Indeed,
the customers are often the developers themselves [13], [52], [65], [66]. While this
provides an incentive for the developers to complete tasks quickly (as [13] points out,
all open source software originates from a developer’s need to scratch his/her per-
sonal itch), it also provides a reason to not produce a release version of the software
until it is functioning correctly. This is because the developer suffers directly from
poor quality software since it is the developer him/herself who is also the user. A
poor quality release may also cost the developer time and energy in providing sup-
port for the buggy software. [13] argues that the lack of deadlines gives open source

a competitive edge when it comes to building quality into the product’.

1 [13] cites two strategies incorporated into FLOSS development to avoid the “deadli-
ness of deadlines” [13] — that is, the low-quality software that results from the requirement
to complete too many features by an unreasonable deadline. One option is to keep the
deadline but relax the feature list. When the deadline occurs, only the features that have
been fully implemented and tested are included in the release version, and no promises are
made about when any particular feature will be included. The second option is to keep the

42

Completed on budget [64]: Although functionality is important, software must also be
developed at a reasonable cost. Projects that are money sinks are not considered
successful. FLOSS does not operate on a traditional budget per se [46] and therefore

this metric does not apply.

Penetrates the market: A software product must be able to attract and retain a user-base.
Therefore, one way to measure the success of a project is via the market share the
product captures. With closed source software, the number of users can be tracked
because the users are required to buy the software and/or licenses. This is not the
case with FLOSS, where users may obtain the software anonymously from multiple
sources, including from other users, in most cases making it impossible to know the

number of people using the software or the percentage of the market captured?.

Turns a profit [69]: In the commercial world, a software product may be considered suc-
cessful if it turns a healthy profit for the owning company [69]. Obviously, this metric
does not apply to open source because 1) expenditures are non-existant since most of

the work and resources are donated by volunteers; few FLOSS projects have an actual

required feature list but relax the deadline. The next release will occur only after all the
features in the list have been implemented and tested.

>There are a few exceptions where the market share for open source projects can be
estimated [67]. One exception is the Apache Web Server. Web servers may be queried to
determine what web server is running. Netcraft (http:/news.netcraft.com), a company that
explores, analyzes, and provides research data about the Internet [68], uses this functionality
to determine the market share held by web servers by querying on the order of 200 million
sites [21] and tallying the results. Other exceptions might include software that “phones
home,” checks for updates, includes a quality/bug feedback component, etc., which by
contacting a central location provides a mechanism to count the number of copies of the
software that are in use.

43

budget; and 2) income from the project is zero because the software is distributed for

free. Without income and expenditures, using profit as a metric makes little sense.

In general, success metrics traditionally used for closed source software do not fit

well when applied to open source projects.

3.1.2 Proposed FLOSS Success Metrics

Since traditional success metrics are not necessarily applicable to open source projects, a
new set of success metrics must be considered. The following describes FLOSS success

metrics that have been proposed and discusses how this data might be collected.

Project completion [70]: If a project manages to include all the desired functionality, it
may be considered a success. In truth, this rarely occurs as most software, especially
in the FLOSS world, is never complete. Even very functional software continues to
exhibit scope creep as new functionality is desired, old bugs are fixed, etc. Further-
more, FLOSS projects rarely have end goals defined to begin with [71], making it
impossible to gauge how close a project is to completion, and the lack of formal
specifications makes FLOSS more susceptible to volatile requirements and scope
creep [71]. Thus, defining success as those projects that are 100% complete will

result in only a minute subset of projects being deemed successful.

Progression through development stages [66]: Since projects are rarely ever complete,
evaluating a project based on its progression through development stages may be a
more valid metric. SourceForge, for example, requires projects to be listed in the
following self-assigned development stages (listed in order of increasing maturity):

planning, pre-alpha, alpha, beta, production/stable, and mature. Success might there-

44

fore be defined as a threshold (e.g., projects that reach the beta stage might be consid-
ered successful) or, more dynamically, as the progression of a project through stages
(e.g., occasional upgrading to a subsequent stage might indicate success while stag-

nation in any early stage might indicate failure of a project).

The metrics used to evaluate the performance of a project might differ depending on
the project’s development stage [71]. Therefore, the definition of success might differ
for a project that is in, say, the alpha stage versus the production/stable stage. In this
case, the development stage would act as an input in selecting the appropriate success

metric, but would not be part of the metric itself.

On SourceForge, a project’s development stage is viewable via the web interface.
Therefore, the information for this metric can be obtained for at least SourceForge

projects.

Developer satisfaction [70]: FLOSS is a product of developers. Therefore, if the creators
of the software are happy with the project then arguably the project is meeting its
goals and consequently can be considered successful. Indeed, interviews with devel-
opers have revealed that developers evaluate the success of projects they are working
on based on their satisfaction with the project [72]. Developer satisfaction can be

measured via surveys [70].

User satisfaction [66]: The level of satisfaction of users may be used as an indicator of
the success of a project [66]. Unfortunately, unlike the developer community, which
is a semi-well-defined group of individuals [70], the user community is poorly de-
fined. While developers typically register with a project in order to participate, users

may obtain software from multiple sources anonymously, making users impossible

45

to track. As a result, user satisfaction cannot be measured with traditional surveys
as it is impossible to locate members of the target audience. Other non-traditional
methods of obtaining this data suffer from substantial drawbacks. One option is to
collect data from sites like freshmeat® and Ohloh*, which allow users to voluntarily
review and rate open source projects. Unfortunately, the data on these sites is pro-
vided by a non-random sample of users. Indeed, most projects receive overall high
ratings with low variance, indicating only those who feel positively about a project
take the time to provide feedback [70]. Messages on mailing lists can also be mined
for users’ opinions of a project, but again this represents a non-random sample and
may be biased (e.g., users are more likely to post a message when they are expe-
riencing a problem and seeking help). A final method for obtaining data on user
satisfaction is to build surveys into the software itself. However, if the surveys are
optional or can be bypassed, again the feedback collected likely will be biased. If the
surveys are mandatory to continue to use the software, users may be interested only
in the speed of completing the survey and not in providing honest feedback. Other
problems associated with having the software itself collect and report usage data is

further described in “Popularity with users” on page 49.

Number of developers [48], [67], [70], [73], [74]: Since FLOSS projects rely on both at-
tracting and retaining developers in order to progress, the number of developers as-

sociated with a project has been proposed as a success metric [48], [67], [70], [73],

3http://freshmeat.net is a website that tracks new releases and updates for software, with
an emphasis on FLOSS. Both SourceForge and freshmeat are owned by Geeknet.

“http://www.ohloh.net is a public directory of both FLOSS projects and developers.

46

[74]. [48] argues that the number of active developers should be increasing, or at
least remain constant, in order for a project to be successful. Similarly, [73] argues
that only after a project goes through a transition where it rapidly gains developers
does it enter a successful phase. Often developers must first register with a forge and
then join a project in order to contribute. Thus, the number of developers working
on a project can be obtained by checking the number of developers registered with
a project. Unfortunately, this number can be misleading as many of the registered
developers may be inactive. For example, a developer may register for a project and
later lose interest but never unregister with the project [48]. Since inactive develop-
ers do not cause a project to progress, obtaining a count of active developers may be
a better measure of success. One option is to process a project’s Software Config-
uration Management (SCM) logs and count the number of unique committers who
have contributed in the recent past [48], [70]. However, this count will only include
developers with code commit privileges, while it is often the case that people with-
out commit permissions also contribute code to a project indirectly [75]. Analyzing
recent activity in mailing lists, forums, bug lists, etc. may provide a more accurate
account of those working on a project, as it will include people who contribute ideas,
bug and feature requests, code snippets, etc. without being formally registered with

the project [48], [70].

Instead of counting all the individuals associated with a project, a variation is to only
count the core developers. As has been shown in multiple studies, the work distribu-

tion on projects is highly skewed, with a small group of core developers producing

47

the bulk of the contributions® [51], [77], [78], [79]. It has also been shown that a
small number of dedicated developers are involved in multiple projects® [77], [80].
Thus, by counting only core developers, only the most influential members are con-
sidered when evaluating the level of success of the project. Keeping this in mind, [48]
creates a new metric called project outdegree, a count of the number of other projects
developers are involved with. Essentially, a larger number of dedicated developers
working on a project will result in a higher project outdegree, as these core develop-
ers are likely also involved in other projects. Project outdegree can be calculated by
obtaining a list of developers registered with each project and then cross referencing

the lists to discover which developers work on multiple projects.

Unfortunately, the number of developers is sensitive to the size of a project — small
projects likely have fewer developers than large projects — which makes it difficult to
compare different size projects using this metric without some form of normalization

or adjustment.

SourceForge includes the list of developers associated with a project on the project’s
homepage. Likewise, SCM logs can be downloaded and processed to discover active

committers. The availability of mailing lists and forums archives, bug reports, etc. for

>One study found that four percent of developers contribute almost 88% and 66% of new

code and code fixes respectively [76]. A different survey found that 10% of the developers
were responsible for writing 72.3% of the code base, and the top 10 developers, a mere
0.08% of those surveyed, accounted for an astounding 19.8% of the code [77].

%One survey found that 25 developers, 0.19% of those surveyed, participated in more

than 25 projects, and 250 developers, 1.9% of those surveyed, were involved in more than
five projects [77]. Using data collected by [77], [80] finds that the 100 most prolific develop-
ers contributed to 1886 FLOSS projects, averaging an astounding 19 projects per developer.

48

further processing will depend on the project (e.g., not all SourceForge projects use
the bug tracking system provided by SourceForge, forum and mailing list archives

may not be public).

Popularity with users: Regardless of all other indicators, if a project is not being used
it is arguably a failure. This is supported by a survey [72] which asked developers
to define success for FLOSS projects. Opinions differed on criteria for determining
if a project was successful, but all developers agreed that a lack of users indicated
the project was a failure. Use of a project may mean direct use by end-users or the

inclusion of the project as a component in other (FLOSS) projects.

Determining the popularity of a project with users is non-trivial. Unlike the devel-
opers of a project, who can be tracked to some degree via the list of programmers
registered with the project or other digital trails, there is no simple or robust method
to accurately determine the number of users (see “Penetrates the market” on page 43
for an explanation of why this is the case). Still, there are several proposed methods

that attempt to capture the popularity of a project with users through proxies.

One possible proxy for the number of users of a project is the number of downloads
[48], [66], [81]. While download counts are available from sites like SourceForge,
these values under-represent the actual number of downloads, since users may choose
to check out the code via anonymous reads from the project’s code repository rather
than downloading a stable release. Anonymous reads are tracked separately from
download counts of stable release versions. In addition, open source licenses allow

the software to be redistributed, so there may be additional sources beyond a project’s

49

homepage from which the software can be obtained’. Furthermore, downloads may
not accurately represent the number of people using the software: some individuals
may download the software but choose not to use it%; other software is frequently

used but rarely downloaded® [70], [82].

Another proposed metric is the amount of traffic on a project’s website [64]; unfortu-

nately, project traffic suffers from some of the same problems as download counts.

Frequency of use [66] or number of uses [69] is another proposed metric that has spe-
cific advantages. Namely, there is a difference between a project that is downloaded
and used once versus a program that is downloaded and then used regularly. The
former may indicate a failed project (e.g., the user tried the program, found it unac-

ceptable, and then deleted it) while the latter may indicate success'?. Unfortunately,

7In some cases a project may keep a web page on a popular forge simply as a placeholder
that links to an official homepage hosted elsewhere. Since the software is downloaded from
the non-forge site, the forge’s count will incorrect. See 4.2.2.3 for more details.

8 A variation that helps address this issue is to instead consider the ratio of downloads to
page views [47]. Instead of measuring the number of people using the software, this ratio
represents the number of people who, after visiting the project’s homepage, believed the
software to have enough utility to warrant downloading, and thus is a method of measuring
the software’s perceived usefulness.

vim, an enhanced clone of the popular vi text editor, is an example of this. Although

vim is available on essentially any UNIX installation, the software is almost always pack-
aged with the operating system distribution and thus not downloaded as an individual
project. Furthermore, vim is stable software so it is unlikely a system administrator would
ever choose to upgrade the software independently of an incidental upgrade that would
occur during a system upgrade.

1However, this may not always be true and depends on the purpose of the software. For
example, software that uploads new firmware by its very nature is run infrequently; indeed,
running the software once and then deleting it may be the normal use case.

50

this metric is also difficult to obtain. In theory, the number of times a program is
executed could be recorded by the program itself and this data could occasionally be
reported to a central repository. However, this requires the source code of each project
to be modified and is likely to be frowned upon by many open source users due to this
technique’s resemblance to spyware'!. Some open source software already asks the
user for permission to gather and send information back to the project’s developers
(e.g., a crash handler in OpenOffice collects data to help the developers debug the
scenario leading to the failure; the Debian Popularity Contest is a package Debian
users can install that reports packages installed and dates that components are used,

with the project aggregating this data and making it available to the public [83]).

Considering that FLOSS is an online activity, the presence of a project on the Internet
may be a method to judge the project’s popularity. Based on this, [69] proposes
using web search engines to determine the success of a project. Comparing this to
published research papers, where publications that are cited frequently are considered
influential, [69] argues the same for links to projects on the web. Namely, the projects
that are frequently linked to on the web are important and therefore successful. [69]
finds that the number of pages with backlinks to a project’s homepage corresponds
reasonably with the success of the project. Since some web search engines already
index backlinks, as well as allow querying for backlinks, the infrastructure to use this

metric already exists.

1 Avoiding spyware/malware is an incentive for using FLOSS. Since the source code is
available for review, the chances of malicious code being slipped into the software unno-
ticed by the open source community is reduced. Furthermore, if malicious code is discov-
ered it can be eliminated by anyone, since the source code itself is available.

51

Unfortunately, the popularity of a project is sensitive to the type of project, making
it difficult to compare the level of success of dissimilar projects. More generalized
projects (e.g., a word processor) will inherently have a larger potential audience than
highly specialized projects (e.g., an Esperanto spell checker). For this reason, mar-
ket penetration may be a better metric (see ‘“Penetrates the market” on page 43 for

problems associated with using market penetration with FLOSS).

Number of subscribers [67]: Some projects publish announcements and information
about new releases. Counting the number of people subscribed to announcement
mailing lists, RSS feeds, etc., might be used as an indicator of success since the
number of subscribers is an indicator of the public’s interest in the project [67]. The
number of subscribers is expected to be smaller than the number of users since many
users will be content to occasionally check the status of a project rather than re-
ceive frequent announcements from the project. However, the group of subscribers
might include non-users who are interested in learning more about the project but
have not yet chosen to use the software. Even including the non-users, the number
of subscribers may better represent the group of “core” individuals interested in the
project — individuals that may be anxiously awaiting a bug fix, a feature enhance-
ment, etc., and therefore might be seen as dedicated to the project. Not all projects
post announcements or provide a way for interested individuals to subscribe. Fur-
thermore, the frequency of postings will vary from project-to-project and may have
an influence on those who subscribe (e.g., too many postings may drive away poten-
tial subscribers). Finally, like the popularity of a project with users, the number of
subscribers is also sensitive to the size of the project’s target audience. Therefore, it

may be difficult to compare projects using this metric.

52

Activity level [43], [48], [64], [66], [69], [70], [74]: Possibly more important than the
number of developers working on a project is the amount of work that is actually
occurring. For this reason, the level of activity on a project may be an indicator of
success [43], [48], [64], [66], [69], [70], [74]. Activity may include code commits,
changes in lines of code, opened and closed bug reports, opened and closed feature
requests, mailing list and forum posts, official releases, etc. It might be argued that
even if minimal code is being written, a community that is active in supporting users
of the software signifies a successful project. The activity of a project can be deter-

mined by processing logs, e.g., SCM or bug report logs.

An example of a hybrid activity ranking is available from SourceForge. For each
project on the site an activity index is calculated based on a project’s commits, bug
reports and feature request, time since the last file release, time since a project ad-
ministrator logged in, etc. [84]. A list of all hosted projects, ordered by decreasing
activity value, is provided presumably to help those browsing for software to select
active and vibrant projects. freshmeat provides a similar metric called a vitality score,
which is based on the number of project announcements, date the project was created,

and date since the last version was released [85].

Turnaround time to fix bugs [48], [64], [70] and implement features [70]: The amount
of time it takes to fix bugs and/or implement new features may be indicative of the
health of a FLOSS project. Furthermore, the turnaround time to fix bugs and im-
plement new features has high variance among projects, indicating this metric may
be a good choice to differentiate among projects [70]. [48] argues that successful

projects fix bugs quickly. This measure can be further enhanced by taking into ac-

53

count the severity of the bugs'? and importance of the features requested'?. Instead of
using turnaround time, another option is to measure the proportion of bugs/features
that have been fixed/implemented [70], again possibly taking into account the sever-
ity/importance of the bugs/features. Most projects use software to track bug status

and feature requests so these data may be available.

Release frequency [48], [64], [66], [67], [70], [72], [74]: [13] provides the guideline to
“release early, release often” in order to foster success in open source software de-
velopment, providing examples where this school of thought has created thriving
projects. Failure to produce a release version of software most likely is a sign of a
failed project. Extending this notion, failure to produce a new version within a cer-

tain timeframe may also indicate the project is defunct'*

. Unfortunately, defining a
reasonable timeframe may be difficult, and some rapidly progressing projects rarely,
if ever, produce release versions, preferring instead to keep the development version
stable and available for download (e.g., stable nightly builds). Release frequency can

be considered a coarse-grained activity measure. File release lists can be obtained for

projects hosted by SourceForge.

12Bugs are often assigned a priority based on their severity. Ideally, critical bugs are
assigned high priorities and fixed quickly.

13Some projects allow the users to vote on the importance of new features as well as the
urgency of fixing bugs [70].

1%n a study it was found that projects that have not created a release within the last year
are typically abandoned [72].

54

Ports [70]: If a project receives many requests to port the software to other systems, it may
be an indicator of success. By requesting ports, users are acknowledging the utility
of the software over anything currently available on other systems. SourceForge lists
metadata on projects, including what systems the software will run on. As a metric,
porting does not make sense to certain types of projects, e.g., projects written in JAVA

are inherently platform independent and therefore cannot be ported.

User involvement [70]: Part of the efficiency and quality of FLOSS comes from users’
involvement in the development process. For example, users test the software and
provide valuable feedback in the form of bug reports and feature requests. Without
users providing this information, FLOSS development becomes just a group of de-
velopers creating software and loses some of the key advantages it has over closed
source development. Therefore, the number of users actively engaged in the software
improvement process may help measure the success of a project. User involvement
may be partially calculated by comparing multiple logs (e.g., people who have filed
bug reports but are not included in the SCM logs likely are users and not developers
for the project). This metric is sensitive to the type of project, making it difficult to

compare projects with different target audiences.

Project recognition [70]: In a survey [70], developers mentioned public recognition as a
measure of a project’s success. This may include links to the project on the web or
possibly connections to and/or influence of the project on other projects, including
both commercial and FLOSS software. In some cases it may be possible to measure
recognition, e.g., links to a project may be discovered with the help of search engines,

as outlined in “Popularity with users” on page 49.

55

Note that many of the success metrics listed are sensitive to project size. For ex-
ample, large projects will more often than not have more developers, more activity, etc.,
than small projects. Therefore, it may be necessary to perform some form of normalization
when comparing dissimilar projects.

To effectively measure the success of FLOSS, it may be beneficial to use multiple
metrics in order to provide a more well-rounded measurement [70]. While many of the
proposed metrics have been used in research, there is no agreed upon subset that acts as
a standard for measuring open source success [70], [75]. For example, [66] considered
projects that were used more frequently, in advanced development stages, and had more
activity to be successful while [48] took into account project activity, release frequency,
and the links between a project and other open source projects.

Section 7.1.4.1 describes using FLOSSSim to explore the effects of using different

success metrics.

3.2 FACTORS INFLUENCING FLOSS PROJECT SUCCESS

What factors exist that influence the success of FLOSS projects? Do certain practices
improve the chances of a project being successful? Fortunately, much research has been
conducted to explore questions about the correlation between certain antecedents and a
project’s success. This section enumerates factors and summarizes the findings of the re-

search. The goal is to identify influential factors and incorporate them into the model.

3.2.1 Types of Factors

Factors affecting FLOSS projects include both technical and social factors.

56

3.2.1.1 Technical Factors

Technical factors are aspects that relate directly to a project and its development and are
typically both objective and easy to measure. Examples of technical factors include lines of
code, number of developers, and other project attributes.

The online nature of open source development means that technical factors are often
automatically collected by the software tools used in the development process. Sites that
provide tools for FLOSS development may make these data available to the public, and thus
readily available to researchers. SourceForge, for example, makes much of the project data
it tracks available via a web interface. A sample, non-exhaustive list of technical factors
that can be obtained from SourceForge is shown in Table 3.1. For additional information

on technical factor data sources and data extraction techniques, please see Chapter 4.

3.2.1.2 Social Factors

Social factors pertain to aspects that personally motivate or discourage individuals from
engaging in open source development/use. Examples of social factors include reputation
from working on a project, matching interests between a project and the developer/user,
popularity of a project with other developers/users, and perceived importance of the code
being written (e.g., core versus fringe development [45]). Most social factors are subjective
and rather difficult, if not impossible, to measure. Despite this, it is hard to deny that these
might influence the success/failure of a project and therefore social factors are considered in
the model. Fortunately, the social factors being considered fall under the domain of public
goods, for which there is already a large body of work published (e.g., [86], [87], [88], [89],

[90]).

57

TABLE 3.1

Non-exhaustive sample of technical factors available from SourceForge on a per project

basis.

Factor

Description

Page views

The number of project pages that have been served.

Hits to project logo

Number of times a project’s logo has been served. Note that this
is different than page views; a project hosted elsewhere will not
affect SourceForge’s page view count but may affect the project
logo hit count if the offsite web pages link to the
SourceForge-hosted project logo.

Downloads

The number of times each release file has been downloaded
from SourceForge.

Bytes served

The amount of data served on behalf of a project.

Rank Project list ordered by amount of activity, number of downloads,
number of page views, number of project logo hits, number of
forum posts, or amount of tracker activity.

Bugs List and status of opened and closed bug reports.

Feature requests List and status of opened and closed feature requests.

Support requests List and status of support requests.

Patches List of patches.

Forum posts Messages posted to any project forums.

SCM activity CVS, SVN, etc. commits, anonymous reads, etc.

Developers List of developers registered with the project.

Administrators List of developers registered as administrators for the project.

Registration date

Date the project was registered with SourceForge.

License

Open source license used by the project.

Intended audience

Target users for the software, e.g., advanced end-users, system
administrators, etc.

Release date

Date of the most recent release version of the software.

Topic

Type or category of software such as games, browsers,
networking, etc.

Operating system

The operating system(s) on which the software will run.

Translations Languages available.
Development The maturity stage of the software, selected from: planning,
status pre-alpha, alpha, beta, production/stable, mature, and inactive.

User interface

User interface, e.g., Win32, Plugins, Java Swing, X Window
System, Command line, etc.

Programming
language

Programming language(s) used by the project.

58

RIVALROUS

Private goods Common
goods

EXCLUDABLE NON-EXCLUDABLE

Club goods Public goods

NON-RIVALROUS
D The Commons

Fig. 3.1. Types of goods based on rivalry and excludability. FLOSS is considered a public
good because it is non-rivalrous and non-excludable.

3.2.1.2.1 FLOSS as a Public Good: In economics, goods are divided
into four categories based on whether the goods are rivalrous and excludable. Rivalry means
that the good can be used up or consumed; the use of a rivalrous good by one individual
leaves less of the good remaining for others. Excludablity refers to whether others can be
stopped from using the good. Figure 3.1 illustrates the four types of goods by plotting
rivalry and excludability on separate axes.

Private goods are rivalrous and excludable. Most items that can be bought at a store
are in this category. For example, food is rivalrous in that an individual buying food leaves
less food for others to buy. Food is also excludable in that by eating it, others are unable to
also consume it.

Club goods, also called toll goods, are non-rivalrous and excludable. Examples of

club goods include movie theaters and zoos. Only those who pay or are members of a club

59

may use the good. However, one person enjoying the good does not leave less for others to
enjoy.

Common goods, also called common-pool resources, are rivalrous and non-
excludable. Common examples are natural resources, such as clean fresh water or fish
in the ocean. No one can be excluded from catching fish, but each fish caught is one fewer
for others to catch.

Finally, public goods are both non-rivalrous and non-excludable. Examples include
non-encrypted broadcast radio signals and light from a streetlight. Everyone is able to freely
enjoy these goods and one person’s use does not reduce the quantity of good for others.

FLOSS is a public good [12], [52], [91], [92], [93] and may be considered part of
a new class sometimes referred to as digital public goods15 [91], [94]. It is non-excludable

in the sense that the source code is typically available to anyone for free!® 17

, often posted
on a website for uncontrolled download. The fact that software is a digital, reproducible

good makes it non-rivalrous; a person, for example, downloading and using a program

does not affect another person’s ability to download and use the same software. Arguably

15 Another example of a digital public good is Wikipedia (http://www.wikipedia.org),
where the product is encyclopedia articles instead of software.

16Technically, the Open Source Initiative’s definition of open source allows distributors
to charge a nominal distribution fee for the source code, thus making it excludable. In
reality, this is almost never done. In addition, most open source licenses permit the code
to be redistributed for free, so even if one party chooses to sell the code, another party in
possesion of the same code may choose to redistribute it for no cost.

""In order to meet the Open Source Initiative’s definition of open source, a project’s
license must not discriminate against anyone or any group, nor limit what field the software
may be used in. Essentially, this guarantees that no one is excluded from obtaining and
using open source software.

60

FLOSS is not a pure public good because the licenses typically require credit be given to
the developers (e.g., a developer’s name appears by the code he/she contributed and, as per
the license, the attribution may not be removed), whereas no part of a public good is owned
by an individual. Furthermore, some open source licenses permit the code to be privatized,
even allowing the code to be absorbed into commercial, closed source software products'8.
In this sense, FLOSS may be seen as sharing features with common-pool resources [95];
that is the public code may be moved into the private domain, which threatens the future
availability of the source [95] for others to use and/or further develop'®.
3.2.1.2.2 The Tragedy of the Commons: Goods that are non-excludable
are sometimes referred to as the Commons, as shown in Figure 3.1. These goods are col-
lectively owned and anyone from the collective is therefore free to use them. This results in
two potential problems. First, in the case of public goods, a characteristic emerges known
as the collective action problem [96]. Essentially, the concern is that individuals are rational
beings that are interested in maximizing their own utility. If an individual can have a good
for free, there is no incentive for that individual to contribute to or maintain that good. If
all individuals behave this way, there is the danger that the good is never created in the first
place and thus no one benefits. Individuals that use goods without contributing are known
as free-riders.
The second problem is known as the Tragedy of the Commons [97] and is tradition-

ally applied to common-pool resources. Since the use of common goods is subtractive, a

18See Section 3.2.2.1 for a description of different types of open source licensing.

YA form of licensing known as a copyleft is employed by many FLOSS projects to stop
this from occurring. See Section 3.2.2.1 for a description of copylefts.

61

problem occurs when too many people use a good. The classic example is a common parcel
of land on which cattle may feed. It is to each individual’s benefit to continue adding cows
to the land even if this exceeds what the land can support. The risk is that if too many cows
are added, the grass will be exhausted and the field will no longer be able to support any
cows. The problem occurs because the benefit to the individual — gaining another cow — is
large while the damage to the resource is spread across all users of the field. The Tragedy
of the Commons occurs with many natural resources.

Although the Tragedy of the Commons originally applied to rivalrous goods, [72]
extends the definition to FLOSS, arguing tragedy in FLOSS is “when collective action
ceases before a software product is produced or reaches its full potential.” The logic is
that abandonment amounts to the same result as overuse — partially developed software that
did not reach a level of useful functionality is no longer useful to the users, just like an
overgrazed field is not useful to ranchers raising cattle. Arguably the tragedy is bigger in
FLOSS in the sense that an overgrazed field likely produces some cattle for each rancher
before being completely exhausted while a FLOSS project that is abandoned before useful
functionality is reached provides no utility to users.

Although there has been much research on the Commons and public goods, most of
this work is not specific to FLOSS; for example, some of the research explores why people
volunteer to contribute to public goods and what contextual factors increase these contribu-
tions. The findings of this literature are applied when designing the model, as are findings
from publications investigating how FLOSS works, extensive surveys of developers ask-
ing why they participate in FLOSS (e.g., [1], [98]), and comments and opinions of FLOSS

users (e.g., [38]).

62

3.2.2 Existing Research on Factors

To better understand what affects the performance of FLOSS development, physical at-
tributes (e.g., programming language, software architecture design, content management
system), community attributes (e.g., degree of user involvement, leadership characteris-
tics, social capital), and institutional design (e.g., norms, formal rules, governing structure)
should be considered [99]. A number of studies have already considered various factors
and their impact on the success of open source projects. These studies can be further subdi-
vided into two subcategories: those that look at factors that directly affect a project’s success
(e.g., [64], [81], [100]) and those that look at factors that attract developers to a project, thus
indirectly affecting the success of a project (e.g., [13], [15], [52], [101]). For the purpose of
this research, both categories of factors are considered. These potential factors, along with

the findings of the studies, are presented in the following subsections.

3.2.2.1 Licensing

Licensing is at the crux of FLOSS; the license is, in fact, what makes software open source.
However, there are a large number of licenses, with the Open Source Initiative certifying
69 licenses as Open Source Definition compliant®® [4]. Do the differences in the licenses
affect the success of a project, for example by changing the attractiveness of the project to
developers/users, or are all open source licenses essentially the same?

A particular type of open source license is also known as a copyleft. Whereas tra-
ditional copyrights protect the rights of the person who created the software by prohibiting

others from copying, modifying, or redistributing a product, copylefts use copyright law

20As of July 2011. This number does not include those licenses which have been su-
perceded or retired but also meet the Open Source Definition.

63

to extend these same rights to the general public. Copylefts further require that all derived
works be released under an equivalent license — often the exact same license — thus ensuring
that any code derived from copylefted software will remain open to the public. Also known
as a reciprocal license due to this requirement, this has resulted in copylefts earning the
nickname of viral licenses since the license spreads like a virus to all derivatives of copyleft
protected software. The GNU General Public License (GPL), the most popular open source

21 'is the most well-known example of a viral license.

license

At the other end of the spectrum from copylefts are permissive free software li-
censes. Unlike copylefts, which prohibit any additional licensing restrictions from being
added when releasing modified software, permissive licenses may allow the addition of
more restrictive terms than that of the original license when software is re-released. For ex-
ample, BSD-style licenses are a popular example of permissive licenses that allow the code
to be used in essentially any manner, even to be closed and used in proprietary software
released under a non-open source license; the only stipulation is that the programmers of
the open source code be acknowledged.

Numerous other open source licenses exist somewhere between the reciprocal li-
censes and the permissive licenses. Licenses on the former end of the spectrum are some-

times (somewhat confusingly) referred to as restrictive licenses, because they include terms

(i.e., restrictions) that require the software stay open source. Software on the latter end of

210n Sept. 12, 2010, http://sourceforge.net/softwaremap/?&fq[] lists almost 43% of the
hosted projects as using the GPL and just over 7% using the related and very similar Lesser
General Public License (LGPL). The next most popular license is the BSD License, which
is used by only 5% of the projects on SourceForge. Other studies have put the percent of
projects using the GPL as high as 72% [64], [101].

64

the spectrum are sometimes called unrestrictive or nonrestrictive licenses, since the terms
allow the software to be used in any manner, provided credit is given to the authors.

Viral licensing allows software written under other licenses to be absorbed by a
viral license — the caveat being that the original project cannot benefit from modifica-
tions/improvements that occur because of the requirement that the changed version adopt
the viral license. This occurs, for example, when combining code from two different
projects, where one employs a viral license and the other does not. The resulting soft-
ware must be released under the viral license in order to satisfy the viral license’s terms.
This is a point of contention with open source developers, as this practice seems to violate
the spirit of open source, namely by not allowing improvements to be contributed directly
back to the original project so others can benefit from them as well. Modifications may still
be returned to the open source community, but they will now fall under the viral license.

It is extremely common for FLOSS projects to include other FLOSS projects as
dependencies. For example, an open source web browser may rely on an open source
library to handle decompressing JPEG’s. Two licenses are said to be compatible if code
under each license can be mixed and/or combined to create new software. Essentially, this
means that none of the terms and conditions of the two licenses conflict with one another.

Since the GPL is so popular, of particular interest is if other licenses are GPL com-
patible. If a project fails to use a GPL compatible license, it may be at a serious disadvantage
because this significantly reduces the number of other open source projects that it is possible
to collaborate with. Interestingly, other licenses may be compatible with the GPL, but once
combined with code that uses the GPL, due to the viral nature of the license, that code must
always be released under the GPL. When mixing code with different compatible licenses,

the fact that the GPL “takes over” any other license has upset some open source developers.

65

Arguments abound about which is the more free, less restrictive license. The Free Software
Foundation, which created and maintains the GPL, argues that the GPL is less restrictive
because it forces the software to remain public and open. Meanwhile, those in favor of per-
missive licenses point out that when combining with the GPL, software using permissive
licenses loses freedoms, such as the ability to be modified and released as closed source.
Thus, the argument is that the GPL takes away some of the freedoms originally afforded to
the software and therefore it is actually more restrictive. For this reason some open source
licenses have added specific terms aimed at disallowing the code to be released under the
GPL, thus protecting a different notion of “free”.

The importance of licenses and license compatibility can be seen when creating a
large project from smaller projects. Through its choice of licenses, a project immediately
affects what other projects might be interested in using it and restricts what other projects
are available for it to use. Developers looking to add functionality to their project may
be forced to select a less desirable project — or worse yet, write the code themselves from
scratch — if the best project’s license is incompatible with their own project. This may
result in duplicated efforts by developers working on different projects — effort that could
have been spent on improving quality or adding other functionality. For this reason, it is
advantageous to adopt a popular license, or at least a license that is compatible with other
popular licenses, if any form of collaboration is going to occur.

It can be seen that licensing in the open source domain is a huge, complex, and
important topic. There are efforts to reduce the number of licenses and avoid the creation
of new ones unless absolutely necessary in order to simplify the complications associated
with interactions between licenses and even different versions of the same license [102],

[103]. Full coverage of issues regarding license compatibility is beyond the scope of this

66

document. An overview has been provided to demonstrate that license choice may indeed
have an impact on a FLOSS project.

Reputation is often cited as a reason developers contribute to software??. That is,
developers may be interested in contributing where their work will bring them the largest
reputation boost, and licensing may be seen as affecting the potential gain. For example,
licenses that allow code to be absorbed into commercial products may be viewed as un-
desirable since the commercial product may be in direct competition with the open source
version, resulting in a reduced audience to notice the contributions of the developers [64].
By requiring that source code stays open, restrictive licenses help ensure that even small
contributions have at least the potential for long-term benefits [104]. Perhaps the worst-
case scenario would be open source software that was developed under a permissive license,
only to be privatized, improved, and released as commercial software. In this case, the very
same developers who created the original open version may end up buying the commer-
cial version, yet they will not have the ability to modify the software to meet their specific
needs [64]. Other motivations for contributing to open source also seem to favor a copyleft
license. For example, developers who are looking to improve their programming skills*3
need the code to remain open in order to obtain feedback and learn from other expert pro-

grammers. Likewise, a programmer looking to increase his/her desirability to a potential

22 Although reputation is frequently cited as a reason developers contribute to open
source, actually only 9.1% of developers in a survey cited reputation as a reason for joining
the open source community [1].

2378.9% of developers indicate learning and developing new skills is a reason to join the
open source community [1].

67

employer’* may want to show his/her code as being included in a stable release, which
again requires the code remain in the open source domain.

Keeping in mind that the popularity of a project may be linked to a project’s level
of success, [64] considers the effects licensing has on the number of users. It is shown that
projects using nonrestrictive licenses accumulate more subscribers to project announcement
lists than projects using restrictive licenses [64]. This seems to indicate that users find more
utility in projects with flexible licenses.

Licenses likely play a part in the motivation of developers [15]. Unlike users, open
source developers may have an inherent interest in keeping the code they write in the open
source domain. If developers are more attracted to projects which ensure this through the
employment of restrictive licenses, one would expect these projects to have more develop-
ment activity. However, it has been found that the effect of license type (i.e., restrictive
versus nonrestrictive) on the number of software releases is statistically insignificant [64].
Likewise, [105] analyzed FLOSS projects in the healthcare industry but found that license
restrictiveness did not affect the probability of projects being classified as successful®.
Another study found that the average output per contributor is significantly higher for
projects with nonrestrictive licenses [104]. Further investigation into this finding showed
that projects with restrictive licenses tend to have larger numbers of developers, many of

whom contribute little and thus drag down the average [104]. The larger number of devel-

2423.9% of developers indicate improving their job opportunities is a reason to join the
open source community [1].

ZIn this case, success was based on project activity, project downloads, SourceForge
rank, and number of participants [105].

68

opers associated with restrictive license projects may indicate an ideological motivation of
open source developers [104].

[106] considers the effect licensing schemes have on the efficiency of a project?®.
While this is not a direct measure of success, arguably the efficiency of a project does
impact if a project will succeed; terribly inefficient projects, for example, will likely burn
out before producing useful software. [106] finds there is no significant difference in project
efficiency across different licenses.

Different types of FLOSS may favor different licenses. For example, projects aimed
at end-users tend to favor more restrictive licenses while projects targeted towards devel-
opers generally have less restrictive licenses [101]. This analysis can be made even more
specific than these two broad categories. For example, software written for commercial op-
erating systems with a primary language of English tends to use unrestrictive licenses while
games and software developed in a corporate setting tend to favor restrictive licenses [101].
Thus, it may be more complicated than certain licenses increasing the chance of software

being successful; the license that will most improve the chances of success may depend on

the specific type of software being written.

3.2.2.2 Organization Sponsorship
Organizations sometime choose to be involved in FLOSS projects. This is done for a va-
riety of reasons. In some cases, a company may find an open source project almost meets

their needs and choose to get involved in order to enhance the software with the additional

26 [106] uses Data Envelopment Analysis (DEA) to evaluate the efficiency of transform-
ing inputs into outputs in the context of FLOSS development. For the analysis, the number
of developers and their effort are the inputs; the size (in bytes) of the code, LOC added and
deleted, number of files, number of check-ins, and the development status are the outputs.

69

functionality the firm requires. Financially, this may make more sense than purchasing
a commercial product or developing a custom solution. For example, IBM spends $100
million per year to pay a set of employees to work on the Linux operating system [34],
estimating that it saves $900 million per year over developing its own in-house operating
system to meet the company’s needs [34].

Organizations may choose to be involved with FLOSS to capitalize on positive as-
pects of open source, such as innovation and speed of development [107], [108]. For exam-
ple, the company formerly known as Sun Microsystems (now absorbed by Oracle) main-
tains two versions of their office suite: OpenOffice is a FLOSS version while StarOffice is
a commercial version. Sun pays developers to work on the open source version, benefiting
from the contributions of the community as well. Sun then uses the code from OpenOffice
as the base for releases of StarOffice.

Organizations may also become involved with FLOSS in order to widen their user-
base. A hardware company, for example, may be interested in having their products sup-
ported by open source software. By doing so, a whole section of the market becomes
available that otherwise might not be. A hardware manufacturer may even be able to corner
the market if their product is the only option that has decent support in the open source
community, and one way to increase the probability of this occurring is to work with the
FLOSS community, possibly providing hardware specifications or even donating code to
certain projects. IBM employs this strategy by making sure Linux runs on all of the servers
they sell [34], [35]. Companies may also donate resources to a project in order to gain
respect and build goodwill with the FLOSS community [35], [107]. Essentially, a firm’s in-
volvement in FLOSS may be an opportunity to advertise and build public relations, with the

hopes that open source community members will think favorably of the company the next

70

time they are in the market for certain products. Even a minimal investment may have sig-
nificant payback; as pointed out by an employee of a company involved in FLOSS, “When
a company sponsors an open source project they need to realize that people are going to
perceive [that the company is]. .. far more involved in [the project] than it might actually
be,” [109].

Companies may sell products or services that are complimentary to FLOSS [107],
[108]. For example, a firm might sell training or support for a certain FLOSS project; it is
therefore in the company’s best interest to make sure the project remains active and relevant,
possibly by paying developers to work on the project.

Sometimes companies choose to sponsor open source projects in an attempt to chal-
lenge a dominating standard [108]. For example, businesses may sponsor Linux in an at-
tempt to unseat Microsoft’s dominance of the operating systems market?’ [108]. In doing
s0, companies are able to create a competitive project at a relatively low cost [108]. Further-
more, if the sponsored project employs a restrictive license, there is no concern that it will
be privatized in the future and turn back into the same situation which was originally being
addressed [108]. Similarly, companies may choose to sponsor projects that create/support
open standards [107], especially if a company has products that also support the standard
and there are threats of other firms creating incompatible, proprietary, or competing stan-
dards [107].

Occasionally a firm may attempt to sabotage a FLOSS project which is perceived

as a threat. In some cases a company’s association with a project alone may be enough

27 A prime example of this is IBM, which jumped to support Linux after its own operating
system, OS/2, failed [34].

71

to derail the project [67], [93]. In other cases, the firm may endeavor to gain control or
influence over the project in order to encourage decisions that are advantageous to the firm
but contrary to the best interests of the project and/or FLOSS community. A legal example
of sabotage occurred when, starting in 2003, SCO filed a series of lawsuits against various
entities, claiming it owned the copyright on code used in UNIX and that the same code,
which appeared in Linux, was illegal. SCO claimed that anyone using Linux was therefore
in violation of copyright law. It was revealed that Microsoft, whose dominance of the
operating systems market with Windows was (and still is) being eroded by Linux, was
instrumental in both encouraging and funding the SCO lawsuits [110]. The strategy to
eliminate Linux backfired; the lawsuits further fueled the open source community’s hate for
Microsoft, and although not all lawsuits are yet resolved, in general the rulings have been
against SCO?8,

The influence of a firm’s involvement on the success of a project has the potential to
be negative or positive. One of the main principles of the Free Software Foundation is that
all software should be free, as in liberated (i.e., free to use and modify for any purpose) [6].
Indeed, 37.9% of respondents in a developer survey indicated the belief that “software
should not be a proprietary good” was a reason to stay in the FLOSS community [1]. In the
same survey, 28.9% of the developers indicated they continue to work on FLOSS “to limit
the power of large software companies” [1]. In some cases, being anti-Microsoft serves
as motivation to participate in FLOSS [15]. Thus a company’s involvement may actually

taint a project and serve as a disincentive for developers to be involved, especially for those

28In SCO vs. Novell, the court ruled that Novell, not SCO, owned the copyrights to
UNIX [111]. Novell has indicated they have no interest in suing over UNIX [112] and do
not believe Linux violates the copyrights they own [112].

72

who view for-profit organizations as counter to the open source culture and ideals [67],
[93]. In the most extreme cases, companies may jockey to put their own employees in
the key positions of a FLOSS project, gaining control or even hijacking a project [113].
Inherently, there may be conflicts of interest and goals between a business, which is seeking
to maximize its own profit, versus the FLOSS community, which has other widespread
motivations for creating software [113]. If a company is successful in gaining control,
developers from the FLOSS community may abandon the project [114].

On the other hand, if an organization does not taint or try to control an open source
project, sponsorship may have a positive effect. An organization that pays developers to
work on a project or donates other resources may increase the vitality of the project [67].
Sponsorship may provide benefits to the project that otherwise wouldn’t be possible. For
example, IBM’s involvement with Linux ensures that Linux is compatible with all IBM
hardware. Linux is also frequently run on servers. With IBM’s involvement, the Linux
developer community is able to be proactive and ensure that there will be no problems with
new IBM servers [34], rather than being reactive and fixing the problem after the servers
are installed and in use by the general public.

Studies on the effects of organization sponsorship vary. [115] finds that projects
with firm sponsorship tend to be in more advanced development stages and more frequently
reach the production/stable stage. Projects with company involvement also tend to be larger
and more active [115]. [67] finds that sponsored projects increase in popularity significantly
more than unsponsored projects. However, [105] finds project sponsorship is not useful in

predicting software success.

73

3.2.2.3 Target Audience

Target audience inherently is tied to the type of project. For example, office applications
appeal to a different segment of the population than network utilities. At a coarse level,
target audience can be split into two categories: developers and end-users. The majority of
the research done on target audience has used these two categories.

Most software is born from a developer scratching his/her own personal itch [13].
A developer may therefore be motivated to join projects that are interesting and can help
solve the developer’s own problems [52], [93]. Consequently, projects targeted at develop-
ers appear to have an advantage simply because the people who have a problem are also
the ones with the skills to write the software solution. Furthermore, projects that address
common problems may also be at an advantage; the more common the problem, the larger
the segment of the population that will develop the same itch and attempt to scratch it. Thus
software addressing frequently occurring needs may have a larger body of developers inter-
esting in writing the software solutions than software aimed at highly specific or unusual
tasks.

Projects targeted at developers also appear to have an advantage when considering
the user base. With the occasional exception, open source is not known for being user
friendly; FLOSS projects often lack proper or up-to-date documentation [65], [116] and
may require a high level of computer skills to install and use [116]. End-users may not
possess these skills, while many developers will. Thus, projects aimed at developers might
be more popular, albeit with skilled users, which may influence the success of the project.

In general, there are more projects aimed at developers than any other category of
target audience [117]. The class of projects aimed at developers is also the most rapidly

growing category of open source projects [117].

74

One study found that FLOSS projects on topics of interest to developers and system
administrators were more successful than projects on topics of interest to end-users [66].
Interestingly, the same study also found there were more projects on topics of interest to
developers and system administrators than to end-users [66]. In addition, developer-focused
projects have been shown to increase in popularity more than end-user projects [67].

On the other hand, projects that listed developers as the intended audience were no
more successful than projects that listed end-users as the target audience [66]. It has also
been shown that the vitality of a project is not affected by the project’s target audience [67].
Finally, the efficiency of a project, where inefficient projects may be less likely to succeed,

is not affected by the intended audience [106].

3.2.2.4 Governance and Coordination

[13] famously characterizes traditional software engineering as resembling a cathedral and
FLOSS development techniques as mimicking a great babbling bazaar. Amazingly, out
of the chaos of differing ideas, agendas, and approaches materializes stable, useable, and
sometimes high quality open source software [13]. The fact that FLOSS development vio-
lates many of traditional software engineering’s best practices, including the organizational
structure, makes open source of great interest to those intent on improving traditional soft-
ware development processes.

Contrary to the initial appearance of FLOSS development being total chaos, there
does exist some form of coordination hierarchy even if it is not explicitly defined. In gen-
eral, at the top of the chain of command are project leaders and core developers. This group
performs the bulk of the work [51], [77], [78], [79]. Below this are central developers, who
semi-regularly contribute to the project, followed by peripheral developers, who contribute

infrequently. If the hierarchy is extended to users, next are active users, who provide con-

75

tributions in the form of testing the software, reporting bugs, submitting feature requests,
etc. At the bottom of the hierarchy are passive users, who only use the software but do not
provide any direct contributions to the project themselves?®. The number of core develop-
ers is an order of magnitude smaller than the number of central and peripheral developers,
which is an order of magnitude smaller than the number of users [51], [76].

At the top level, there are three types of governance employed by FLOSS projects:
benevolent dictatorships®’, rotating dictatorships®!, and boards of directors®? [119], [120].

The coordination techniques employed by a project have the potential to have a
huge impact on the project. A project that cannot effectively coordinate the efforts of its
volunteers will likely never create a usable software product. In addition, because FLOSS
is volunteer driven, the developers must be kept happy or they will abandon the project,
or possibly open source development altogether. Developers in general do not like to be
bogged down in heavy weight processes, especially when such processes provide little or
no return on investment. In short, developers who enjoy writing code would prefer to
maximize their time programming and minimize the time spent on other activities related

to the process.

29The hierarchical command structure categories outlined here are based on [118].

3Linux employees this form of governance, with Linus Torvalds having final say on
everything about the project [119]. Emacs is another example of benevolent dictatorship
[119].

3I'This form of governance is used by Perl [119].

3This form of governance is used by Apache [119], Mozilla [120], and FreeBSD [120].

76

Despite the fact that governance and coordination techniques may significantly im-
pact a project, very little work has been done to study the effects of coordination and gov-
erning structure on project success. [120] considers the continuum from control to anarchy
in Mozilla and FreeBSD. While closed source software relies on “diligent project man-
agement,” it is found that FLOSS developers prefer minimal control and flat control struc-
tures [120]. In addition, open source developers dislike explicit rules, commands, and
centralized government, and would rather rely on norms, self-organization, and individual
autonomy [120], [121]. A balance, therefore, must be found between control and anarchy
to increase a project’s chance of success. Control, such as required code approval processes
and rigid commit procedures, is thought to increase the quality of the software [120] and is
a key component of software process improvement [122]. However, tight control, such as
freezing the code for long periods of time while performing testing or building release can-
didates, will slow down the development process [120] and possibly eliminate other advan-
tages FLOSS development has over traditional software engineering. Long freeze periods
may also cause contributors to lose motivation, as it has been shown that a key motivational
factor for developers is the ability to quickly see the results of their work [123]. Anarchy,
on the hand, is supposedly necessary to attract and retain volunteers [120]. Thus both con-
trol and anarchy seem necessary for a project to be successful, yet these two components
conflict with one another.

In addition, there is a question as to the impact certain highly ranked developers
have on the success of a project. For example, Linus Torvalds is responsible for piecing
together releases of Linux based on thousands of contributions that are made to the project.
Indeed, Torvalds admits that his job is mostly about guiding the project and controlling

quality [34]. Is Torvalds easily replaceable, with other developers able to as competently

77

and skillfully perform the same job, or are his abilities in managing his project extraordi-
nary, making him key in propelling the project towards success? It has been found that
projects with highly rated administrators tend to be more successful [66]. Similarly, [124]
argues that the personalities and attitudes of those involved may affect the popularity of a

project.

3.2.2.5 Documentation

Open source projects that lack proper documentation appear to be at a severe disadvantage.
From a user standpoint, no matter how functional or high quality the software may be, if
the user cannot figure out how to install and use it, the project has little value. Beyond
users, documentation is also important to developers, especially developers interested in
volunteering for a project. Proper documentation can lead to a better overall understanding
of the project, which helps new developers get up to speed faster and may even increase the
quality of developers’ contributions [81]. Likewise, documentation can lead to increased
maintainability [81]. Therefore, documentation may tie to a project’s popularity, both with
developers and users, and thus may affect a project’s success.

Since documentation appears to be crucial to a project, one would expect open
source projects to include, at minimum, sufficient levels of documentation to install and use
the software for common tasks. The time spent writing documentation is expected to have a
high return on investment; simply put, without documentation no one, save those involved
in the project, may be able to run the software, meaning the effort invested in the project is
largely wasted since the project is unable to reach its full potential, user base, or developer
base. In reality, many projects suffer from minimal or out-of-date documentation [65],

[116].

78

In a study of successful and unsuccessful projects it was found that more projects in-
clude user documentation than developer documentation [81]. However, no link was found
between either form of documentation being available and the success of a project [81].
Furthermore, [81] argues that developer documentation is not necessary since competent
developers are able to learn through project observation, e.g., examining the source code
to learn coding standards. Another study found that projects using wikis, which some-
times serve as a form of project documentation, were no more efficient®* than those without

wikis [75].

3.2.2.6 Systematic Testing

The goal of testing is to increase the reliability and quality of software by identifying bugs
(and subsequently fixing the bugs), preferably shortly after they are introduced, when they
are potentially easier to resolve. Both users and developers may be interested in quality
software; whether or not a project engages in certain forms of testing may impact the quality
and thus the interest in the project. Testing may be manual or automated.

Some projects use rigorous testing methods to rapidly discover introduced errors.
For example, some FLOSS projects use tinderboxes. A tinderbox is a computer that contin-
uously and automatically downloads the latest version of the software, builds it, runs a sets
of tests, and reports the results [120]. A single project may have multiple tinderboxes so
that the software can be tested on different hardware, operating systems, etc. [120]. Some

projects perform frequent smoke tests, possibly in addition using tinderboxes. Mozilla, for

33 [75] uses DEA to evaluate the efficiency of transforming inputs into outputs in the
context of FLOSS development. For the analysis, the number of developers and years of
existence are the inputs; the number of downloads, web hits, LOC, development status, and
size, in bytes, of the most recent source release packages are the outputs.

79

example, closes the development tree to changes daily while the code is tested, and the tree
is not reopened for changes until all tests on all platforms pass [120].

There also may be control mechanisms in place to maximize the quality of code
contributions. For example, a gatekeeper may need to first be convinced a contributor’s code
is functional before allowing it to be committed to the tree [120]. Through this process, the
code may need to first pass a set of tests (e.g., unit tests, integration tests) before it is even
considered for adding to the source tree.

Projects may also have release management procedures that incorporate forms of
testing. For example, some projects will produce release candidates. Essentially, release
candidates are versions of the software that are beyond beta testing but may still have some
minor bugs. Creating a release candidate is an invitation to the community to test the
software as though it was a stable version. If bugs of sufficient concern are found, they
will be rapidly fixed and a new release candidate made available. If a release candidate is
found to be free of severe bugs, it is upgraded to a release version. Using release candidates
allows a project to take advantage of a large testing audience before declaring the software
stable — a testing strategy often employed by FLOSS projects that is rarely used in closed
source development. Prior to creating a release candidate, projects may first go through
a more rigorous testing procedure than the regular day-to-day testing [120] in preparation
for creating the release candidate. Some projects may even freeze the code for months in
advance of releasing a stable version and focus only on testing and fixing bugs during this
time [120].

A final consideration of the testing process is how a project tracks issues. Some
projects may have comprehensive plans for tracking, prioritizing, and fixing bugs. Other

projects may rely on more ad-hoc methods of managing bugs.

80

It has been found that bug tracking is more common in successful projects [81],
but projects that use Tracker, SourceForge’s issue tracking tool, are not more efficient than
projects that do not use Tracker [75]. Successful projects more frequently produce release
candidates prior to stable releases [8§1]. However, forms of automated testing are just as

likely to be used in successful and unsuccessful projects [81].

3.2.2.7 Quality

Quality may be an important factor when individuals select projects. Low quality projects
inherently appear to have lower utility and therefore may be rejected when considering
projects, whereas high quality projects, even if they are difficult to initially set up and
understand, may still offer sufficient return on investment to make the effort worthwhile.
The quality of software may be measured via various means, and the quality metrics applied
may differ from individual to individual. For example, quality may be evaluated based on
number of defects, reliability, performance, useability, design, etc.

Using a survey, it has been shown that a FLOSS project’s quality has a positive
effect on both its use and user satisfaction [125]. In addition, as user satisfaction increased
so did use of the FLOSS software [125]. Interestingly, the same study considered the quality
of service offered by the community surrounding a project (e.g., the project’s developers
and other users who might offer support). High quality support from the community did
not lead to increased use of the project [125].

[125] makes no attempt to understand the effect quality has on contributors to
projects. However, since the developers of FLOSS are often also the users [13], [52], [65],
[66], and users are drawn to quality, it is likely that quality also has a positive impact on

attracting developers.

81

3.2.2.8 Programming Language

An advantage of FLOSS over closed source development is the ability to take advantage of
a larger pool of talent. In the case of a company developing software, there are always more
smart people outside the company than there are in the company [34]. FLOSS isn’t limited
this way, and indeed Linus’ Law [13], which states that “Given enough eyeballs, all bugs
are shallow,” is a major argument for why open source development not only works but in
some cases outperforms traditional software development.

Programming language may be an important factor in influencing success because
it immediately limits the number of developers that are eligible to work on a project. The
size of the subset of eligible developers may vary widely depending on the programming
language(s) used. Projects that use common languages, such as JAVA or C/C++, have
access to a larger percentage of the developer population than those that use uncommon or
unpopular languages, for which there may only be a handful of developers involved in the
FLOSS community. More developers means more resources to develop software, as well
as access to more talent. Thus a project using an uncommon programming language may
also be limiting the size of developer pool. A smaller pool may mean not only that there
are fewer developers to potentially join the project but also that less talent is available to
tap into. In addition, there may be fierce competition among projects for these developers
because of their scarcity.

It is possible that programming language also has an effect on the size of the user
base. For example, projects that use interpreted languages, such as JAVA or Perl, may re-
quire more skills from the users in order to setup the environment in which the software will
run. Even projects that use non-interpreted languages, such as C, may still require substan-

tial computer skills (e.g., resolving dependencies, installing libraries) in order to compile

82

them. Note that it is common practice for FLOSS projects to provide release versions of the
software in the form of source code only and require the users to build the software on their
own computer. Some projects may release binaries for specific platforms, but the source
code is still available for those using systems not supported by one of the binaries. Projects
that release precompiled binaries are less likely to have the size of their user base affected
based on the programming language used. In other words, the amount of effort required
to install and run the software affects the size of the user base; programming language and
distribution method both impact the level of skill needed to get the software running and
thus also affect the number of users.

It has been found that projects using common programming languages are more
active, reach more mature development stages, and are more frequently used [66]. In addi-
tion, [105] finds that the programming language used by a project is useful for predicting

the success of a project.

3.2.2.9 Target Operating System

Similar to programming language, the target operating system of a project affects the num-
ber of developers eligible to work on the project. Obviously, if a programmer does not have
access to the operating system used by a project, he/she will not be eligible to participate
in that project. However, developer preferences may also play a role. Not surprisingly, the
overwhelming majority of FLOSS developers prefer to use FLOSS operating systems, with
only 2.2% favoring Windows [1]. Thus while the default operating system for commercial
software is Windows, open source projects targeted at open source operating systems may,
surprisingly, be at an advantage. Some projects are platform independent (e.g., projects
written in JAVA) and thus operating system does not have an effect on the number of eligi-

ble developers.

83

In addition, the target operating system also has an effect on the potential user base;
many people run Microsoft operating systems while few use, say, OS/2, so the number of
eligible users for Windows applications will be higher than for OS/2.

The target operating system has been found to be a useful component in predicting

the success of an open source project [105].

3.2.2.10 Portability

Portability has the potential to affect the size of the target audience. The more platforms
that a project is ported to, the more eligible developers and eligible users there are that
may become involved with the project. Therefore, it initially appears that FLOSS projects
with multiple ports are at a distinct advantage because of their ability to tap into a larger
segment of the population. However, porting does not come without costs, as it introduces
the complexity of maintaining code for multiple platforms. In an ideal scenario, most code
can be shared across platforms, but in some cases there may be large bodies of platform-
specific code that must be written and maintained for each supported system. The design of
a project may even need to be significantly modified in order to allow convenient parallel
development of ports (e.g., redesigning the software so that platform-specific code resides in
separate modules). Side effects of the added complexities may mean less frequent releases
of the software, an increased number of defects, more developers required, the necessity of
developers to possess a wider range of skills in the form of platform-specific knowledge,
etc.

One study [81] categorized projects according to the level of portability: single
platform, hard-coded for multiple platforms, or multi-platform using an automated system.
No significant difference was found between successful and unsuccessful projects based on

the three portability categories [81].

84

3.2.2.11 Version Control and Software Configuration Management

Tools like CVS, SVN, and Git are popular with open source projects to provide both ver-
sion control and software configuration management. SCM is considered a necessity for
high maturity organizations to produce quality software as evidenced by its inclusion in
CMMI level 2 [126]. SCM allows multiple developers to work on software in parallel and
solves many problems pertaining to coordination. The ability for many programmers to si-
multaneously work on the same project allows for rapid development that is a positive and
well-recognized characteristic of FLOSS development [34]. Furthermore, making SCM
repository read access public means that everyone, including users, has access to the lead-
ing edge version of the code. This means that the latest bug fixes can be acquired as soon
as they are available, rather than waiting until the next stable version is released, albeit with
the risk that other more serious bugs may exist in development versions of a project. Mak-
ing SCM repositories public also allows everyone to see where development is currently
occurring and may make it more attractive to other developers by highlighting the areas of
code that need work [81].

It has been found that the use of SCM tools is more common in successful projects
than unsuccessful projects [81] and that most projects using SCM grant read access to the
public [81]. However, it has also been found that projects that use SCM are no more efficient

than projects that do not [75].

3.2.2.12 Mailing Lists and Forums

Mailing lists and forums serve as media for fast communication and may exist for multiple
purposes. For example, developers use mailing lists and forums to discuss and coordinate

work on a FLOSS project. Users employ lists and forums both to ask questions and provide

85

feedback on the project, and the content of these messages may influence future changes
and improvements to the project’s code, documentation, etc. Some projects may include
multiple mailing lists and forums, e.g., a separate developers’ and users’ list. Projects that
include mailing lists and forums appear to have a competitive edge over those that do not
because they are better able to utilize the feedback from the users to enhance the project.
In addition, these projects are also able to jump start Linus’ Law: by notifying developers
of unsolved problems via lists or forums, the chances improve that someone will produce a
good solution quickly.

Mailing lists archives serve to lighten the load on developers and users by reduc-
ing the time and energy expended addressing already answered questions. Furthermore,
archives also make it easier for users to access help without facing the potentially intimi-
dating task of posting a question and risking appearing inept. If a question has already been
answered, searching the archives is likely a faster path to obtaining an answer than posting
an inquiry and waiting for a reply. Mailing lists and forums themselves are a mechanism to
contribute to a project, and the help provided in these communication media may lead to a
larger number of people involved in the project.

It has been found that successful FLOSS projects make better use of mailing lists
[81] and more frequently include mailing list archives, with 80% of successful projects
using archives compared to 50% of unsuccessful projects [81]. However, the use of mailing
lists and/or forums has not been shown to increase the efficiency of an open source project

[75].

86

3.2.2.13 Development Stage

The development stage of a project provides information about the maturity of the soft-
ware. As such, it may impact the developers and users that choose to be involved with the
software, thus influencing the success of the project.

Users likely are interested in a project for its current utility and thus may be drawn to
projects in more mature stages. A rule of thumb is that projects listed in beta or later stages
are ready for general use while projects in pre-beta stages lack significant functionality and
are less likely to be refined to a level that would be considered user friendly.

The motivation for developers to be involved in a FLOSS project varies over a
wide range. At the purest level, a developer may be interested in scratching his/her own
personal itch [13], in which case the development stage may be less important than how
close the project is to actually solving the developer’s problem. Some developers may be
motivated by other factors, such as maximizing their reputation in the FLOSS community
[1], [13], [35], [98], [119], [127], in which case projects in earlier development stages
may be preferable, as there are still opportunities to contribute to long-lasting core code
[45]. Other developers may be looking to increase their future employment prospects by
gaining skills and experience working on FLOSS [1], in which case development stage is
less important than the potential learning opportunities that a project offers. There remain
other reasons that developers report as motivation to be involved in open source projects
that may or may not revolve around development stage. It therefore remains unclear how
development stage affects the attraction of developers to a project.

Depending on the dynamics, development stage may be an indicator of a self-
exciting process with a tipping point. That is, if a project requires a minimum number

of developers and users to self-sustain, once that number is reached the project may accel-

87

erate towards success, picking up more users and developers as it also advances through
development stages. Unfortunately these dynamics, and the role that development stage
plays in them, are not well understood.

Software development is a dynamic process with different activities occurring de-
pending on the development stage. [71] cautions that the expectations and goals of a project
vary over the course of development and therefore developers may evaluate the perceived
subjective and objective performance of a project differently depending on its development
stage. For example, it is suggested that accomplishing clearly defined goals is a more
important evaluation criterion for projects in later development stages. During the earlier
stages clear working procedures and routines have yet to be established and therefore goal-
oriented evaluation may not be appropriate [71]. However, developers accumulate project
management skills over time, meaning improved performance may be expected as a project
progresses [128]. On the other hand, this means joining a project in the later stages requires
more effort on the part of the developer to get up to speed on the design [129] and processes.
Keeping this in mind, it may be a project’s development stage in combination with other
factors that influence a developer’s choice to join and stay with a particular project.

Development stage has been shown to be useful in predicting a project’s success

[105].

3.2.2.14 Activity Level

The progress of a project is tied to the level of activity. Activity level might also be con-
sidered a measure of the intensity of cooperation [66], with cooperation being an important
and necessary component for creating public goods such as FLOSS. High levels of activ-

ity might therefore lead to high levels of cooperation and subsequently a project’s success.

88

Projects with high activity levels have indeed been shown to be in more advanced develop-
ment stages [66].

Using machine learning, [48] identifies antecedents that can be used to predict the
success of projects at an early stage of development. Principle Component Analysis is used
to determine the most important factors. During the first nine months of development, the
number of distinct email posters, bug reporters, bug fixers, and SCM committers were found
to be interchangeable factors that accounted for 69% of the total variance when predicting
project success. Since these counts act as proxies for level of activity, this demonstrates that
activity level is useful for predicting the success of a project.

Both of the aforementioned studies seem to support the simple notion that highly
active projects are successful. What is less clear is what is the cause versus the effect.
Do high activity levels lead to continued or increasing activity levels, perhaps by drawing
attention to a project that then gains additional users and developers? Or are there other
properties of projects that attract users and developers, and high activity levels are simply a

side effect of a project improving and moving towards success?

3.2.2.15 Number of Developers

Underlying many of the previous sections is a simple notion: a project must attract at least
a minimal number of developers in order to progress and self-sustain. Having developers
associated with a project does not guarantee its success, but it certainly improves the odds,
whereas a project with zero developers has no chance of becoming successful. As pointed
out in Section 3.2.2.14, activity is necessary for a project to progress, and active projects
appear to be more successful. It follows that the number of developers affects the level of

activity and consequently might influence a project’s success.

&9

[66] tested the hypothesis that FLOSS projects with more developers are more
successful in that they are in more mature development stages, are more active, and are more
frequently used. The findings were mixed and only weakly supported the link between the
number of developers and success [66]. However, [48] found that the number of committers
could be used to predict the success of a project. The committers of a project are often those
developers belonging to the core team, so this supports the concept that the number of core

developers influences the success of a project.

3.3 DEVELOPER MOTIVATION

Via a large horizontal study of approximately 400 FLOSS projects, [74] concludes that the
pool of developers is limited and the resources available from developers is also scarce,
especially with respect to the number of FLOSS projects competing for developers and
their proficiencies. [64] similarly points out that making meaningful contributions to open
source software involves skills, and because there is a limited pool of individuals with the
necessary knowledge, experience, and expertise, projects may compete to attract the efforts
of these talented developers [64]. As a result, in order to understand which projects will
succeed it becomes important to gain insight into how developers select projects. The idea
is that if developers are attracted to a project, the project will progress. However, if a project
cannot both attract and retain developers, the project will remain inert and, by most success
metrics, be considered (at least temporarily) dead [74], [77].

The purpose of this research is not to understand what initially motivates individuals
to become involved with FLOSS. There exists a body of literature that already addresses
why people contribute to open source or cooperative communities in general. Motivations

that have been suggested include:

90

To gain reputation in the hacker community.

To increase employment opportunities by both learning from expert programmers

and showcasing one’s own talent.

To create software that fulfills a personal need.

To increase the quality of one’s own work through the peer review that the FLOSS

community provides.

To learn new skills.

To share knowledge and skills, to be altruistic, and to engage in the gift-giving culture.

To have fun, because developers enjoy programming and find the experience of work-

ing on FLOSS satisfying.

To realize a software project that could not be written without the help of others.

Belief that software should not be a proprietary good.

To limit the power of certain commercial software companies.

Several large-scale surveys (e.g., [1], [98]) have been conducted that specifically ask devel-

opers why they participate in FLOSS. There are also a number of arguments for developer

motivation based on economic, social, and psychological theories (e.g., [13], [119], [127],

[130], [131]). Overviews of motivational factors are provided in [15], [35], [70].

Instead of concentrating on the reasons contributors are attracted to FLOSS in the

first place, this research focuses on how contributors choose which projects to join once

they have already decided to be involved in the open source community. The development

of FLOSS is a cooperative effort driven by volunteers, and therefore attracting and retaining

91

volunteers is imperative for a project to progress and, potentially, succeed [70]. [64] argues
that in order for a project to be successful, it must attract contributions from developers, and
that developers make their selections based on properties of the projects. Therefore, in order
to better understand the FLOSS development process, this research attempts to identify the
characteristics of a project that are important to attract developers.

To gain an understanding of what project characteristics cause individuals to choose
one project over another, the following five factors are selected that are believed to influ-
ence individuals’ decisions when picking a project: similarity between an individual and a
project, current resources being contributed to a project, cumulative resources of a project,
number of downloads a project has received, and development stage or maturity of the
project. These factors are incorporated into the model via a utility function (see (6.2) on
page 156) and then the model is used to explore the currently-unknown importance of each
factor. The five factors were chosen based on existing literature covering influential factors
and a general understanding of the FLOSS development process. The specific reasons why
each factor is considered important to individuals selecting projects are explained in the

following subsections.

3.3.1 Similarity

How important is the similarity between a project and an individual? That is, how closely
must the aspects of a project match the interests of the individual in order to warrant the
individual becoming and/or staying involved with the project? For example, an individual
who has just acquired a new printer is more likely to be interested in FLOSS printing system

projects than in peer-to-peer file sharing applications, at least in the immediate future.

92

FLOSS development is a voluntary process; developers both volunteer to be in-
volved with a FLOSS project and then self-assign themselves to specific FLOSS tasks
within the project [42]. This is a key difference from proprietary software engineering,
where developers are assigned by management to projects and tasks that they might find
boring, tedious, or even be unqualified for, whereas in FLOSS developers are free to choose
projects and tasks that interest them3*. There is little incentive for a developer to contribute
to uninteresting projects, and a bored FLOSS developer may simply move on to other more
interesting tasks, projects, or, if nothing appeals, leave the open source community alto-
gether. Thus, the similarity between the interest of an individual and the characteristics of
a project may be an important factor when selecting projects.

Similarity may also play a role in the enjoyment that developers experience from
working on an open source project. Many FLOSS developers claim to enjoy the work they
are doing [130]. In fact some developers use their level of personal enjoyment working

on a project as metric for judging if the project is successful [133]. Other motivations for

3The self-assignment of FLOSS developers to tasks may be seen as a key advantage
of the FLOSS development process. Indeed, while discussing practices of high maturity
organizations, an anonymous participant at a Software Engineering Institute (SEI) work-
shop for CMM level 4 and 5 organizations observed that ‘““Getting the right person into
the right job on the project is still the most important aspect of project success. People are
not plug-compatible. The expertise of individuals is critical. Process is an enabler; not a
replacement.”” [132]. By allowing developers to choose tasks that interest them, FLOSS
significantly increases the chances of a well-qualified person working on each task. This
concept is affirmed by Linus’ law, which states that “Given a large enough beta-tester and
co-developer base, almost every problem will be characterized quickly and the fix obvious
to someone.” [13]. In other words, through the inherent transparency and openness of the
process, FLOSS frequently manages to have the right person fix the right problem. Fur-
thermore, FLOSS developers may be motivated to complete their tasks at an above average
level simply because they are interested, and therefore motivated, in the tasks they have
chosen.

93

participating also seem to point to similarity being important. For example, a survey found
that 44.9% of developers participate in FLOSS development for intellectual stimulation [98]
and a subgroup of FLOSS developers may be considered “fun seekers” [98]. Presumably,
similarity plays a role in determining if a project is fun and/or intellectually stimulating.
Finally, software is typically created from a developer’s personal need, i.e., the
desire for a developer to scratch his/her own personal itch [13], and solving a software
problem is often listed as a reason for being involved in a FLOSS project [1], [13], [52],
[131]. Similarity may therefore be important because individuals are interested in projects

that address problems that are similar to their own.

3.3.2 Current Resources

The current resources being contributed to a project is an indicator of project activity level.
In addition to providing the literal value measuring the amount of work being completed,
it also might be used as a proxy to indicate how many active developers are currently con-
tributing to a project — that is, it indicates the popularity of a project with active developers.
This is because generally a project with more active developers will have more resources
being contributed.

Research shows that active projects are desireable. One study [67] considered fresh-
meat’s vitality score, which is an indicator of developer effort, and freshmeat’s popularity
score, which is calculated based on the number of people subscribed to a project and the
number of hits to the project’s homepage. It was found that an increase in a project’s vitality
led to an increase in popularity as well.

[113] argues that membership herding occurs in FLOSS, meaning individuals join-

ing or leaving a project encourages other individuals to also join or leave the project re-

94

spectively. Indeed, a survey of 34 developers showed that 76% agreed that membership
dynamics were critical to projects progressing continuously [113]. Furthermore, develop-
ers indicated that being involved in an active community was energizing and important to
keep a project progressing [113]. Lack of activity on a project was cited as a compelling rea-
son to leave and potentially find a different project to contribute to [113]. It has been shown
that large scale-free network are prone to herding dynamics [113], and that the SourceForge
project and developer network is indeed scale-free [57].

It may be the case that popularity begets more popularity when it comes to open
source projects. It has been argued that through the structure of the underlying social net-
work, the number of members associated with a project may affect the attractiveness of
the project to other potential members [57]. [127] states that open access projects, such as
FLOSS, are stigmergic because they include a positive feedback cycle that encourages more
work to be completed in the future based on the work that is currently being performed.

In terms of consumers, active projects may be perceived as offering better support,
improved chances of adding needed features in the near future, etc. On the other hand, too
much activity may be an indicator of an unstable projects. Users may grow tired of the
need to frequently upgrade the software to fix bugs. Likewise, users may become frustrated
if each frequent upgrade introduces a plethora of new bugs or changes components, such
as the user interface, that the user must then relearn. This is more likely to occur with
projects that do not include stable releases but instead encourage users and developers alike

to download the code from the development branch®. Thus while project activity may

35 An exception to this, where stable versions have been released frequently, might be the
web browser Chromium, http://www.chromium.org, which released an incredible six major

95

be important to consumers as well, there may be a happy medium between stagnant and

excessively active that consumers find most desireable.

3.3.3 Cumulative Resources

Cumulative resources is a measure of the size of a project completed so far. Developers
may take into consideration the size of a project in concert with other factors, such as the
number of developers involved, when selecting a project. For example, a small project will
need fewer developers than a large project. Consequently, it may be easier for a developer
to find tasks to complete on a large project than to break into a small group of developers
already engaged in a small project.

In addition, developers may be interested in different size projects depending on the
time commitments they are able to make. Some may be interested in short-term projects
or projects that require a minimum investment in order to get up to speed. In general,
programmers find it easier to write new code than to understand and work on someone
else’s code, yet the majority of a developer’s time is spent on the latter task. This is likely
true when joining an existing project that already has a code base; the existing source code,
project design, etc. must first be understood before contributions enhancing the software can
be made. Therefore, a small project may allow a developer to get up to speed faster because
there is less code to understand before he/she can start making meaningful contributions.
On the other hand, a developer seeking a project he/she can work on long-term may not

mind the initial investment in time.

versions in 11 months, four of which occurred in five months; in one case, version 9 was
released just 15 days after the initial release of version 8 [134].

96

As projects progress, knowledge among the developers accumulates [128]. For
developers who are motivated to pick up new skills, this may be an incentive to join projects
that already have a large code base; projects with minimal or no code may not have enough
work completed that can be learned from, and therefore may be of less interest to developers
looking to improve their skills.

Consumers, likewise, may consider the size when selecting a project. For exam-
ple, a user looking for an email client might be interested in something minimalistic (e.g.
Alpine, a text-based email client derived from the freeware-licensed Pine) or feature rich
(e.g., Evolution, a GUI-based email client that includes additional components such as a
calendar, address book, task organizer, etc.). The size of a project therefore helps a user

determine how lean or bloated the software is.

3.3.4 Download Count

The number of times a project has been downloaded may be used as a proxy for the impor-
tance and popularity of a project with users.

[57] simplifies existing literature [135] on classifying participants of FLOSS devel-
opment. [118] recognizes two course-grained classification groups of users and developers,
further splitting users into passive and active and developers into peripheral, central, core,
and project leader categories. Passive users are defined as those who utilize the software
without contributing anything to the respective project while active users submit bug and
feature requests and may be active in forums or mailing lists [57]. When analyzing de-
veloper communities for the purpose of modeling FLOSS social networks, [57] chooses to
ignore passive users because they do not contribute directly to FLOSS projects and there-

fore [57] does not consider them developers. However, passive users, also known as free-

97

riders, do influence a project; namely, by using a project, passive users are acknowledging
the utility of the project and value of the work of the developer team. If reputation and ac-
knowledgment of one’s skills motivates developers to engage in open source development,
then passive users must be included in the model. Indeed, it has been shown that increased
user interest in a project results in increased development activity [64].

[136] analyzes crowdsourcing behavior through data from YouTube?. Although
creating videos is slightly different than developing software, the general concepts are the
same. In the case of YouTube, the content being developed is videos instead of software, but
in both instances the content is created by volunteers through collaboration and published
for consumption by the masses. [136] finds that the number of videos produced by a user is
strongly correlated to the number of times a user’s previous videos have been downloaded.
A lack of video downloads often leads to users uploading fewer videos, asymptotically ap-
proaching zero. This is similar to a developer abandoning a project because no one is using
the software. [136] suggests that the digital commons can be regarded as a private good
where the participants are paid in recognition for their efforts by download tallies instead
of money. This is in alignment with research that has shown that people are sometimes
willing to skip financial gain for attention’” [137]. Recognition has also been shown to be
important in some online communities [138]. Thus the number of users of a specific project

may indeed influence a developer when selecting software.

3http://www.YouTube.com

37 An example of this in academia is publishing papers and monitoring citations [136].
The authors of a paper receive recognition for their contributions every time someone cites
their paper, when a respected journal agrees to publish their work, etc. While there is
no direct monetary compensation, the recognition and attention gained is often sufficient
incentive to continue writing papers.

98

In FLOSSSim, passive users affect a download count. Each time a user downloads
a project, either the initial time the user tries the software or when updating to a newer
version, the download count of the project is incremented. In this way, the download count
becomes a measure of the popularity of a project with users. Thus developers may gauge
the importance of a project by how large the user base is and use this as a proxy for how
many people will benefit from contributions to the project®®. Note that in FLOSS, devel-
opers are more often than not also users of the software they develop. FLOSSSim includes

developer’s downloads in the download count.

3.3.5 Maturity

The maturity property of a project is unique from the other factors considered in that it is
a human-assigned value. Rather than creating a set of rules or manually judging projects’
maturity based on a set of criteria, instead folksonomy principles are used to categorize
projects by using the development status. By using the developer-assigned development
stage, values are used which were assigned by experts who have critically evaluated the
projects — namely, the administrators of the projects themselves. The criteria used by each
developer may differ, but the law of averages should reduce any major biases introduced
because of this; because this is a subjective measurement, a high level of variance is both

expected and considered acceptable.

3 This is similar to some open source projects which allow users to vote on which bugs
should be fixed first. In other words, the users explicitly try to channel developers’ efforts
to the problems the users find most significant. In the same way, users are “voting” by using
a project, and developers trolling for a project to work on may consider the number of users
as an indicator of the importance of the project.

99

The maturity of a project influences both the objective and subjective performance
of a project [71]; specifically, the subjective assessment of a project by developers may
depend on the development stage [71]. Furthermore, research shows that the development
stage plays a significant role in predicting the success, and more specifically the level of ac-
tivity, of an open source project [105]. Therefore, it makes sense to explore the importance
of development stages to developers who are selecting projects.

If developers are interested in increasing reputation, [45] argues that developers will
prefer creating core rather than fringe code because the core code is likely to be included in
many releases of the project, thus giving developers a long-term boost to their reputation. In
this case, developers will prefer projects in lower development stages because there remains
core code to be written. However, very early development stages, which may possess the
greatest potential for reputation gain, also include significant risk that the project will die
before producing useful software, in which case there will be no reputation gain for the
developers involved.

At the other extreme, when a project becomes fully functional and enters the pro-
duction/stable and mature stages, it may also become less desirable to developers. First, if
reputation is a driving force, by this time most of the high-profile tasks are complete [67].
Secondly, the majority of the functionality is already implemented and the project transi-
tions from development to maintenance, meaning most of the “personal itches” that cause

developers to join a project have already been scratched [67].

100

According to [13], in order for open source project development to commence, there
must exist at least a kernel of working code to begin with. Bazaar-style development®® can
be used for testing, debugging, and improving software once a program base is established,
but it is almost impossible to start a project in this mode. In other words, it is advantageous
for an initial version of the software to be developed cathedral-style (often this is just a
single programmer hashing out a solution to his/her own problem) before releasing the
software to the open source community. For this reason, projects that are made available
to the open source community before there is an initial working version, such as projects
posted in the planning or pre-alpha stages, may be at a serious disadvantage when it comes
to attracting developers [67].

To test if projects released into open source at later development stages are more
likely to reach higher development stages, data was mined from the FLOSSmole database®.
The development stage of projects on SourceForge in April 2009 was recorded, along with
the development stage when each project first appeared on SourceForge. The number of
projects in each development stage as of April 2009 versus projects’ initial stages when
added to SourceForge is shown in Table 3.2. Of mature projects, only 1.7% started in
the lowest two stages (planning and pre-alpha) while almost three times as many (5.1%)

started in the alpha, beta, or production/stable stage. Similarly, for projects currently in the

39113] famously coined the terms “cathedral” and “bazaar” to refer to traditional, closed
source development and open source development respectively. Like meticulously con-
structing a cathedral, proprietary software is carefully built by talented people working in
isolation. Open source, on the other hand, resembles a great babbling bazaar, with many
differing ideas and approaches mashed together, yet out of the chaos materializes stable

software.

40See Section 4.1.3.2 for a description of the FLOSSmole database.

101

26 | S1Tzl #9991 | 91Z€1 | Pzl $0081 || oL
(%BL1°€6) 6S8 | (%SO'0) 9 (%€00) ¢ (B100) 1 (%200) ¢ (%000) 0 amjew
(%2870 9T | (BLSH) 0€€0l | (%EE0) SS (%01°0) €1 (%900) L (%BLO0) €1 sIqes 5
(YLD 91 | (%8T8) TIOL | (%SS68) ¢€Tovl | (%87°0) €9 (%6T0) S¢ (%T1'0) 1T eeq F
(%¥s0) ¢ (%LSE) 9ty (%€TS) TL8 (BvTe6) €TeTl | (%EC0) 1Y (%€10) €T eydie v
(%860) 6 | (%L 01T | (BILD TSP | (B8L'E) 00§ | (%99°66) E€ILIT | (%66T0) €S eydre-ord g
(%9L0) L (%18°1) 1TC (B¥10) LSE (%6£7) 91¢ (%£9€) St (%6£°66) +68L1 || Suruuerd

aInyew 4 a[qels ©19q 4 eyde 4 eydye-oxd Suruuerd
a3u1§ 600¢ [Hdy

*9310,J901n0S 01 pappe 11 uaym sades Juawdo[aaap s109loid snsioa ooz 11dy Jo se a3es juswdo[aasp yoes ur s109fo1d Jo roquunp

e d19dVL

102

production/stable phase, only 3.5% started in planning or pre-alpha while more than three
times as many (11.9%) started in the alpha or beta stages. This supports the notion that
development stage is relevant to the success of a project since projects released as open
source in later stages are more likely to increase in development stage.

Additionally, as can be seen by looking at the main diagonal, Table 3.2 also high-
lights that most projects never change from the development stage they started in. It is
difficult to know if this phenomenon is real or a side effect that could be produced simply
by project developers failing to update a project’s status (developers are forced to supply
a development stage when registering a project on SourceForge but there is no mechanism
to force and/or remind developers to update this status indicator as the project progresses).
Table 3.2 also shows that some projects go backwards, ending in an earlier stage than they
started in. In some cases this can be expected, such as when a stable project creates a new
major release and moves back to the beta stage. In other cases, such as the 13 projects that
started in the production/stable stage and then moved back to planning, it is likely an error

in the data.

3.4 CONCLUSION

The goal of this research is to better understand the FLOSS development process, with a
particular interest in understanding why some projects are successful while others are not.
To understand what it means for a FLOSS project to be successful, success must
first be defined. Unlike proprietary software, there is no universally accepted method for
determining if a FLOSS project is successful. Since traditional metrics do not necessarily
apply, a number of FLOSS-specific metrics have been proposed. Many of these metrics
have not been well-studied or applied to real data. As such, the meanings and impact of

using different success metrics is further explored using FLOSSSim in Section 7.1.4.1.

103

Understanding why some projects are successful and others are not involves exam-
ining factors that may influence the success of a project. Analyzing the impact of factors
ranges from examining technical attributes of existing projects to borrowing concepts from
public goods theory. Fortunately, much research has already been performed on under-
standing factors that may be antecedents to success, and a comprehensive review of these
factors and findings has been provided.

This research focuses not on what motivates individuals to become involved with
FLOSS in the first place but rather on how individuals select projects from the large pool
of available FLOSS. Five components believed to be important to individuals choosing
projects are selected. Through the use of agent-based modeling, the actual importance of
each of these factors will be explored.

Finally, there is currently minimal research on FLOSS consumers. To further this
largely unexplored segment of open source, this research includes modeling consumers
for the purpose of better understanding the users’ influence on the FLOSS development

process.

104

CHAPTER 4

DATA

In order to calibrate and validate the model, data about the FLOSS development process
must be obtained. As pointed out by [139], traditional research in social science is theory-
driven. It involves well-designed surveys, information relatively free of errors, and tends
to be small-scale. However, with the Internet comes the ability to collect huge amounts of
data about social activities, including information on the development of FLOSS, that are
available due to the online nature of these activities. From this is born a new, non-traditional
approach to social science research that is data-driven. Often it involves crawling large-
scale networks to extract the necessary data from noisy environments [139]. Both theory-
and data-driven methods are used in this research, although there is more focus on the data-
driven approach due to the nature of the available data.

The following sections provide information about the types of data and data sources

that are available, and outline some of the problems associated with the data.

4.1 DATA SOURCES

A common problem when creating models of social systems is a general lack of data for de-
sign and validation purposes. Fortunately, the Internet is a domain where data pertaining to
social phenomena is often available. This is because online activities, from creating Face-
book pages to editing Wikipedia articles to updating blogs, typically leave a digital trail.

In some cases, these data may be readily available; in other cases, it may be necessary to

105

perform data mining activities (sometimes spread out over time, such as looking at updates
to a web page over a year) in order to extract the required information.
FLOSS development falls into the online activity category. In general, there are

several mechanisms for obtaining FLOSS data, including:

« Surveys and literature

o FLOSS hosting sites

o Databases

o Extraction tools

Each of these categories is further covered in the following sections.

4.1.1 Surveys and Literature

FLOSS is actively being researched and there are many papers published on FLOSS. Al-
though the motivations of the research varies widely, many of the findings for FLOSS re-
search not directly related to predicting the success of FLOSS projects can still be applied
to modeling open source software development.

Both technical and social data are available from existing literature. In the case of
technical data, this often means researchers have collected and aggregated data using the
other techniques described in Sections 4.1.2, 4.1.3, and 4.1.4. Examples of useful data in
this category include distributions, such as what percentage of projects have one developer,
two developers, etc. [117] or what percentage of developers are working on one project,
two projects, etc. [1].

Social data often come in the form of surveys and interviews. There are several

major and well-known surveys in the FLOSS field (e.g., [1], [98]) and many other smaller

106

surveys as well. These surveys cover a number of different components of FLOSS, includ-

ing, but not limited to:

« Developer demographics (e.g., age, geographic locations, marital status, occupation)

[1], [98], [130], [131], [140]

« Developer motivations (e.g., why developers contribute to FLOSS, how developers
choose projects, and what causes developers to stop contributing) [98], [130], [131],

[140]

« Developer contributions (e.g., average time spent working on FLOSS, number of

LOC contributed) [98], [130], [140]

o FLOSS usage (e.g., percent market penetration of certain FLOSS) [93], [141]

Of the categories enumerated for obtaining FLOSS data, surveys and interviews are
the most direct mechanism for gathering social data from the developers themselves. The
remaining categories focus more on the technical data, although it may be possible to gain

insight into social behaviors by studying, for example, trends in technical data as well.

4.1.2 FLOSS Hosting Sites

By its very nature, FLOSS development tends to be distributed, with volunteers potentially
involved from multiple geographic locations. The Internet has broken down geographic
boundaries and allows people to interact with others around the world with a minimum
investment via communication mechanisms such as email. In the case of FLOSS develop-
ment, there exist a number of FLOSS hosting sites that facilitate open source development.
These sites typically provide tools and resources to help with open source development

including, but not limited to:

107

« Project hosting repository

« Software configuration management/version control tools

o Bug organizing and tracking software

« Feature organizing and tracking software

« Membership controls (e.g., control over who can commit code)
o Email lists and archives

Sites that provide collections of tools and services for collaborative software development
are called “forges” [142]. Forges are not inherently limited to FLOSS and may also be
employed for closed source software development.

At time of writing, the largest and most famous FLOSS site is SourceForge!, hosting
306,464 projects® [144] and continuing to grow. The SourceForge site tracks projects, with
publicly accessible project data granularity ranging from hourly (for the last 48 hours) to
monthly (for data older than 30 days), depending on the data [145]. Select data, namely data
that does not violate privacy policies, from the SourceForge site is available for academic
research [146]. SourceForge started operation in November 1999, meaning over a decade

of projects’ history has been recorded by the site.

Thttp://SourceForge.net

’There are multiple methods for retrieving the number of projects hosted at SourceForge
and the numbers reported differ. The number quoted here is based on the count provided
in SourceForge’s search. According to SourceForge’s sitemap, there are 448,114 projects
[143]. It is difficult to compare the two counts to discover the discrepancies, but it is likely
that the larger list contains all projects that have ever been registered at SourceForge while
the smaller list is missing projects that have been removed from the site.

108

Interestingly, SourceForge is itself comprised of open source software [147], [148]
that is, at least partially, hosted at SourceForge?.

Other FLOSS hosting sites include:
« Savannah (http://savannah.gnu.org and http://savannah.nongnu.org)
« BerliOS (http://www.berlios.de)
o Gna! (http://gna.org)
» Google Code (http://code.google.com)
« RubyForge (http://RubyForge.org)
o OW2 Forge (http://forge.ow2.org)
« Java Forge (http://javaforge.com)
o Tigris.org (http://www.tigris.org)

By their very nature, the tools at these sites track the progress of projects. Analyzing
this data can provide insight into the FLOSS development process. Some examples of data

that may be available include:

» Software Configuration Management (SCM) logs: Encompassing revision control,
SCM tracks changes to the code, documentation, and other files associated with a
project. For each change that is made, known as a “commit”, the committer’s identi-
fication, files affected, date and time, etc. are logged. Popular SCM software includes

Concurrent Versions System (CVS), Subversion (SVN), and Git.

3The SourceForge project homepage is http://sourceforge.net/projects/sourceforge/

109

« Project ranks: A list of projects ordered by level of activity bounded by time. An
activity score is typically calculated using multiple metrics from a project. A project

rank may be used to compare projects hosted on the same site.

« Bug trackers: Bug tracking software provides a mechanism for organizing, prioritiz-
ing, and tracking bugs. Useful information, such as how quickly certain types of bugs

are resolved, can be calculated using data from bug tracking software.

« Feature requests: The equivalent to bug tracking software, only for tracking enhance-

ments and new features for a project.

o Forums: Email lists, wikis, chat logs, etc. provide historical data on discussions per-
taining to the software being developed. Information that can be extracted from fo-
rums include how decisions are made, who is actively participating in the project, etc.

Forums are a source of information for social data.

o Web statistics: This includes statistics that could be extracted from a web server log,
such as the number of visitors to a project’s homepage, the number of times a project

has been downloaded, etc.

Note that not all hosting sites provide data to the public. In theory, however, this
data exists, even if it is kept private by the hosting site. For those sites that do make some
of the information available, it is typically accessible via web pages on a project-by-project
basis. Manually probing this data may be sufficient when only a small number of projects
are being studied; to collect data for a large number of projects, it may be necessary to
use spidering and screen scraping techniques. As an example, data that is accessable by

browsing SourceForge’s website is contained in Table 4.1.

110

TABLE 4.1

Per project data tracked by SourceForge.

Data

Description

Registration date

The date a project was first registered at SourceForge.

License

The open source license used by a project.

Programming language

The programming language(s).

Operating system

Operating system(s) under which a project will run.

Topic Selected from a set of predefined values such as
networking, database, games/entertainment, telephony,
editors, emulators, etc.

Translations Original language and translations supported by the

software.

Intended audience

Selected from a set of predefined values including end
users/desktop, developers, manufacturing, government, etc.

User interface type

Selected from a set of predefined values including
command-line, Win32, X Window System, web-based,
Curses/Ncurses, etc.

Development stage

Selected from the following subset of values: planning,
pre-alpha, alpha, beta, production/stable, and mature.

Release date

Date of the most recent release version.

Number of developers

The number of developers registered with the project.

Number of administrators

The number of developers registered as administrators with
the project.

SCM The number of reads and writes to the software repository.
Mailing list Archive of messages posted to the mailing list.

Forum Archive of posts to the forum.

Download count Tracked individually for each project file.

Tracker Includes the number of open and closed bug reports,

support requests, feature requests, and patches.

Project web traffic

Divided into three components: the total number of files
served (known as “hits”); the total number of times a
project’s web logo is served (known as “pages”); and
bandwidth.

Activity rank An aggregate measurement that indicates how active a
project is with respect to other projects. See Section 4.2.2.1
for more details on how activity rank is defined.

Popularity rank The popularity of a project compared to all other projects.

111

4.1.3 Databases

For those researching FLOSS, obtaining data is a common task. Fortunately, there exist
several FLOSS databases that, in the spirit of open source, have opened their data for use
by others. In some cases these databases are provided by researchers who also needed data
on FLOSS and, rather than forcing all researcher to duplicate their efforts, have made the
collected data available to the public.

Pre-built databases provide a number of advantages over extracting the data from
hosting sites. First, the tasks of crawling and screen scraping are avoided. Both of these
tasks can be difficult, tedious, error prone, and time consuming. For example, crawling a
forge may result in the IP address of the crawler being blocked by the site*. Including a
delay between page requests reduces the chances of being blocked but also increases crawl
time. Screen scrapers are sensitive to changes in web pages; even a small change to a web
page may require the scraper to be modified. [82] outlines some of the difficulties specif-
ically with spidering and screen scraping SourceForge. Thus by using existing databases,
one can focus more on the data and less on obtaining the data.

In some cases, existing databases provide historical data that may not be available
directly from a FLOSS hosting site. Consider the case where a hosting site only provides
current, but not historical, data. If a database is built from multiple crawls of the site spread
over time, the database becomes an archive of historical data. This same data cannot be
extracted in a single pass from the site itself as only the current, and not the past values, are

available.

4FLOSS researchers at Notre Dame tried to crawl SourceForge and caused the entire
campus to be blocked from the site [149]!

112

Finally, placing the data in a database creates the ability to perform sophisticated
queries using database query languages. These same queries would be much more difficult
and error prone without the use of a database.

The following sections describe three existing FLOSS databases:

4.1.3.1 SourceForge Research Data Archive

Historically, SourceForge’s policy has been to make a subset of the site’s data available
for research purposes [146]. Prior to 2006, obtaining this data meant submitting a support
request to the SourceForge staff [150]. In 2006, a research project at the University of
Notre Dame, aimed at understanding open source software’, resulted in the Department
of Computer Science and Engineering at Notre Dame agreeing to host data dumps from
SourceForge [151]. The result is the SourceForge Research Data Archive® (SRDA). Each
month, SourceForge creates a snapshot of the site’s backend database, cleans the data of
private and sensitive information, and then makes it available to Notre Dame [152], [153].
The SRDA is a collection of these snapshots.

Requests for access to the SRDA can be gained by completing a questionnaire and
signing a sublicense agreement [154]. Access is granted on a case-by-case basis [155], and

the data is only available to academic researchers’ [154], [155].

>http://www.nd.edu/~oss/
Ohttp://srda.cse.nd.edu/

Prior to the creation of the SRDA, SourceForge’s policy did not limit research data to
be used for academic purposes only [150].

113

Access is available only via the web or a web service [153]. The SourceForge
contract prohibits Notre Dame from providing dumps to researchers for local processing

[154].

4.1.3.2 FLOSSmole

FLOSSmole®, formerly OSSmole, is an open source project with the purpose of obtaining
and making publicly available data about open source projects [156]. The project maintains
a set of tools for spidering forges and converting the collected data into multiple formats
[156]. Crawls of forges are performed regularly and the data are made available to the
public. In addition, the software tools employed in the collecting and parsing process are
available under an open source license so that researchers can use them to collect their own
data [156]. Finally, the project accepts data donations, which are then integrated into the
the existing data sets and also made available for public use. Several well-known American
FLOSS researchers are involved with this project.

To increase the quality of FLOSSmole’s data, the HTML of the crawled pages is
also stored in the database [156]. This affords the possibility of reparsing the data at a later
date should a change in the HTML cause incorrect parsing but not be noticed during the
initial processing of the data. In addition, this increases versatility by allowing additional
data not originally extracted from the crawled pages to be added to the database at a later
time.

Unlike the SRDA, FLOSSmole follows the spirit of an open source and makes its

data available to anyone, researchers or otherwise [156]. Both academic and non-academic

8http://flossmole.org/

114

users are welcome to the data and in most cases the data can be retrieved and used without

any form of registration. Data is available in three formats [157]:

1) Flat files: These are text files containing parsed information.

2) SQL files: These files contain “CREATE” and “INSERT” statements and can be used

with the open source MySQL database’ to create a local copy of the database.

3) Direct database access: This is an existing online MySQL database populated with

all the FLOSSmole data that interested users can request remote access to.

In addition to SourceForge, FLOSSmole also collects and/or maintains donated data

from the following sites [157]:

« freshmeat (http://www.freshmeat.net)

RubyForge (http://rubyforge.org)

o OW2 Forge (http://forge.objectweb.org)

o Free Software Foundation (http://directory.fsf.org)

« SourceKibitzer (defunct) (http://www.sourcekibitzer.org)

« Savannah (http://savannah.gnu.org)

« GitHub (http://github.com)

FLOSSmole is itself partially hosted at SourceForge and, more recently, partially

hosted at Google Code.

http://www.mysql.com/

115

The first crawls were performed in 2004 [157]. Different forges have been added
over the years so data dating back to 2004 is not available for all forges. The intended
collection interval is 2 months but complications sometimes cause larger gaps in the data.
For example, a major site redesign of SourceForge in July 2009 broke FLOSSmole’s tools
and caused regularly-scheduled crawls to be missed. In addition, forges differ in the data

that is available; therefore FLOSSmole captures different data from different forges.

4.1.3.3 FLOSSMetrics

FLOSSMetrics'® is the newest of the three pre-built databases, commencing work in
September 2006 and scheduled to last 36 months [158], [159]. Funded by the European
Commission, and including the involvement of many European leaders in FLOSS research,
this project aims to create and analyze a large-scale public database using existing data,
proven techniques, and already available software tools [158], [159]. Providing data for
the calibration of FLOSS simulation models is included in the list of reasons for creating
FLOSSMetrics [158].

FLOSSMetrics collects data from four types of data sources [159]:

1) SCM repositories

2) Source code

3) Mailing list archives

4) Bug tracking systems

1Ohttp://flossmetrics.org/

116

Data is collected in an automated fashion via a set of software tools [159]. These
tools, many of them existing prior to the start of the FLOSSMetrics project, locate FLOSS
repository data, parse SCM logs, analyze source code, parse mailing lists, store information
in database tables, etc. The tools are open source themselves and are available from http:
//forge.morfeo-project.org/projects/libresoft-tools/ .

FLOSSMetric’s data is available to the general public via http://melquiades.
flossmetrics.org . Database files can be downloaded on a per project basis or as an ag-
gregated file covering all projects [160]. An API to access the data is also under devel-
opment [160]. Data is divided into three categories: SCM and code metrics, mailing list
information, and bug tracking information [160]. Data for all three categories may not be
available for all projects [160], [161]. Although FLOSSMetrics started collecting data more
recently than FLOSSmole and the SRDA, historical data is included since the data inputs
(e.g., SCM logs, mailing lists, and bug tracking logs) inherently contain historical data.
This is a distinct advantage over crawling methods used by FLOSSmole, which relies on
regular collections to create historical data.

FLOSSMetrics continues to increase the number of projects included in the
project’s data. An initial run of 1000 projects was available in March 2009 [159]. As
of December 2009 this had expanded to include at least partial coverage of approximately
2800 projects [161], [162]. A goal of the FLOSSMetrics project is to provide data for a

minimum of 5000 projects [158], [159].

4.1.4 Extraction Tools

A final method for obtaining data on FLOSS projects is to use extraction tools. A collection

of tools, for example, is used to build the FLOSSMetrics database. However, not all projects

117

are included in the FLOSSMetrics database and therefore the tools may be used to locally
supplement the existing data with projects of interest currently missing from the data set.
There may also be additional project information that is available but not currently extracted
by any of the pre-built databases. In these cases, it may be necessary to use and/or modify
an existing extraction tool in order to obtain the desired data.

The following list provides a short sample of the data extraction tools that are avail-

able:

« OSSmole Tools: Tools to spider and retrieve project information from SourceForge,

currently used by FLOSSmole [163], [164].

o CVSAnalY: Tool to parse SCM logs and store extracted data in a database [165].
Data extracted include the date, files being modified, type of modification, developer
making the commit, etc. [165]. CVSAnalY supports CVS, SVN, and Git repositories

[165].

« Mailing List Stats: Tool to analyze mbox format email files and store extracted data
in a database [166]. Data extracted includes email addresses, email fields (e.g., to,

from, date, subject fields), message body, mailing list info, etc. [166].

« Bicho: Tool to analyze bug tracking software logs and store the extracted data in
a database [167]. Data extracted includes bug id, description, priority, status, com-

ments, etc. [167].

For full details on the exact data collected by each of these tools, please see the

software’s associated documentation.

118

4.1.5 Data Sources Used

All of the above described data sources were considered for this research, but due to a
number of factors (e.g., availability of desired data, ease of retrieval, data format, data
licenses), only the following subset were used in this research: existing surveys and liter-
ature, manual retrieval from SourceForge site, FLOSSmole and FLOSSMetrics databases,

and CVSAnalY extraction tool.

4.2 DATA CAVEATS

With the large number of data sources collecting copious amounts of data, FLOSS initially
appears to be ideally suited for modeling, having sufficient data for calibration and val-
idation purposes. Unfortunately, a closer examination of the data available reveals there
are considerable problems, and what initially appears as ideal data may, in some cases, be
unusable.

The following sections provide a brief overview of generic problems with online

data, followed by problems specific to the FLOSS data used in this research.

4.2.1 Problems with Online Data

Most data sets contain errors, creating what is known as “dirty” data. No matter how care-
fully data is acquired, virtually all large data sets contain at least some errors [168], [169],
[170]. These errors may be introduced by humans, bad sensors, etc. For example, a FLOSS
developer may enter incorrect metadata about a project. Some errors result in data in-
consistencies that may be detectable by creating impossible combinations or contradictory
information (e.g., having a null value where null is not an option, or having two people with

the same social security number) known as data integrity violations.

119

Combining data from different sources may be necessary in order to obtain a suf-
ficiently large or unbiased data set. Data collected from different sources may be hetero-
geneous, causing complications when combining the data into a single database. There
also may be differences in data schemas among data sources that must be resolved us-
ing techniques such as transformations [171]. Even if the schemas are identical across
sources, there may still be differences in the conventions used to collect the data at each
source [172], yielding data inconsistencies that may be difficult to detect. Duplicate data is
also a potential problem when combining data from multiple sources. Detecting duplicate
data may be non-trivial, such as when time stamps for data vary slightly but all other fields
are identical [172], or when errors already exist in the data. The detection and elimination
of duplicate data is commonly referred to as the merge/purge problem [173].

Missing data is another common complication. Cases where a field is populated
for some records and missing for others can yield distorted, misleading, or even useless
query results. Removing records with missing data may result in a biased data set. Null
values may be introduced when combining data from heterogeneous sources or performing
imperfect transformations, in addition to the situation where data was never entered at the
source.

Data is not always available in structured formats. Extracting data from unstruc-
tured or semi-structured sources increases the chances of creating dirty data. For example,
screen scrapers may attempt to extract data fields from HTML. A small change in a web
page may cause a scraper to miss certain fields or to collect the wrong information en-
tirely [174].

Data cleansing is a field that includes techniques to detect errors in the data, detect

missing data, assess the usability of the data, etc. [168], [171]. In some cases it may be

120

possible to fix dirty data that is detected [168]; in other instances, dirty data may simply be
removed [171].

Although all data sets are expected to contain errors, when the number of errors is
small with respect to the total number of data points, statistical methods, such as the law of
averages, may reduce the effects of these errors.

In order to extract meaningful data from any data sources, it is necessary to first
gain an understanding of the data, to investigate for potential problems and artifacts, and in
general to critically evaluate the data. Errors will still be overlooked, especially for large
data sets, but a careful prescreening of the data will help reduce erroneous and misleading
query results (i.e., garbage in, garbage out). Having domain knowledge about the data may

help detect problems.

4.2.2 Problems with FLOSS Data

A brief examination of the problems encountered while processing FLOSS data is provided

in the following subsections.

4.2.2.1 Historical Data

Examining historical data provides information about the progress of FLOSS projects. For
example, historical data can be used to examine the growth of a project over time. This
means relying on data that is collected, potentially, over years. The temporal dimension of
historical data introduces potential data complications of which to be wary.

The first concern is that data collection spread over time is consistent. Not sur-
prisingly, sites such as SourceForge have changed over the years in order to better serve the
community. This means making improvements to the system (e.g., enhancing the user inter-

face), adding new tools as they become available, and removing obsoleted features. These

121

changes have both direct and indirect effects on the data that is collected. For example,
SourceForge maintains an activity ranking of all projects. This is an aggregate metric that
attempts to provide information indicating how “active” a project is, taking into account
three components: project traffic (e.g., downloads), development (e.g., age of most recent
release), and communication (e.g., forum posts) [84], [150]. In February 2005, Source-
Forge replaced the formula for calculating activity with a new formula that the SourceForge
team felt better reflected the concept of activity [150], [175]. As a result, project activity
rankings before and after this date cannot be directly compared. One must be careful if
using this data to only sample before or after February 2005, or to perform transformations
so the activity ranks are the same.

As another example, this one of tool changes that affect historical data, SourceForge
originally offered CVS as the only option for an SCM tool. SVN was later developed to
address some of the shortcomings of CVS [176] and around 2006, SourceForge added SVN
as an option. Existing projects now had the possibility of migrating from CVS to SVN;
projects could also migrate back to CVS if they found they preferred it. Likewise, for the
first time new projects were faced with the choice of selecting a repository management
system (also with the possibility of changing systems at a later date). This resulted in
some projects using CVS, some using SVN, and some using both (presumably so project
administrators still had access to the old versions of the project even while using the new
tool). In addition to creating heterogeneous data that made it difficult to compare SCM
statistics for projects using different tools (not to mention heterogeneous data for single
projects that switched between CVS and SVN), this also introduced two problems that

tainted historical data:

122

1) When migrating to a different tool, the entire software project is often added to the
new system via a single commit. This distorts the SCM data as it appears that most

of the code was written at a single time, by a single developer, etc.

2) Some projects migrated to a new tool and then chose to turn off the old tool. In this
case, there was no longer any record of the development that had occurred using the

old tool, further distorting the SCM data.

SourceForge has since added other SCM software, including Git [177], Mercurial [178],
and Bazaar [179], exacerbating the problems associated with using SCM data.
SourceForge has also implemented several GUI makeovers/site redesigns to the
SourceForge website. In addition to changing the look and feel of the site, some of the
project data was relocated. For example, prior to a July 2009 redesign, all project meta-
data was available on a project’s SourceForge homepage. After the redesign, some of the
metadata, such as a project’s development status and the number of developers working on
a project, was relocated so it was included only in search results but no longer listed on a
project’s summary page. In addition to relocating these data, the data became more obscure
by requiring a search option, which by default is off, to be turned on in order to view the
information. Project metadata is important to the research presented here and after the site
redesign it appeared it was no longer available on the SourceForge site. I was about to sub-
mit a bug report when I discovered another frustrated site user had found the data and was
requesting it be relocated to the project summary page'! [180]. When significant changes

such as these are made, not just to the look and feel but also to the contents of the site,

SourceForge closed the bug report, declaring this was actually a feature request, not a
bug. As of August 25, 2011 project metadata is still not listed on a project’s homepage.

123

it affects the historical data. In this case the metadata (or lack of metadata) changes how
people locate, evaluate, and choose projects on the SourceForge website. As with the other
changes affecting historical data, there is likely a difference in data logged before and after
a major SourceForge site redesign and thus researcher must be wary when using data that
spans these dates.

SourceForge’s site redesign also changed how project administrators update meta-
data about their projects. The ease with which this data can be updated affects the data’s
accuracy, which in turn affects historical data from before and after the changes were made.

There are additional problems that are unique to collecting data via crawling. For
example, even small site redesigns can break spidering and parsing software, resulting in
holes in historical data. Although FLOSSmole’s goal is to collect data from SourceForge
every two months [181], the major site redesign in July 2009 has resulted in a much larger
gap while the FLOSSmole team scrambled to update the spiders and parsers [163], [182].
Depending on the frequency of site changes, as well as the crawling frequency, this may or
may not affect research using the data. FLOSSmole developers have expressed great frus-
tration about the constant need to rewrite software to adjust to the changes made by Source-
Forge [182], [183]; there is even talk of abandoning SourceForge crawls entirely, since there
are other sources for this data, and focusing instead on crawling the sites for which FLOSS-
mole collects data exclusively [182], [183]. To decrease the impact of changes and increase
the collected data quality, FLOSSmole stores the spidered HTML files in the database. By
doing this, parsers can be changed and rerun at a later date to correct data extraction prob-
lems. Unfortunately, changes to the structure of a website may cause a spider to not crawl

and store the correct pages, an error which cannot be corrected at a later time.

124

Spidering is an inherently expensive task; crawling activities frequently include
built-in delays to prevent overloading a server and being denied access to the data via de-
nial of service attack protection mechanisms. FLOSSmole has, for example, not collected
certain available data, such as data not accessible without visiting another set of web pages,
simply because the cost of visiting additional web pages is too high [183]. In addition, not
all components of large sites like SourceForge may be fully functional or even available
during a crawl. In these cases, parts of the crawl may be missed due to partial site out-
ages (see [184] for an example of where this has occurred in a FLOSSmole crawl). Direct
database dumps, such as SRDA, are not subject to this problem.

A final problem with crawled data is it may not include data from the inception of
the repository. For example, over the years FLOSSmole has expanded the number of sites
that are crawled. Therefore, the data archives for some sites may not include very old data,
even though the particular forge may be older. A direct data dump of a forge, on the other

hand, does include data from day one of the repository’s operation.

4.2.2.2 Cleansing Data

The goal of data cleansing is to both 1) detect dirty data and 2) fix errors whenever possible.
Unfortunately, the best that can sometimes be done is to simply discard the dirty data and
retain the clean data. As long as only a small percentage of the data are dirty, this may be
an acceptable data cleansing method. Lamentably, some of the data encountered during this
research included fields that were frequently populated with erroneous values. Having no
way to fix the data, these records were discarded; what remained was sometimes too small
a data set to be useful. See Section 6.2.2.1 for examples of data filtering that resulted in

substantially smaller subsets of the starting data set.

125

With sufficiently large data sets, it is possible to minimize the effect of (potentially
undetected) errors using statistical methods (e.g., the law of averages). These methods are
effective in cases where the amount of dirty data is small compared to the size of the data
set. Inherently, because of the sheer amount of data collected on FLOSS, one expects these
methods to be effective. Unfortunately, this research found much of the data to be highly
contaminated and therefore statistical techniques may not be particularly effective.

Finally, care must be taken when filtering the data to avoid introducing unwanted
side effects or biases. For example, the majority of FLOSS projects are unsuccessful and
dormant; these projects produce little interesting data. Consider examining trends in the
number of developers working on a project. The majority of projects will have a single
developer for their entire duration. Filtering out one developer projects may yield more
interesting trends, but it also eliminates a huge number of FLOSS projects. It may have
eliminated the majority of unsuccessful projects (along with a few successful projects).
Thus, the data set after filtering is likely biased towards successful projects. Therefore, one
must be careful when performing any form of filtering during the data cleansing process to
avoid unintentionally introducing undesirable side effects. See [82] for a discussion on how

filtering may affect correlations.

4.2.2.3 Missing and Misleading Data

Regardless of the data source, it is important to carefully examine and understand the orig-
inal data in order to avoid a “garbage in, garbage out” scenario. In particular, there are a
number of caveats in FLOSS data that lead to missing or, worse yet, misleading data. Some
examples of these are provided in this section.

In the case of crawling and parsing to obtain data, there is a problem of variation in

the pages being crawled. Crawling a single source, such as SourceForge, where the avail-

126

able data and layout are standardized, decreases the chances of incorrectly collecting data.
Unfortunately, even sites that use back-end databases and HTML templates to generate their
displayable content contain exceptions and special cases that can lead to missed or incorrect
data being collected. For example, unexpectedly long fields or special characters can break
regular expression searches. [82] mentions difficulties differentiating HTML code from user
names that start with “<”” and end with “>" (e.g. “<foo>"). Misspellings and variances in
case (e.g., “foo.bar@asu.edu” versus “foo.bar@ ASU.EDU”) can introduce bugs in the data
(e.g., treating a single entity as two separate entities). Bad links, such as human entered
URL’s, can also cause problems with spidering. Without manually checking all data, it is
hard to know how many exceptions occurred in a crawling and parsing run. Discovering
even a small number of errors can make one suspicious of the validity of the data [82]. In
cases where pre-built databases are used, such as FLOSSmole or FLOSSMetrics, it may be
wise to read the documentation and mailing lists to understand how the crawls were per-
formed and what problems others have already encountered in the data. Pre-built databases
offer the advantage that, like with FLOSS development, many eyes have already inspected
the data, discovered the problems, and addressed some of the issues, resulting in a cleaner
data set.

Crawlers are also sensitive to site outages. FLOSSmole, for example, has encoun-
tered trouble retrieving the 60 day statistics for projects, which are frequently unavail-
able [184]. While the FLOSSmole spider retries multiple times to retrieve these statistics,
it eventually gives up, leaving a hole in the data collected [184]. If possible, it is recom-
mended to check a site’s status before commencing a crawl [82], although due to the size
of some sites and the amount of time it takes to completely traverse all links, it may not be

possible to complete the crawl without encountering at least some site outages.

127

Some FLOSS projects choose to create a “placeholder” account on a well-known
forge but then host the actual project elsewhere. Presumably, because SourceForge has be-
come the largest open source hosting site, developers like to keep a pointer on SourceForge
so people searching for FLOSS will still find the project. Hosting the project elsewhere
may come as a personal preference, such as for the flexibility to use whatever tools are
preferred by the developers rather than the limited choices provided by SourceForge. Un-
fortunately, this semi-common practice leads to distorted data. For example, the XFree86
Project, an open source implementation of the X Windows System, has a project page on
SourceForge'? but maintains the real project homepage, CVS repository, etc. elsewhere!>.
The data on SourceForge for this project is inaccurate and outdated; the project appears in-
active with version 4.6.0 being release in May 2006 [185]. The external project homepage
includes version 4.8.0, released in December 2008, with evidence of further development
occurring in 2009 [186] and support still being offered in 2011 [186]. Thus, the data on
SourceForge is misleading and regardless of how the data is obtained (i.e., via a manual
visit, an automated crawl, or a direct dump of SourceForge data) will misrepresent the
project. Compounding the problem is that outside hosting seems to occur more frequently
with successful projects. This means that data for successful projects, a small subgroup of
the projects hosted at SourceForge to begin with, is also the most likely to be incorrect due
to hosting offsite. It is difficult to detect projects in this category without human inspection

of the SourceForge project pages.

2http://sourceforge.net/projects/xfree86/

Bhttp://www.xfree86.org

128

The opposite problem also occurs: some projects are founded and developed else-
where and then are migrated to SourceForge. This also produces misleading data, such as
the project start date, which will reflect when the project was registered at SourceForge, not
when development actually commenced. An example of this is Tcl'# [82].

Certain metrics that are commonly applied when measuring FLOSS also have in-
herent complications. For example, the number of times a project has been downloaded is
tempting to use as a proxy for the popularity, or even the success, of a project. The download
count, unfortunately, only shows part of a project’s usage. SourceForge tracks download
counts but only for officially released files. Users are also often granted anonymous read
access to the SCM repositories. This means users can checkout the current developer ver-
sion of the code at any time — without affecting the official download count (although this
will increment a “read” counter in CVS or SVN). For projects that are rapidly developing,
using the latest version may be preferable, as it includes the latest features and bug fixes.
Some projects strive to keep their developer version stable through nightly builds/tests and
encourage users to checkout the latest version rather than official release versions. Since
code checkouts are not included in the download count, the download count will underrep-
resent the actual number of times the software was downloaded. Summing the download
and SCM read counts also does not provide a good popularity measure; project developers,
for example, will frequently checkout and modify code, thus inflating the SCM count even

though the popularity, in terms of number of users, is not increasing.

Yhttp://sourceforge.net/projects/tcl/

129

Some projects are very popular but infrequently downloaded, which further distorts
using a project’s download count as an indicator [82]. For example, projects like vim!>
(a vi-like text editor) are included in many UNIX distributions. Users of UNIX systems
use vim frequently, but a system administrator almost never downloads and installs a new
version of vim. Thus, the download count for certain projects performs as a poor indicator
for measuring popularity.

The number of developers involved with a project is another commonly used metric
that also is problematic. Most projects have a small set of core developers that engage in
the majority of development [51], [77], [78], [79]. However, most FLOSS projects also
accept code contributions from anyone. These fringe contributors typically do not have
write access to a project; rather, peripheral developers submit patches to the core develop-
ers, who then commit the changes to the repository [187]. If simply analyzing the number
of developers via straightforward methods (e.g., on SourceForge, looking at the list of de-
velopers registered to work on a project; in general, analyzing an SCM log and counting
the unique committers), this number will be smaller than the actual number of contributors
since there will be no record of peripheral developers. A more accurate count may be ob-
tained by manually combing through the source code, which likely includes the names of
those who contributed patches (attribution is a requirement of many open source license),
and examining email lists, where contributions may appear in the form of code snippets,
pseudocode, algorithm descriptions, etc. In addition, there are non-traditional developers

that won’t appear in SCM logs. This includes people who have contributed documentation

or taken the time to accurately describe bugs and workarounds, etc. While not traditional

Shttp://vim.sourceforge.net/

130

code contributions, these are crucial in the FLOSS development process to help produce
high quality, usable software.

While much data about FLOSS developers is available, there is almost no data avail-
able about users of FLOSS. This is partially due to the difficulty of collecting user data.
Unlike developers, who must register with a project in order to directly contribute, users are
able to download and use FLOSS projects anonymously. Automated data collection aside,
it is also difficult to target users with surveys, again because the users are largely anony-
mous. Regardless, since users are also stakeholders in FLOSS projects, user data may be
beneficial in better understanding the whole FLOSS process.

Finally, while using existing studies provides a quick and easy mechanism for ob-
taining data, care must be taken in choosing which data are applicable. Modeling FLOSS
requires an understanding of data across many projects, and as already pointed out, collect-
ing data across large numbers of projects can be a difficult task. For this reason, there are
many case studies that look at a single or a handful of FLOSS projects, e.g., [51] looks at the
Apache Web Server, [54], [130], [188] study Linux, [123] analyzes FreeBSD, [79], [189]
consider GNOME, and [187] uses Python as a case study for the research performed. Ob-
viously Apache, Linux, FreeBSD, GNOME, and Python are not the norm; these are wildly
successful projects and therefore are likely different than the average FLOSS project. This
is in fact a problem with most case studies, which almost always consider successful, well-
known projects. Indeed, individual case studies have already shown differences between
successful projects [42] and therefore relying on studies of single or just a few projects may

provide non-generalizable results [42].

131

4.2.2.4 Integrating Data

As outlined in Section 4.1.3, there are multiple sources of FLOSS data. Unfortunately,
the data is heterogeneous and therefore combining across multiple data sources is non-
trivial. Some of the pre-built databases attempt to address this problem: FLOSSMetrics,
for example, collects project data from multiple sites but utilizes tools to homogenize the
data. An example of this is FLOSSMetrics’ use of CVSAnalY to collect the common data
(e.g., committer, date of commit) from multiple SCM systems [165].

The added complications of integrating data from multiple sources make using a
single data source an attractive option. However, using a single source may not be a rea-

sonable option for the following reasons:

1) Limits the number of projects: In many cases, a single data source may not have a
sufficient number of projects to study. This is one reason why SourceForge is popular
with researchers; the site is sufficiently large and thus using data only from this site
eliminates the complications of using multiple smaller sites and combining the data

in order to obtain a sufficiently large group of projects to study.

2) May introduce a bias: Certain sites cater to certain types of projects. For example,
RubyForge specializes in FLOSS projects written in Ruby. Savannah is the home of
GNU projects, introducing a bias towards the GPL and LGPL licenses. Including
multiple sources helps to eliminate (potentially unintentional) biases introduced by

poor sampling techniques.

In some cases, even data that should align perfectly does not. A number of differ-

ences have been discovered between FLOSSmetrics and the SRDA, even though both of

132

these data sets represent the same data source. Understanding why there are discrepancies

can be a time consuming process.

4.3 CONCLUSION

An attractive aspect of modeling FLOSS, as compared to other social systems, is the abun-
dance of data available due to the online nature of open source development. There are
multiple approaches for gathering this data that range from using existing databases in-
tended for research to manually retrieving the data oneself. As has been illustrated, care
must be taken with all the data used, as what initially appears to be clean is often data
contaminated with artifacts, errors, missing components, etc. Therefore, it is necessary to
carefully explore and understand the data before using it. In some cases, it may be neces-
sary to clean the data by performing transformations, pruning, etc. Care must be taken not

to add unintentional biases when going through this process.

133

CHAPTER 5

FLOSSSIMPLE

The progress of digital public goods such as FLOSS relies on projects being able to attract
volunteers. One of the assumptions is that the success of a project affects the attractive-
ness of a project. However, a key problem in the literature of open source software is the
ambiguity of the definition of success. Can it be measured by the number of downloads,
the frequency of releases, the number of bug fixes, or any number of other indicators (see
Section 3.1.2 for a more comprehensive list of possible metrics)?

In this chapter, a very simple, theoretical model of the evolution of populations
of digital pub