
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/276461811

Evaluation	of	FLOSS	by	Analyzing	Its	Software
Evolution::	An	Example	using	the	Moodle
Platform

ARTICLE	·	JULY	2017

DOI:	10.4018/JITR.2015010105

DOWNLOADS

32

VIEWS

13

3	AUTHORS,	INCLUDING:

Gregorio	Robles

King	Juan	Carlos	University

121	PUBLICATIONS			1,301	CITATIONS			

SEE	PROFILE

Jesus	M.	Gonzalez-Barahona

King	Juan	Carlos	University

126	PUBLICATIONS			1,023	CITATIONS			

SEE	PROFILE

Available	from:	Gregorio	Robles

Retrieved	on:	18	June	2015

http://www.researchgate.net/publication/276461811_Evaluation_of_FLOSS_by_Analyzing_Its_Software_Evolution_An_Example_using_the_Moodle_Platform?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_2
http://www.researchgate.net/publication/276461811_Evaluation_of_FLOSS_by_Analyzing_Its_Software_Evolution_An_Example_using_the_Moodle_Platform?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Gregorio_Robles?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Gregorio_Robles?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/King_Juan_Carlos_University?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Gregorio_Robles?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Jesus_Gonzalez-Barahona?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Jesus_Gonzalez-Barahona?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/King_Juan_Carlos_University?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Jesus_Gonzalez-Barahona?enrichId=rgreq-94484087-d321-4f12-bf60-d9e876933028&enrichSource=Y292ZXJQYWdlOzI3NjQ2MTgxMTtBUzoyMzE5MDgxMzkzMzU2ODBAMTQzMjMwMjYxNzQyMw%3D%3D&el=1_x_7

----------- Pre-print version -----------

Refence of the final, published version:

Héctor J. Macho, Gregorio Robles and Jesus M. Gonzalez-Barahona: "Evaluation
of FLOSS by Analyzing Its Software Evolution". Journal of Information

Technology Research 07/2017; 8(1):62-81. DOI: 10.4018/JITR.2015010105

Evaluation of FLOSS by
Analyzing its Software Evolution:

 An Example Using the Moodle Platform

Héctor J. Macho, Universidad Rey Juan Carlos, Spain

Gregorio Robles, Universidad Rey Juan Carlos, Spain

Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain

ABSTRACT

In today’s world, management often rely on FLOSS (Free/Libre/Open Source Software) systems to
run their organizations. However, the nature of FLOSS is different from the software they have
been using in the last decades. Its development model is distributed, and its authors are diverse
as many volunteers and companies may collaborate in the project. In this paper, we want to shed
some light on how to evaluate a FLOSS system by looking at the Moodle platform, which is
currently the most used learning management system among educational institutions worldwide.
In contrast with other evaluation models that have been proposed so far, the one we present is
based on retrieving historical information that can be obtained publicly from the Internet, allowing
us to study its evolution. As a result, we will show how by using our methodology management can
take informed decisions that lower the risk that organizations face when investing in a FLOSS
system.

Keywords: software engineering; software evolution; software evaluation; free software; open source,
Moodle; LMS.

INTRODUCTION

Free/Libre/Open Source Software
(FLOSS) has gained wide acceptance in today’s
technological field, and the number of
organizations that consider it has grown
significantly (Ven, Verelst, & Mannaert, 2008), to
the point that many software-intensive
organizations have adopted it for tasks that could
be considered their core business (Hauge, Ayala,
& Conradi, 2010).

Although most FLOSS projects follow
an open development model, where transparency
allows to take the pulse of the project, managers
still are suspicious of a distributed model where
seldom a single entity governs the project –as it
happens in the proprietary domain, where a
software belongs to only one vendor. In recent
years, a myriad of models have been proposed to
provide managers the tools to perform informed
decisions when adopting FLOSS (Groven,
Haaland, Glott, Tannenberg, & Darbousset-
Chong, 2012). These models take advantage of

the availability of public data of the projects,
offering the possibility to perform a structured
analysis that takes into consideration the
requirements of the organization.

However, these models offer in general a
limited perspective of the project as they try to
summarize some of the current attributes or
characteristics of the projects into a single
parameter, usually a final mark that allows
managers to rank all possible solutions according
to how suitable they are for their organization. In
this paper, we argue that the evolution over time
of many of these attributes and characteristics
provide a wider perspective and allow to have a
more detailed view of the project(s) under study.
The goal therefore is to show, with the help of a
case study (the Moodle learning management
system), that software evolution aspects should
be taken into consideration when analyzing a
FLOSS project for its adoption.

The structure of this paper is as follows:
in the next section, related research on evaluation
of FLOSS projects is presented.
METHODOLOGY introduces the proposed
methodology for evaluating a FLOSS software
from a software evolution point of view. Then,
the case study is presented, together with the
tools used to apply the methodology on it.
RESULTS offers the results of using the
aforementioned methodology to our case study,
Moodle. Finally, conclusions are drawn.

RELATED RESEARCH

This section introduces research and
proposals related to the evaluation of FLOSS
projects. Several FLOSS evaluation frameworks
exist. We will present OpenBRRTM, one of the
first FLOSS assessment models and undoubtedly
the most known one, whose philosophy sums up
many of the characteristics that are common to
most of the evaluation frameworks.

OpenBRRTM

The Business Readiness Rating
(OpenBRRTM)1 is a model is based on the
identification of functional evaluation criteria for
the software under study. These criteria are
supposed to be extracted from the project
repositories with the help of automated tools and
available for the evaluators in form of a
spreadsheet that groups them according to several
aspects. A final step allows evaluators to specify
different weights to the aspects, in accordance to
their subjective importance for adoption, and to
obtain a final mark for the project, which can be
compared to other FLOSS projects. Figure 1(a)
offers a graphical perspective of the model:

normalized metrics are obtained from the FLOSS
project, which are weighted to provide an
intermediate rating to a set of predefined
categories that range from functionality to
usability. These ratings are used (provided that
they are weighted according to their importance
for the evaluating organization) to obtain a global
rating. Ratings range from 1 (unacceptable) to 5
(excellent). Figure 1(b) shows how its proponents
have conceived that the model should be used.
They have identified in total four different
phases. In a first one, all projects of a given
domain are quickly assessed, so that the ones that
most likely seem not to be suitable for the
organization are filtered out. This step avoids
having to perform the rest of phases, which may
be costly in time and resources. Then, the target
usage should be considered, as this will result in
values for the weights in the model. By means of
tools, data on the candidate FLOSS projects is to
be collected and processed in a third phase. The
last phase transforms the collected data to the
various category ratings in the model, and finally
to the final rating. An example of the use of
OpenBRRTM on a FLOSS business intelligence
suite can be found in (Marinheiro & Bernardino,
2013).

Figure 1: (a) OpenBRRTM model. (b)
OpenBRRTM

 assessment phases2.

OpenBRRTM has served as basis for
many other research efforts. Germán et al.
discuss the challenges of automating the process
to obtain a quantitative analysis of FLOSS
projects (German, Robles, & Gonzalez-
Barahona, 2006), while Das et al. use
FLOSSMole data, a public repository that offers
publicly data from SourceForge and many other
FLOSS software development platforms, to
determine OpenBRRTM for FLOSS projects (Das
& Wasserman, 2007). Cau et al. extend the
OpenBRRTM model with metrics for object
oriented FLOSS projects (Cau, Concas, &
Marchesi, 2006).

Other Models

Other FLOSS evaluation models exist
(in (Stol & Babar, 2010) up to 20 models have
been identified), the most notorious ones are
briefly presented here. QSOSTM (which stands for
Qualification and Selection of Open Source
Software2) and the OSMMTM (Open Source
Maturity Model) (Golden,2005) are industry-
led proposals. In addition, from an academic-
industrial consortium, the QualiPSo OpenSource

file:///C:%5Cpaper_IJITSA%5Cpaper.html#ennote-3

Maturity Model (OMM) has been
proposed (Petrinja, Nambakam, & Sillitti, 2009):
this model approaches evaluation from the
perspective of the well-known and popular
Capability Maturity Model and tries to adapt it to
the FLOSS domain. Finally, we can find SQO-
OSS, a model that measures quality of FLOSS
projects (Samoladas, Gousios, Spinellis, &
Stamelos, 2008).

Comparisons

Given the presence of so many models,
comparisons among them have been made. As an
example, we can cite:

Between OpenBRRTM and QSOSTM

(Deprez & Alexandre, 2008), where the
parameters under study, the methodology and the
flexibility are considered.

Among OpenBRRTM, QSOSTM and OMM
(Petrinja, Sillitti, & Succi, 2010), being all of
them applied to Mozilla Firefox and the FLOSS
version of the Chrome web browser (Chromium).
The three models offered comparable evaluations
for the two projects, although the authors noted
that in all of them there were unclear aspects that
made the evaluation work sometimes difficult.

A framework, called Framework fOr
Comparing Open Source software Evaluation
Methods (FOCOSEM) and based on the
systematic NIMSAD methodology
comprehension and evaluation meta-
framework (Jayaratna, 1994), that helps in the
comparison of evaluation models has also been
proposed (Stol & Babar, 2010). This framework
classifies the parameters in several components:
context, user, process, and evaluation.

Other perspectives

Some authors have noted that the
evaluation models lack information regarding
some perspective that they find important, and
have proposed to introduce them. So for instance,
Groven et al. argue to include security
measurements in the frameworks (Groven,
Haaland, Glott, & Tannenberg, 2010), while
Izquierdo et al. see a lack of human factors in the
models and propose to include also quality
models that take the development communities
into consideration (Izquierdo-Cortazar, Gonzalez-
Barahona, Duenas, & Robles,2010).

Our approach could be also seen as
adding a new perspective to the existing adoption
models. In the opinion of the authors, the models
should include historical information of the
projects in the assessment. This idea is not new,
as it has been already been worked on by Deprez

et al. who have been investigating to define
software evolvability for FLOSS
projects (Deprez, Monfilsc, Ciolkowski, & Soto,
2007); Izquierdo et al. extend the concept to
include –in addition to the software artifacts– the
community of contributors (Izquierdo-Cortazar,
González-Barahona, Robles, Deprez, & Auvray,
2010).

Fogel provides a cookbook-like guide to
how to run FLOSS projects successfully,
including many of the details that are considered
in the previous models (Fogel, 2005). However,
the aim of Fogel is far from evaluating the
projects, but to obtain parameters that help
running a healthy software project.

The previous models, including our
approach, are concerned with how FLOSS
software gets introduced into a company or
institution. Kilamo et al. offer an evaluation
framework, called R3 (Release Readiness Rating)
for companies wanting to release their software
(usually offered previously in a proprietary
fashion) as FLOSS (Kilamo, Hammouda,
Mikkonen, & Aaltonen, 2012).

METHODOLOGY

To understand and evaluate the evolution
of a FLOSS project we have chosen a set of
criteria that includes information from the
software product, the software process, the
community and economic impact. These criteria
are:

Growth of lines of code: software size is a
common characteristic used as a proxy
for the total complexity of a software
component. Although initially measured
in modules (i.e., number of source code
files), it is currently widely accepted to
be measured as well in number of lines
of code (Herraiz, Robles, González-
Barahona, Capiluppi, & Ramil, 2006),
without considering blank lines or
comments. The evolution of the size of a
software has been the matter of research
by Lehman and colleagues for long time
and is the basis of the “laws” of software
evolution (Lehman & Belady, 1985;
Lehman, Ramil, Wernick, Perry, &
Turski, 1997). The evolution of the
number of lines of code is a measure of
the vivacity of a project, as one of the
“laws” of software evolution states that
the software has to constantly be adapted
to changing requirements by users.

Similarity between releases: We define
similarity between releases as the

percentage of source code from a
previous version that can still be found in
a particular version. As the software
evolves, changes are introduced. Some of
them may be minor changes, which may
be corrective or adaptive in nature and as
such do not affect other parts of the code
base. However, from time to time,
developers introduce large amounts of
changes that may induce to software
inconsistencies. The study of similarity
over time allows decision makers to
assess the stability of a FLOSS project. If
a major change occurs, they may use this
information to take decisions that affect
external modules or plug-ins.

Growth of cyclomatic complexity: The
cyclomatic complexity, also known as
conditional complexity, provides a
measure of the complexity of the
code (McCabe, 1976). It is known that
cyclomatic complexity, among other
complexity measures, correlates with
lines of code (Herraiz & Hassan, 2010),
so its absolute value would provide the
same information as the growth in lines
of code. Nonetheless, we introduce this
measure in relation to the one of lines of
code, obtaining it as a fraction. Hence,
we will consider the evolution of the
cyclomatic complexity per line of code
for the total of the project, which will
allow us to see how the complexity of the
code base is evolving.

Commits per week: Most FLOSS projects
have a common versioning repository
where developers synchronize their
contributions (which is known as to
perform a commit). The number of
commits to the versioning system is one
of the measures of the activity in the
project. Its evolution over time gives
information on how the project is gaining
or losing activity over time.

Tickets/issues per week: The other major
activity in the project can be observed in
a bug-tracking system, where not only
bug reports but enhancement suggestions
are managed. These systems are mostly
web-based and serve as a communication
means between developers themselves,
but between developers and users as
well. In this regard, the number of
tickets/issues per week is a
complimentary measure to commits in
order to study the activity of a project.

Authors per week: A committer is the person
who performs the commit to the
versioning repository. However, a
committer may not be the original author
of the source code, as committing
requires certain privileges. Therefore,
modern versioning systems include in the
commit meta-data information about the
author in addition to the committer.
Studying the number of authors is a way
of analyzing the number of participants
in the project. The analysis of the authors
in a time frame provides information
about how many active participants the
project has. If this measure is seen over
time it allows to see how the number of
active contributors is changing.

Demographic information: Contributors may
come and go. The previous measure
about authors per week hides this
information as a developer may not be
constantly participating. With a
demographics analysis, we divide
contributors in cohorts and calculate two
measures which we have called aging
(the number of years in the project of
active contributors) and birth (the
number of new contributors in the
community). These measures will allow
us to determine how the human resources
of a project are evolving over time.

Companies involved: FLOSS has gained in
the last decade much attention from the
software industry. As a consequence,
many companies are involved in FLOSS
projects and collaborate with a
community composed of volunteers and
other companies. The analysis of the
number of companies in a project may
provide valuable insight to managers, as
usually the existence of a company in a
FLOSS project means that additional,
commercial services may be obtained. In
addition, if there are many active
companies in a project, it can be seen as
an additional sign for the mid-term
sustainability of the project. It may also
mean that services may be acquired from
several companies that have advanced
know-how on the project, avoiding a
monopolistic situation.

CASE STUDY

Moodle is a FLOSS learning
management system (LMS) widely used
currently in many educational institutions.
Moodle is a web-based tool implemented in the

PHP programming language with a MySQL
database back-end. Its design is modular, so it
offers the possibility to develop modules and
plug-ins which can be aggregated to the main
project. Due to its popularity, Moodle accounts
with a large user base, an active community,
versions in over 100 languages and several
companies that offer several types of support,
ranging from development of modules to hosting
and maintenance.

Although probably the most used
nowadays, Moodle is only one of the many
FLOSS LMS that exist today. Other popular
LMS are Claroline, Dokeos, Chamilo or .LRN.

To apply the methodology introduced in
METHODOLOGY to Moodle, we have used a set
of tools and procedures which are available to
other researchers for replication due to their
FLOSS nature. The data sources are as well
public. Thus, the authors have released a
replication package to allow others to replicate or
even build on top of our efforts3. For every
analysis, the tools that have been used are:

Growth of lines of code: For this analysis
we have used three tools, CLOC4, SLOCCount5

and Ohcount6, as they use different heuristic
algorithms. Hence, it is more important to see if
the results given by the three tools are consistent
(in terms of offering a similar growth pattern)
than to see if they are the same, as this may
depend on the heuristics, the programming
languages that they identify, etc.

Similarity between releases: We have
authored a Python script to compare the two
source code trees and to calculate the similarities
(we have applied the script to one version and all
its previous versions). The resulting index gives
us an idea about the modifications that have been
done and the addition/removal of files. Hence,
two releases are similar if they have an index of
1. If the releases have nothing in common, their
similarity index is 0. Values in between give a
degree of similarity.

Growth of cyclomatic complexity: The
tool chosen for this analysis was PHP Depend7,
given that the most of the Moodle source code is
written in PHP (there are other programming
languages in the code such as Javascript). As
Moodle is a web-based project, elements written
in HTML, CSS or SQL may add complexity to
the final product which has not been included in
our analysis.

Commits and authors per week: We have
obtained the data from Moodle’s git repository
(which contains the history of the CVS
repository, too) using the CVSAnalY8 tool that is

part of the MetricsGrimoire9 platform. The
figures shown in this paper for this analysis are
the result of using VizGrimoire10. The scripts
provided with VizGrimoire can identify
duplicated users (i.e., when the same user uses
several email addresses) with the same email or
the same name for modern repositories. In the
case of CVS, as no email is used (a nickname is
the way of identifying in such systems), the script
cannot merge duplicated users. Using external
information, we have done this process manually.

Companies involved: We have extracted
information from the e-mail domain of the
authors in the versioning repository in order to
assign them to companies. The e-mail address is
obtained by means of CVSAnalY. The
assignation has been manually verified. Moodle
initially used CVS, where email information is
not provided, so we have only analyzed the data
from the git repository.

Demographic information: We have
analyzed the information given by
MetricsGrimoire with VizGrimoire in order to
obtain the results and to show them as a graph.

Metrics about the tickets/issues: To
obtain the information of the Issue Tracking
System we need another tool, Bicho11 (from the
MetricsGrimoire toolkit, as CVSAnalY). The ITS
used by Moodle is JIRA and the support of Bicho
for it is not complete, so we had to modify the
source code of Bicho partially (specifically the
JIRA backend). The obtained information has
been processed with VizGrimoire in order to
obtain information about the issues opened and
closed over time.

RESULTS

In this section, we present the results of
applying our methodology to Moodle.

The analyses of lines of code, similarity
and cyclomatic complexity have been performed
on all versions released by the Moodle project
between August 20th 2002 (version 1.0.0) and
January 13th 2014 (version 2.6.1); both minor
and major releases have been included.

In order to normalize the results for the
analysis of source code, it has been necessary to
remove all non-English translations found in the
versioning system between versions 1.2.0 and
1.5.4 (both included). The reason for doing this is
that outside these versions, translations are
distributed in other packages.

For the analyses involving the versioning
system, we have used the data between
November 22nd 2001 and January 22nd 2014,

file:///C:%5Cpaper_IJITSA%5Cpaper.html#ennote-8

spanning the whole (publicly available) life of
the project. In the case of the Issues Tracking
System, the first issue is dated April 25th 2002.
Analyzing the commit log we found the date
“2009.10.23 05:23:47” as the date of the first
commit in Git, with no others commits on CVS
after it (we have found a previous commit in Git,
but this was followed by commits to CVS). We
have chosen this commit as the first commit of
the companies analyze with all subsequent time
commits.

Two bots (“Moodle Robot” and “AMOS
Bot”) that automatically perform commits to the
repository have been identified. These bots have
been filtered out in our activity, authorship and
company involvement analysis.

Growth and Similarity

When talking about source lines of code
(SLoC) in this section, we are referring to those
source lines of code that are not blank nor
comment lines. Although comment lines are very
important and needed to understand the source
code of a program they may provide a false
results in evolution terms, so it is general
research practice to not consider them for
software evolution studies or effort estimations.

Figure 2: (a) Growth in Source Lines of
Code (SLoC) as provided by SLOCCount, CLOC
and Ohcount. (b) Heat Map Chart of similarity
between different versions. Dark colors are
indicative for a high amount of common source
code.

Figure 2(a) provides the growth in SLoC
of Moodle release after release. It should be
noted that although the three tools provide
different results, they show the same trend. The
difference among the tools are due to various
reasons, but mainly because SLOCCount does
not take the JavaScript language code into
consideration. There are some minor differences
as well due to the heuristics used in the programs.
Except for the quasi-vertical line that appears
between the 1.9.19 and the 2.0.0 versions, the
growth rate is quasi-linear. The gap for 2.0.0 is
because Moodle 2 is a special effort that included
a many new functionalities, but as well a severe
architectural change. As such, its development
was done in parallel with the latest 1.x versions
during several years. Not considering this jump,
linear growth seems to be found consistently
through the whole lifetime of Moodle. Similar
linear growth has been found in many other
FLOSS projects (Robles, Amor, Gonzalez-
Barahona, & Herraiz, 2005) in the past;
sometimes even, as it is the case of Linux, super-
linearity has been reported (Godfrey & Tu, 2000).

This is an interesting finding as the “laws” of
software evolution indicate that the growth
pattern of software projects should become
slower with increasing size (Lehman, 1996), the
rationale being that in addition to adding new
functionality, effort should be devoted to
maintain the already developed codebase. Hence,
this is indicative for a sustainable community in
Moodle, that has achieved a balance that allows
to grow (i.e., add more functionality) while at the
same time performing the required maintenance
on the code.

The similarity heatmap in Figure 2(b)
offers a different perspective of the evolution of
Moodle, as it provides for each pair of releases
how much in common (i.e., similar) their source
code base is. This is an important measure that
complements the growth in SLoC, as the former
is usually granted as a proxy of the growth in
functionality. The similarity measure offers
information about how much the source code
base is modified in absolute terms, including all
types of maintenance (corrective, adaptive and
perfective (Swanson, 1976)) in addition to the
inclusion of new features.

The horizontal and vertical axis start with
the first version of Moodle (1.0.0) and end with
the last one (2.6.1); versions grow horizontally
from left to right and from top to bottom. As the
heatmap is symmetric, only half of it is shown.
Versions with few differences are given by a
black or a dark gray dot (for instance, the
diagonal is completely black as versions have no
difference with themselves), while the color
becomes lighter the more versions differ. Given a
version of Moodle, we can see its differences to
previous versions by following the vertical
colors; the differences with future versions are
given by following the release horizontally.

Major
version

Prev. minor version Simila
r

1.1.0 1.0.9 54%

1.2.0 1.1.1 47%

1.3.0 1.2.1 89%

1.4.0 1.3.5 71%

1.5.0 1.4.5 55%

1.6.0 1.5.4 60%

1.7.0 1.6.9 68%

1.8.0 1.7.7 82%

1.9.0 1.8.14 77%

2.0.0 1.9.19 26%

2.1.0 2.0.10 91%

2.2.0 2.1.10 88%

2.3.0 2.2.11 84%

2.4.0 2.3.11 92%

2.5.0 2.4.8 81%

2.6.0 2.5.4 87%

Table 1: Similarity measure between last minor
and next major version.

 If we analyze the similarity heatmap, we
can see that the architecture of Moodle has
become more stable over time, i.e., there are less
differences in recent versions than in older ones.
This can be observed from the size of the dark
gray triangles. The 2.0 version of Moodle can be
easily identified as it is complete restructuring of
the previous versions. When comparing Moodle
2.0 with other previous major versions such as
1.8 and 1.9 we can see that stability is higher in
the latter. Table 1 gives detailed numbers of the
similarity measure calculated between the last
minor version and the next major version which
gives a detailed overview of this phenomenon.

Observation #1: Growth in terms of SLoC
offers hints of the future sustainability of the
project by observing past trends; in the case of
Moodle, a steady growth is indicative for a
healthy community. Similarity provides
insight into the stability of a software project;
in the case of Moodle, newer versions are more
stable than the older ones.

Activity and Authors

Several questions should be answered
before performing an activity analysis. These are:
Are the commits of all the branches important to
understand the evolution of a project? Do the
resulting commits of a merge branch contribute
to this kind of analysis?

In our case, we think that all the branches
are important, because the development of a
project in not only dependent on the master
branch, but the activity that happens in all the
branches is meaningful. However, if we analyze
the commits of all branches it has no sense to
consider the commits due to merging, which is
what happens when information (i.e., source
code) from one branch is transferred into another
one, usually the main one.

Figure 3: (a) Commits (aggregated). (b)
Commits per week.

Figure 4: (a) Author Activity (aggregated). (b)
Author Activity per week.

Figures 3 and 4 provide information on
the activity of the Moodle project. Figure 3(a)
shows the growth over time of the number of
commits in an aggregated manner. As in the case
of the growth in SLoC, a quasi-linear trend can
be identified, which makes us assume that a
constant effort by developers can be recognized.
However, from the amount of commits per week
shown in Figure 3(b), we see that the activity in
later phases of the project is slightly increasing,
meaning that in reality we have a slight super-
linear trend.

Figure 4(b) shows the number of authors
with at least one commit in a week. To calculate
this graph, in addition to the merging of distinct
author emails performed by the tool, we have
manually merged 52 identifiers in CVS using
information from Github (and other forges) and
Ohloh.

The number of distinct total authors in
the project can be seen from Figure 4(a). Three
different (linear) phases can be identified from it:
a first phase from the beginning of the project
until 2005 with a significant growth, a more
calmed growth from 2005 until 2010, and a
higher growth rate from 2011 onwards. By
inspecting the release dates, we see that the first
breaking point is close to the 1.5 release, while
the second one corresponds to the release of
Moodle 2.0. We are not in the position to provide
reasons for the slowdown in version 1.5, but the
acceleration since Moodle 2.0 is probably due to
a more modularized architecture, one of the main
aims of the new platform.

Figure 4(b) offers the information on a
weekly basis, without aggregating. The graph
supports the aforementioned results: it can be
observed that Moodle had a first period of
activity growth up to 2005 (with a peak of around
25 developers per week), then a second period of
lower activity (with around 10 to 15
developers/week), and that after the release of
Moodle 2.0 the number of participants has
boosted (in recent times over 40
developers/week).

Figure 5: (a) Opened issues (aggregated). (b)
Opened issues per week.

Finally, Figure 5(b) shows the number of
aggregated opened issues, and Figure 5(a) the
same information on a weekly manner. The
growth trend of the number of issues in the
aggregated graph follows a quasi-quadratic trend,
implying that the activity in issues is growing
faster than the ones of SLoC and commits. To
understand the reasons behind this, it should be
noted that FLOSS projects are modeled as
onions, with a small core of very active
developers, a larger amount of contributors, a
larger amount of occasional contributors, an even
larger amount of users (Crowston & Howison,
2005). Projects where the growth of issues
outperform the one in commits/code base are
those where the outer parts of the onion are
growing faster than the inner ones. In other
words, this result is indicative for the Moodle
user base growing faster than the number of
contributors.

Observation #2: Activity measures over time
give information of the project’s vitality and
its future sustainability. In the case of Moodle,
the number of commits is constant over time,
while with version 2.0 the number of authors
is growing significantly. The growth of issues
outperforms the one of commits, meaning that
the user base is growing faster than the
number of contributors.

Mean Complexity

We have investigated the evolution of the
complexity of the source code by means of the
Cyclomatic complexity measure. The Cyclomatic
complexity number gives the number of linearly
independent paths of a fragment of source code
(in our case, we have calculated the number of
different paths of all the source code of a
particular version). As it can be seen from
Figure 6(a), the graph shows a similar behavior
than the one of the growth of source lines of
code. This is consistent with previous
literature (Herraiz & Hassan, 2010), as usually by
adding new functionality there is inherently a rise
in the complexity of the code.

Figure 6: (a) Growth of Cyclomatic Complexity.
(b) Cyclomatic Complexity / Lines of Code.

Nonetheless, the interesting comparison
in this case is related to the rise in complexity per
line of code. By inspecting Figure 6(b), we see
that this increase is not parallel to the number of
lines of code. Versions prior to 2.0 have, with
exceptions for the 1.2.x and 1.3.x releases,
mainly values around 0.23. Starting with version
2.0.0 we can observe an important decrease in the
calculated cyclomatic complexity per line of
code, reaching values close to 0.2 in the most
recent ones. This suggests that the Moodle
project has been working hard on reducing
complexity, by performing preventive
maintenance.

Observation #3: Complexity measures over
time allow to know if the rise in functionality
is not achieved at the expense of poor code
quality. In the case of Moodle, although the
code base is much larger in the latest versions,
effort has been made to lower the relative
complexity.

Involvement of Companies

Modern FLOSS projects are turning into
complex software ecosystems (Messerschmitt &
Szyperski, 2005) where volunteers collaborate
with for-profit companies and non-profit
institutions in a project.

The main company involved in Moodle
is Moodle Pty Ltd (also known as Moodle.com
and Moodle Headquarters, based in Perth,
Western Australia), an Australian company which
performs the majority of the development of the
core Moodle platform. Figure 7(a) shows the
number of commits by company and Figure 7(b)
the number of authors by company. As we can
see in the graphs, although the number of
professional authors working for Moodle Pty Ltd
it is not very high (about 6.69% of the total
authors), the number of commits by those authors
is more than a third part of the total number
commits for the project (36.04%). This gives an
idea of the central position of this company in the
development of Moodle.

Figure 7: Activities per company in number of
commits and distinct authors.

Among the rest of companies, only the
Open University (a British on-line university) has
a significant amount of commits (although still

only around one fifth of the ones of Moodle Pty
Ltd). Considering the number of authors, in
addition to Moodle Pty Ltd, only three other
companies have devoted ten or more developers
to the project (The Open University, NETSPOT
and Catalyst IT).

Some of the involved companies are
Moodle Partners, which means that they are part
of the Moodle Partner network, a commercial
arm in the Moodle environment that have several
benefits (such as using the Moodle trademark) or
may offer official services (like certification and
support). It is interesting to analyze the results of
these companies as only one company, to see
how much commits and authors they contribute
to the project.

Figure 8: Activities per company in number of
commits and distinct authors (Moodle Partners
grouped together).

We can see the results of grouping all
Moodle Partners together in Figure 8. As a result,
when comparing Figure 8 with Figure 7, we can
see that the number of professional authors
affiliated to a Moodle Partner surpasses those of
any other company, including Moodle Pty Ltd.
However, if we consider their activity, they are
well below Moodle Pty Ltd. and even the Open
University, which is not part of the Moodle
Partner network. This can be understood as
Moodle Partners providing mainly services
around Moodle, and not being that much
involved in the development of it.

Observation #4: The study of the involvement
of companies sheds some light into the
software ecosystem of a FLOSS project,
especially signaling structures of power. In the
case of Moodle, the importance of a company,
Moodle Pty Ltd, is clear for its development. A
high number of other companies are involved
in Moodle, although their main activity is to
offer services around it.

Demographics

Figure 9 shows the results of the
demographics study. Aging is “the age of the
active contributors, considering their first
contribution” and birth is “the number of
contributors joining the community”. Age is
calculated as the time between the first

commit/issue and the last one for a given
developer.

Figure 9: Demographics in (a) the versioning
system, and (b) the ticket/issues system.

Figure 9(a) provides the results of the
demographic study applied to the information
from the source code repository. The size of the
birth bars at the bottom suggest that the
community is attracting more developers in
recent times. On the other hand, the size of the
aging bars at the bottom point out that new
developers are being retained. The size of the
aging bars at the top is very small, so current
developers are not very old. In short, the results
show that, while there are some developers that
have been contributing for long in Moodle, a vast
majority of them have been attracted in recent
times.

Figure 9(b) provides the results of the
demographic study applied to the Issues Tracking
System. Again, the size of the birth bars at the
bottom suggests that the community attract more
contributors lately, while the size of the aging
bars at the bottom and at the top are indicative for
new contributors are being retained and many old
contributors still active (there are about 30
contributors still active with an age of 7 years).

Observation #5: The demography analysis
provides information on the human resources
of the project. In the case of Moodle, a high
number of contributors have joined recently,
and the project is successfully retaining them.

CONCLUSIONS

Software runs the world, and in recent
times many organizations are looking for
solutions from the FLOSS domain. However,
many managers are still skeptic about its
adoption and fear hidden risks.

Many FLOSS evaluation models have
been proposed in the last years to assess FLOSS
for its readiness in a professional context. These
models try to provide managers with a tool so
that they can take informed decisions in the
adoption of a FLOSS project. This is done by
handling information that can be obtained from
publicly available repositories, and which are
processed so that a final score of the suitability of
a FLOSS is provided.

In this paper we argue that the previous
models have severe limitations as they do not
offer the overview that evolution of many
interesting parameters offer. So, we have shown
by means of the evolution several parameters
how additional information can be obtained that
is of significant importance in the decision of
adopting a FLOSS software or not. To show its
convenience, we have applied them to a case
study, the well-known learning management
system Moodle. With it, we have proven that the
study of the evolution over time offers many
facets of the software that are not to be neglected
and that barely can be introduced into any mark
that is composed of a simple range between 1 and
5.

Although our approach offers a wide
range of information and data, it is
computationally not much more difficult the
current frameworks, as the input data is in
general the same. What is different is how this
data is offered and how it is analyzed and
interpreted.

All in all, in opinion of the authors, we
see evaluation models and frameworks turning
into other paradigms to include this type of
information. We envision in this sense the
possibility of having dashboards or other, more
visual tools that help managers in taking the best
informed decisions.

ACKNOWLEDGMENTS

The work of Héctor J. Macho, Gregorio
Robles and Jesús M. González-Barahona has
been funded in part by the Spanish Government
under project SobreSale (TIN2011-28110) and by
eMadrid, S2009/TIC-1650, “Investigación y
Desarrollo de tecnologías para el e-learning en la
Comunidad de Madrid funded by the Region of
Madrid. We would like to thank Bitergia S.L. for
the support given with the tools.

References

Cau, A., Concas, G., & Marchesi, M. (2006).
Extending openbrr with automated
metrics to measure object oriented open
source project success. In The workshop
on evaluation frameworks for open
source software.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source
software development. First Monday,
10(2).

Das, A., & Wasserman, A. I. (2007). Using
flossmole data in determining business

readiness ratings. In Workshop on public
data about software development, the 3rd
international conference on open source
systems, ifip (Vol. 2).

Deprez, J.-C., & Alexandre, S. (2008).
Comparing assessment methodologies
for free/open source software: Openbrr
and qsos. In Product-focused software
process improvement (pp. 189–203).
Springer.

Deprez, J.-C., Monfilsc, F., Ciolkowski, M., &
Soto, M. (2007). Defining software
evolvability from a free/open-source
software. In Software evolvability, 2007
third international ieee workshop
on (pp. 29–35).

Fogel, K. (2005). Producing open source
software: How to run a successful free
software project. O’Reilly Media, Inc.

German, D. M., Robles, G., & Gonzalez-
Barahona, J. M. (2006). The challenges
of automated quantitative analysis of
open source software projects. In The
workshop on evaluation frameworks for
open source software.

Godfrey, M. W., & Tu, Q. (2000). Evolution in
Open Source software: A case study. In
Proceedings of the international
conference on software
maintenance (p. 131-142). San Jose,
California.

Golden, B. (2005). Succeeding with open
source. Addison-Wesley Professional.

Groven, A.-K., Haaland, K., Glott, R., &
Tannenberg, A. (2010). Security
measurements within the framework of
quality assessment models for free/libre
open source software. In Proceedings of
the fourth european conference on
software architecture: Companion
volume (pp. 229–235).

Groven, A.-K., Haaland, K., Glott, R.,
Tannenberg, A., & Darbousset-Chong, X.
 (2012). 5 quality assessment of foss.
ITLED4240 Compendium Spring 2012,
79.

Hauge, Ø., Ayala, C., & Conradi, R. (2010).
Adoption of open source software in
software-intensive organizations–a
systematic literature review. Information
and Software Technology, 52(11), 1133–
1154.

Herraiz, I., & Hassan, A. E. (2010). Beyond lines
of code: Do we need more complexity
metrics? O’Reilly Media.

Herraiz, I., Robles, G., González-Barahona,
J. M., Capiluppi, A., & Ramil, J. (2006).
Comparison between slocs and number
of files as size metrics for software
evolution analysis. In Software
maintenance and reengineering, 2006.
csmr 2006. proceedings of the 10th
european conference on (pp. 8–pp).

Izquierdo-Cortazar, D., Gonzalez-Barahona,
J. M., Duenas, S., & Robles, G. (2010).
Towards automated quality models for
software development communities: The
qualoss and flossmetrics case. In Quality
of information and communications
technology (quatic), 2010 seventh
international conference on the (pp. 364–
369).

Izquierdo-Cortazar, D., González-Barahona,
J. M., Robles, G., Deprez, J.-C., &
Auvray, V. (2010). Floss communities:
Analyzing evolvability and robustness
from an industrial perspective. In Open
source software: New horizons (pp. 336–
341). Springer.

Jayaratna, N. (1994). Understanding and
evaluating methodologies: Nimsad, a
systematic framework. McGraw-Hill,
Inc.

Kilamo, T., Hammouda, I., Mikkonen, T., &
Aaltonen, T. (2012). From proprietary to
open sourcegrowing an open source
ecosystem. Journal of Systems and
Software, 85(7), 1467–1478.

Lehman, M. M. (1996). Laws of software
evolution revisited. In Software process
technology (pp. 108–124). Springer.

Lehman, M. M., & Belady, L. A. (Eds.). (1985).
Program evolution: Processes of software
change. San Diego, CA, USA: Academic
Press Professional, Inc.

Lehman, M. M., Ramil, J. F., Wernick, P. D.,
Perry, D. E., & Turski, W. M. (1997,
nov). Metrics and laws of software
evolution - the nineties view. In Metrics
’97: Proceedings of the 4th international
symposium on software metrics (p. 20).

Marinheiro, A., & Bernardino, J. (2013).
Openbrr evaluation of an open source bi
suite. In Proceedings of the international
c* conference on computer science and
software engineering (pp. 134–135).

McCabe, T. J. (1976, December). A complexity
measure. IEEE Transactions on Software
Engineering, 2(4), 308-320.

Messerschmitt, D. G., & Szyperski, C. (2005).
Software ecosystem: understanding an
indispensable technology and industry.
MIT Press Books, 1.

Petrinja, E., Nambakam, R., & Sillitti, A. (2009).
Introducing the opensource maturity
model. In Proceedings of the 2009 icse
workshop on emerging trends in
free/libre/open source software research
and development (pp. 37–41).

Petrinja, E., Sillitti, A., & Succi, G. (2010).
Comparing openbrr, qsos, and omm
assessment models. In Open source
software: New horizons (pp. 224–238).
Springer.

Robles, G., Amor, J. J., Gonzalez-Barahona,
J. M., & Herraiz, I. (2005, September).
Evolution and growth in large libre
software projects. In Proceedings of the
international workshop on principles in
software evolution (pp. 165–174).
Lisbon, Portugal.

Samoladas, I., Gousios, G., Spinellis, D., &
Stamelos, I. (2008). The sqo-oss quality
model: measurement based open source
software evaluation. In Open source
development, communities and
quality (pp. 237–248). Springer.

Stol, K.-J., & Babar, M. A. (2010). A
comparison framework for open source
software evaluation methods. In Open
source software: New horizons (pp. 389–
394). Springer.

Swanson, E. B. (1976). The dimensions of
maintenance. In Proceedings of the 2nd
international conference on software
engineering (pp. 492–497).

Ven, K., Verelst, J., & Mannaert, H. (2008).
Should you adopt open source software?
Software, IEEE, 25(3), 54–59.

Notes

1 http://www.openbrr.org/
2
 Source of both fgures: OpenBRR web page

(http://www.openbrr.com).

3 http://www.qsos.org/
4 The complete replication package,
including

original data sources, software and results
can be

downloaded from
http://gsyc.urjc.es/~grex/repro/2014-ijitsa-
moodle /
5 http://cloc.sourceforge.net/
6 http://www.dwheeler.com/sloccount/
7 https://github.com/blackducksw/ohcount
8 http://pdepend.org
9 http://metricsgrimoire.github.io/CVSAnalY/
10 http://metricsgrimoire.github.io
11 http://vizgrimoire.bitergia.org/
12 http://metricsgrimoire.github.io/Bicho/

http://metricsgrimoire.github.io/Bicho/
http://vizgrimoire.bitergia.org/
http://metricsgrimoire.github.io/
http://metricsgrimoire.github.io/CVSAnalY/
http://pdepend.org/
https://github.com/blackducksw/ohcount
http://www.dwheeler.com/sloccount/
http://cloc.sourceforge.net/
http://gsyc.urjc.es/~grex/repro/2014-ijitsa-moodle/
http://gsyc.urjc.es/~grex/repro/2014-ijitsa-moodle/
http://www.qsos.org/
http://www.openbrr.com/
http://www.openbrr.org/

	----------- Pre-print version -----------
	Refence of the final, published version:
	Héctor J. Macho, Gregorio Robles and Jesus M. Gonzalez-Barahona: "Evaluation of FLOSS by Analyzing Its Software Evolution". Journal of Information Technology Research 07/2017; 8(1):62-81. DOI: 10.4018/JITR.2015010105
	Evaluation of FLOSS by Analyzing its Software Evolution:
	An Example Using the Moodle Platform
	ABSTRACT
	INTRODUCTION
	RELATED RESEARCH
	OpenBRRTM
	Other Models
	Comparisons
	Other perspectives

	METHODOLOGY
	CASE STUDY
	RESULTS
	Growth and Similarity
	Activity and Authors
	Mean Complexity
	Involvement of Companies
	Demographics

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References
	Notes

