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AbstractÐWith the approach of the new millennium, a primary focus in software engineering involves issues relating to upgrading,

migrating, and evolving existing software systems. In this environment, the role of careful empirical studies as the basis for improving

software maintenance processes, methods, and tools is highlighted. One of the most important processes that merits empirical

evaluation is software evolution. Software evolution refers to the dynamic behavior of software systems as they are maintained and

enhanced over their lifetimes. Software evolution is particularly important as systems in organizations become longer-lived. However,

evolution is challenging to study due to the longitudinal nature of the phenomenon in addition to the usual difficulties in collecting

empirical data. In this paper, we describe a set of methods and techniques that we have developed and adapted to empirically study

software evolution. Our longitudinal empirical study involves collecting, coding, and analyzing more than 25,000 change events to 23

commercial software systems over a 20-year period. Using data from two of the systems, we illustrate the efficacy of flexible phase

mapping and gamma sequence analytic methods originally developed in social psychology to examine group problem solving

processes. We have adapted these techniques in the context of our study to identify and understand the phases through which a

software system travels as it evolves over time. We contrast this approach with time series analysis, the more traditional way of

studying longitudinal data. Our work demonstrates the advantages of applying methods and techniques from other domains to

software engineering and illustrates how, despite difficulties, software evolution can be empirically studied.

Index TermsÐEmpirical methods, software evolution, software maintenance, longitudinal studies, time series, sequence analysis,

gamma analysis, phasic analysis.

æ

1 INTRODUCTION

IF anything good can be said to have come out of the Year
2000 systems problem, it can be said that it has created a

heightened awareness of not only how dependent society is
on computer systems, but, more specifically, how long lived
most software is. As a consequence of this, there is greater
understanding of how much of the cost of systems is due to
their maintenance over time.

Unfortunately, while systems professionals have often

gained this understanding, maintenance has continued to

linger as a low status activity professionally, and an

understudied phenomenon in the research community. A

survey of empirical research in software maintenance

reported that only 2 percent of empirical studies in software

engineering focused on maintenance, despite reports that at

least 50 percent of software effort is devoted to this activity

[32], [39], [28]. Empirical software research presents the

researcher with a number of obstacles, including the

difficulties in collecting data and the lack of much existing

theory and models. For maintenance, in addition to these

'normal' set of difficulties the researcher is confronted with

additional concerns, for example, determining which parts

of the system under maintenance have changed, as opposed

to studying new development where, by definition, every
artifact was created during the current project [30].

Within the world of software maintenance research
empirical work on software evolution is particularly scarce.
Consider two standard definitions for these terms:

. Software Maintenance: ª. . . the correction of errors, and
the implementation of modifications needed to allow
an existing system to perform new tasks, and to perform
old ones under new conditions. . . º [20] (emphasis
added).

. Software Evolution: ª. . . the dynamic behavior of pro-
gramming systems as they are maintained and
enhanced over their life times.º [9] (emphasis added).

While maintenance refers to activities that take place
at any time after the new development project is
implemented, software evolution is defined as examining
the dynamic behavior of systems, how they change over
time. Given this definition, it is not surprising that
empirical research on software evolution is scarce. The
researcher has to collect data at a minimum of two
different points in time. This creates practical difficulties
in terms of sustaining support for the project over this
period and/or finding an organization that collects and
retains either relevant software measurement data or the
software artifacts themselves [29].

The term software evolution is used in different ways by
different researchers. While some use the term broadly to
encompass both the initial development of the system and
its subsequent maintenance, here we are focused exclu-
sively on the events after initial implementation, consistent
with its original focus [9]. Different researchers have
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segmented evolution in different ways. Perry focuses on
three sources, or dimensions of evolution, domains, experi-
ence, and process [35]. Domains encompass the real world,
the model of the real world reflected by the system, and any
theories that support the model. All of these may change
over time, forcing the system to similarly evolve. Experi-
ence is gained through use of the system over time and
again may suggest reasons for the system to evolve. Finally,
process, consisting of methods, technologies, and organiza-
tions also impact systems in use. An alternative, but in some
ways similar breakdown is provided by Bennett [10]. He
cites three items: alignment with organizational objectives,
process issues, and technical issues as categories of focus
within software evolution.

Both authors cite the work of Belady and Lehman as
seminal to their arguments. A key notion behind that work
is the concept of software system entropy. The term entropy,
with a formal definition in physics relating to the amount of
energy in a closed thermodynamic system that is unavail-
able for work, has itself evolved over time to be used
broadly as a measure of any system's disorder or
uncertainty.1 As such, this term has had significant appeal
to software maintenance researchers since it suggests a set
of reasons for software maintenance, given that a casual
observer might not otherwise expect software to require
maintenance in the common usage of the term to imply
repair, e.g., automobile maintenance, or even computer
hardware maintenance.

In this paper, we focus on the research tasks and
methods involved in our large scale, multiyear empirical
study of software evolution. While structured, to the degree
possible, as a typical research paper, with an introduction,
prior research, problem statement, methodology, results,
and discussion section, this paper differs from a typical
paper in that the focus is on the research methods rather
than the results or even the research questions or models.
Given both the practical importance of, and the scarcity of
empirical research in, software evolution we feel that
documenting our research process may be particularly
valuable to the empirical software engineering community.

1.1 Empirical Research in Software Evolution

While we have had considerable experience in conducting
software maintenance research as defined above, this
program of research represented our initial work in
empirical study of software evolution. As such, the first
step was to review the literature in the software evolution
area. As described above, a number of conceptual and
practical obstacles conspire to make empirical software
evolution research difficult. Therefore, there is a relative
paucity of empirical work in the area. However, we found a
number of prior pieces of work, all of which are
summarized below, with particular attention paid to the
research method issues, consistent with the goal of this
special issue.

1.1.1 Belady and Lehman

The seminal empirical work in this area is by Belady and
Lehman [9]. Their work in the '70s involved studying 20
releases of the OS/360 operating systems software, perhaps
the first empirical research to focus on the dynamic
behavior of a relatively large and mature (12 years old)
system. They made a number of observations about the size
and complexity growth of the system, which led them to
postulate five ªlawsº of software evolution dynamics:
Continuing Change; Increasing Complexity; The Funda-
mental Law of Program Evolution; Conservation of Orga-
nizational Stability, and Conservation of Familiarity. These
laws were further developed in a paper published in 1980
[32]. In this single-authored work Lehman elaborates on the
meaning of the laws in the context of real systems.
Empirical data are presented relating to a small number
of later releases of a general-purpose batch operating
system.2 First, it is argued, through graphical presentation
of the data, that the five laws of evolution are supported.
Then, a detailed analysis is given to illustrate how the
knowledge gained through the analysis of the first 19
releases of the software can be used to plan release 20. It
demonstrates how some initial estimates were likely to be
optimistic or otherwise inaccurate, until corrected with
access to the historical data, and is a useful demonstration
of the practical application of this type of research to
software maintenance management.

1.1.2 Yuen

The first systematic study of Belady and Lehman's laws was
done by one of Lehman's students, Chong Hok Yuen. His
work was presented in a series of three empirical papers,
published in 1985, 1987, and 1988 [15], [16], [17]. In [15], 19
months of ªbugº (defect) data from a large operating
system were analyzed. Data were analyzed for four
different months (at 1, 7, 13, and 19 months). Seven
dependent variables are described, but only two sets of
results, priority class (severity) and response time, are
described. The author reports a number of results relating
to defect discovery and correction, including the observa-
tions that defects tend to be discovered in batches, and tend
to be clustered shortly after each release. Interestingly, the
time taken to fix a defect did not increase with time, as
might be expected due to complexity growth of the system.
The author suggests that his research can be used to detect
improving/deteriorating situations by observing a trend in
the response time or in the number of outstanding fixes and
thereby allow managers to take actions to improve process
and system performance. In [16] Yuen tests Belady and
Lehman's five laws of evolution dynamics. He re-examines
three different systems from Belady and Lehman, plus
several other systems, and looks at a variety of dependent
variables, including the number and percentage of modules
handled. The data are evaluated using the Runs, Turning
Points, and Phase Length tests. After reexamining the data
from previous studies, the characteristics observed for OS/
360 did not necessarily hold for other systems; in particular,
while the first two laws were supported, the remainder of
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1. Note that entropy has been adopted in other contexts, particularly
information theory, which will not be applied here. However, for an
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(ªconceptual entropyº) [20].

2. It appears that some of these data are also analyzed by Yuen in his
work. See citations below.



the laws were not. However, the author notes that these
latter laws are more based upon those of the human
organizations involved in the maintenance process rather
than the properties of the software itself. In [17] Yuen
continues his examination of data from the ªBº operating
system, this time conducting time series analysis on the
number of ªnotices.º These notices were information issued
to the commercial users of the system, detailing how to
avoid, circumvent or patch the error which it describes until
the error is properly mended in a subsequent official release
of the operating system. The author notes that previous
studies of what he terms ªglobalº maintenance data
observed at the ªglobal levelº tend to show few patterns,
if any. These results were previously interpreted as
ªinvarianceº and ªwell-defined averagesº and led to
Evolution Dynamics. This paper examines the maintenance
of a large piece of software at a ªsublevel,º as well as
ªglobal level,º to understand how maintenance observed at
the ªsublevelº contribute to the observations made at the
ªglobal level.º Data were analyzed for 168 calendar week
data points, with five releases. The dependent variable is
the number of ªnoticesº per week. In addition to the tests
from [16], the author also uses Time Series Analysis/
Spectral Analysis techniques (correlogram, chi-square,
autoregression, autoregression moving average) as well as
linear filtering (moving average technique). The author
reports a variety of results, including the fact that external
factors seem to play a large role in determining the
amplitude of each peak and the interval between successive
peaks.

1.1.3 Tamai and Torimitsu

Tetsuo Tamai and Yohsuke Torimitsu used a questionnaire
survey of Japanese organizations to examine business
application software replacements over a 5-year period.
They report a number of descriptive results for their 95 data
points, including the fact that smaller scale software tends
to have a shorter life, and that administrative type
applications (e.g., personnel, accounting) tend to have
longer life than business supporting type applications
(e.g., sales support, manufacturing).

1.1.4 Cook and Roesch

Cook and Roesch examined 10 releases over 18 months of a
real time telephone switch from a German telecommunica-
tions firm [19]. Their primary focus was on an exploratory
factor analysis of software metrics for complexity, and in
particular, the authors conclude that information metrics
performed relatively the best vs. other metrics, such as
Halstead and McCabe metrics, and simple lines of code.
However, they also examined the evolution of the system
over 18 months of data, and argued that they found
support for the laws of evolution, citing continuing change,
increasing entropy, and total change not being uniform. The
system grew from 223 functions to 359 functions during the
period studied.

1.1.5 Gefen and Schneberger

Gefen and Schneberger explored two distribution patterns
of software maintenance modifications (constant and
decreasing) to determine if the software maintenance

distribution is homogeneous [22]. The authors studied
Software Problem Reports (SPRs) from a 4GL system.
Monthly data (29) points were collected. These SPRs were
characterized by modification type (corrective or adaptive),
plus the number of new ªapplications.º In addition, they
tracked the number of modifications caused by previous
modifications. They noted that the rate of maintenance
modifications decreases over time in the aggregate, but not
if viewed in individual phases, which they describe as
ªstabilization,º ªimprovement,º and ªexpansion.º

1.1.6 Basili et al.

A relatively more recent study by Basili et al. examined 25
software releases of 10 different systems at NASA Goddard,
including over 100 software systems totaling about 4.5
million LOC [8]. A focus of the study was to characterize the
types of maintenance activities and examine both the total
effort and the effort distributions across these maintenance
projects. Data collection lasted 18 months. The study looked
at the three Swanson maintenance change types (corrective,
adaptive, perfective) and a set of maintenance activities for
each. They found that error correction efforts, typically
small changes, required significant isolation activity, while
enhancements required more time on inspection and
certification. Effort for design and coding and unit testing
(CUT) were similar for the two types. Statistical analysis of
these differences was necessarily limited. Pie charts on
effort percentages by task type by system and on Swanson
typology are presented. Similar to earlier work in new
development, this paper argues against small releases,
presumably due to scale economies [6], [5], [7].

1.1.7 Lehman et al.

Most recently, Lehman and his colleagues have begun a
new series of investigations into software evolution, labeled
the FEAST project [33]. In an early paper, they describe an
empirical analysis of an 8-year old financial transaction
system. Of the total of 100 releases (including very small ad
hoc releases for specific clients), the researchers examined
21 releases spanning 5 years of evolution. For each release
they noted its size in terms of number of modules and the
number of modules changed. In addition, some statistical
modeling was also done, developing a growth model for
module size per release using an inverse square model. One
of the results of this model was that the observed pattern of
system growth was established by the sixth release.
Interestingly, as in the case of the earlier OS/360 study,
the final few observations are seen as outliers to the
generally smooth growth model. This paper also updates
and summarizes what are now eight laws of software
evolution.

All of these previous studies are summarized in Table 1.
Briefly, the overall area can be summarized in a number of
ways. First, and foremost, is the general paucity of any kind
of empirical work. As noted above, this can be attributed to
a variety of practical concerns evidenced in all empirical
work in software maintenance, plus the additional obstacles
facing software evolution work. And, within that small set
of work, the greatest contribution has been made by Belady,
Lehman, and their student, Yuen, suggesting that the total
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amount of completely independent research is even smaller
than Table 1 would suggest.

Further examination of Table 1 reveals that prior
researchers have generally been limited in the sophistica-
tion of their analysis due to the small sample sizes created
by focusing on, for example, system releases as the unit of
analysis. This means that typically only single variable OLS
regression models have been estimated. Exceptions to this,
including Yuen, employ time series analysis on larger data
sets. However, generally few results were generated by his
time series analyses. (Some possible reasons for this are
suggested in the results section of the current paper.)
Finally, the work has been disseminated almost exclusively
through conference proceedings, and within those, primar-
ily the Conference on Software Maintenance, which are
generally less accessible to researchers interested in soft-
ware evolution than archival journals.

2 RESEARCH APPROACH

2.1 Overview

Having completed the above review of the literature, we
designed our research program to maximize its contribution
to this stream of work. First and foremost, we were
interested in conducting a longitudinal empirical study of
software evolution, as much of the prior work in this area

has been cross-sectional, limited in scope, or conceptual.
Second we preferred to study actual business systems in
real organizations. It is valuable to observe how software
evolves in the real world because this observation can be
used to help build theories of software evolution that can be
generalized to other commercial organizations. Finally, we
sought a research site that collected rich, detailed, high
quality change history data on software systems over time.
From the point of view of research methods, we were most
interested in those that exploited the longitudinal and
detailed nature of the data we were planning on collecting.

2.2 Site Selection and Data Evaluation

We selected a large United States midwestern retailer
(hereafter referred to as the Retailer) as our research site.
This site is ideal in terms of meeting our objectives. The
Retailer has a large, centralized Information Systems (IS)
department that handles information processing for all of
its various department stores. The centralized location
provides a convenient point of access for data collection.
The Retailer's IS department has separate development and
maintenance units. This organizational design contributes
to the Retailer's ability to better control, manage, and
measure maintenance activities [44]. The maintenance unit
tracks longitudinal data relating to changes, costs, and
effort to maintain all of the systems under its area of
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responsibility. Many maintenance personnel have worked
only in the unit for a long time (on average, 8-10 years), and
many of the maintenance supervisors have been with the
unit since it started in the '70s. This stability of personnel
and focus on tracking maintenance performance results in
databases with high quality data on software evolution that
extend over a period of more than 20 years.

2.3 Data Collection

We extracted software change events from histories or logs
that were written by maintenance programmers each time
they updated a software module in the application
portfolio. Logs were kept for more than 25,000 changes to
3,800 software modules in 23 different COBOL business
systems from the beginning of the early '70s, when many of
the systems were originally written, until the present. The
COBOL systems represent more than two-thirds of the
functionality accomplished by the Retailer's information
systems portfolio. The kind of data available in the change
logs includes the original software module creation data
and author, the function of the module, the programmer

making a change, the date of the change, and the
description of the change. For an example of such a change
log, see Fig. 1.

Such documentation allows the unit of analysis for this
research to be the change event, of which there were
approximately 25,000 during this period. Note that this
creates the opportunity for a much larger sample size
than has been the case in empirical studies of this type,
which have typically studied on the order of 25 units [8],
[9], [22], [33].

2.4 Data Transformation

Change logs were used to identify and classify change
events for each software module in a system. We developed
a coding scheme to categorize each change event that relies
upon and extends the standard industry categorization for
software maintenance activities [26]. Maintenance events
were initially categorized into three basic types: corrections,
adaptations, and enhancements [43]. We further refined and
elaborated these three basic maintenance types into 30
subcategories (Table 2) that were drawn from classification
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schemes from prior research for analyzing maintenance
activities [12], [37].

To classify each event in a change log, we adopted a

content analytic approach (Krippendorff, 1980) using a
combination of latent and manifest coding techniques.

Manifest coding involves looking through the text of the
change log for visual occurrences of certain keywords.
Latent coding identifies the underlying meaning in text of

the change log when keywords are not sufficient to
categorize events. Both approaches to coding were neces-

sary, as the maintenance programmers were not always
completely consistent in describing maintenance events
when they logged their maintenance activities.

2.5 Data Validity and Reliability

We employed three independent coders3 to content analyze
the change logs. The coders were chosen for their in-depth

knowledge of the information systems field so that they
could identify terms and acronyms and categorize events

accurately. Because of the sensitivity of data dependent
research to error, it is important that measures be as reliable
and valid as possible.

We, therefore, implemented a number of techniques and

procedures to maximize inter-rater reliability and to assess
and improve coding validity. A coding flowchart (Fig. 2)

was developed and helped to provide a consistent way to
classify change events. A standard set of coding procedures
and training materials was developed, and each coder was

instructed in the procedures. Finally, coders were instructed
to refer any change event that could not be classified using

the flowchart to the researchers for resolution.

To help ensure consistency between the coders, several
trial data coding processes were performed. In these trials,
each coder independently coded the same maintenance
events that were randomly selected by the researchers from
the change logs. After the independent coding, the Cohen
coefficient of agreement or Cohen's K for nominal scales
was computed to assess the relative pairwise agreement
between the coders [18]. Systematic differences in coding
after each trial were discussed and resolved, and the coders
independently coded another set of maintenance events.
After the first trial round of independent coding, the
intercoder reliability (Cohen's K) averaged 0:42, indicating
moderate agreement [31]. After the second trial round of
independent coding, the average Cohen's K improved to
0:61. After the third trial round of independent coding, the
average value for Cohen's K exceeded 0:72, indicating
substantial agreement. Given the complexity and length of
our coding scheme, the reliability and agreement between
coders are both quite high and are consistent with numbers
reported in other empirical studies of this nature [27], [41],
[42], [40]. In addition, there was no correlation between
individual coders and the proportions of events assigned to
different codes, suggesting that the coders interpreted the
events in an unbiased manner. Subsequently, the main-
tenance events for the different software systems were
divided equally between the coders, and the events were
coded independently. To test for decrements in reliability
due to ªcoder driftº or exhaustion, we checked a sample of
each coder's work near the end of the coding process
against the second author's coding of the same events. We
found no evidence of a decrease in reliability over time.
And as a final validity check, the researchers randomly
inspected coded events, and did not find degradations in
accuracy. Fig. 3 illustrates a coded change log.

After coding the maintenance events for the modules in a
system, the coders entered the data into spreadsheets that
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3. Note that in this context ªcoderº refers to a research assistant who
codifies data, not to a computer programmer, to whom the term coder is
often applied and whose usage may be more familiar to IEEE-TSE readers.
However, all three coders also had programming experience.



were later imported into relational databases. These rela-
tional databases were designed and implemented to hold
the contents of the coded maintenance events. A database
approach was selected as an efficient and flexible way to
store the vast amounts of change event data resulting from
the coding, and enabled the running of queries and
searches. In addition, the flexibility of an entity relationship
design facilitated creating different views of the data as well
as exporting data in formats suitable for a variety of
software packages for further analysis.

2.6 Descriptive DataÐTwo Representative Systems

While the focus of this article is on the research approach,
we present here some descriptive results relating to the
change events for two representative systems, the Financial
Sales Reporting System and the Manifest Shipping System.
A descriptive profile of the systems is presented in Table 3.

The distribution of change events for these two systems
is presented in Table 4.

Overall, over 81 percent of the changes to the Financial
Sales Reporting System were either enhancements or new
programs, and the same figure was over 83 percent for the
Manifest Shipping System. This is consistent with much
prior research, and supports the need for determining more
detailed change event categories, since the traditional three-
way classification is relatively coarse. In particular, our 30-
category classification scheme appears to be appropriate for
these systems, as each system had examples of 24 of the 30
possible categories represented.

But, beyond these broad notions, a number of more
specific observations can be made about the descriptive
data in Table 3. The top two detailed categories in terms of

frequency for both systems were enhancements to logic and
to data handling. In sum, these two categories account for
38 percent and 44 percent of the total change events for each
system. The top 10 categories in terms of frequency are the
same for both systems, but in somewhat different sequence.
Some differences include:

. enhancements to the user interface occur twice as
often (percentage-wise) for the Manifest system as
for the Financial system

. corrections and adaptations to data handling occur
twice as often for the Financial system as for the
Manifest system

. new programs occur twice as often for the Financial
system as for the Manifest system

. corrections and enhancements to computations
occur more than twice as often for the Financial
system as for the Manifest system.

In addition to the change events, other detailed data
were captured about the systems (presented in Table 3). A
number of observations can be made about the two systems
from these data.

. The Financial system is twice as old and has more
than twice as many modules as the Manifest system.
However, most of the Financial system's modules
are batch, while more than half of the Manifest's
modules are on-line (interactive) programs.

. In terms of lines of code, the Manifest system is
larger, even though it has fewer than half as many
modules. As a result, the average module size for the
Manifest system (3,878 lines of code) is more than
twice that for the Financial system (1,666 lines of
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code). In terms of normalized complexity metrics
(McCabe's and Halstead's primitives), the Financial
system is more complex per line of code. That is, the
Financial system has higher decision complexity,
more unique and total operators, and more unique
and total operands per line of code when compared
to the Manifest system. This implies that the
Financial system is more data and computationally
complex (intensive).

. The Financial system costs 9-10 times more on
average per change, per FP and per LOC to modify
(enhancements, corrections, and adaptations) than
does the Manifest system. The Financial system costs
5-7 times more per enhancement, per FP and per
LOC to enhance than does the Manifest system. The
differences are quite extreme for maintenance
(corrections and adaptations); the Financial system
costs 16-28 times more to maintain (i.e., correct and
adapt) per maintenance, per FP and per LOC than
does the Manifest system.

2.7 Data AnalysisÐConventional Approach
(Time Series)

We first considered time series analysis for analysis of our
change event histories. As indicated earlier, time series
analysis has been employed in past studies by Yuen of
software evolution [15], [16], [17]. In time series analysis,
continuous data are required, and techniques such as
ARIMA (autoregressive integrated moving average) are
used to fit models which indicate systematic patterns in the
data by Box et al. [11]. We analyzed the number of changes
to software systems by time period (which we identified as
a month) to see whether we could model and predict
patterns in the number of changes over time in a system.
We found that selection of a year as the basis for the time
period was too coarse a distinction, and did not result in a
sufficient number of time periods for analysis. But, on the
other hand, selection of day or week as the basis for the time
period was too fine a distinction, and did not result in
sufficient occurrence of changes for analysis. Fig. 4
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illustrates an example of the cumulative number of changes
plotted by month for one of the older systems, a Financial
Sales Reporting System that was more than 20 years old. As
can be seen in this graph, even with a monthly time unit,
there are many time periods in this series where there are
no changes occurring. This data present a problem in terms
of estimating a time series model as the series is not
stationary, i.e., does not have the same mean and variance
throughout [11]. This time series could not be transformed
to be sufficiently stationary despite attempting three
standard transformations: differencing, logarithmic, and
square root. Since the identification process for the auto-
regressive and moving average models requires stationary
time series, we could not estimate these models using the
data for this system.

Fig. 5 illustrates a different problem that we encountered
using conventional time series approaches. This figure plots
the number of monthly changes to a relatively younger, but
more volatile system, the Manifest Shipping System. As can
be inferred from this graph, the series does not appear to be
stationary, but we were able to transform the data using
first differencing into a stationary series. We determined
from the autocorrelation and partial autocorrelation func-
tions that a simple ARIMA (0, 1, 1) model was appropriate.
The coefficient for this moving average model was
estimated using maximum likelihood and was significant
(� � 0:03; t � 21:52; p � 0:00). For this model, the value of �
implies that the difference between consecutive observa-
tions in the series equals the current random disturbance

minus approximately zero times the previous disturbance.
The closeness of the coefficient to zero implies that this
process approximates a ªrandom walkº because the
difference between values is a random step away from the
difference between previous values.

Therefore, we found that conventional time series
models did not provide much insight into the software
evolution process for our data, either because the data were
not stationary or because the data series occurred in a
largely random fashion.4 Furthermore, and perhaps most
seriously for our future research into software evolution, we
found that time series approaches with the focus on
relatively simple, continuous, quantitative variables did
not exploit the richness of our coding categories for the
data.

2.8 Data AnalysisÐAlternative Approach
(Sequence Analysis)

An alternative to time series analysis is an approach from
the social sciences called sequence analysis [2]. Sequence
analysis consists of the identification and testing of a phasic
model or explanation that accounts for the characteristics of
a long series of time-ordered observations. It is based on
analysis of categorical data, rather than continuous data.
The objective of sequence analysis is to identify sequences
of acts or phases in the developmental pattern of behavior.
It results in a map of the interaction consisting of a series of
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time series methods in his analysis [17].



coherent periods or functions following one on another.
Sequence analysis can address questions concerning the
types of development paths, the structural properties of a
process, and the factors influencing different types of
development paths. Sequence analysis has been used to
study such phenomena as diverse as implementation events
in information systems projects [38], group problem solving
strategies [21], hostage negotiations [25], and the career
paths of musicians [4].

In our study, we are interested in learning how systems
evolve over time based upon a rich set of detailed change
events. Specifically, we seek to identify patterns in the
change events, to determine whether these patterns coalesce
into phases or paths along which systems progress, to
understand whether systems follow similar evolutionary
paths, and to analyze why systems may follow different
evolutionary paths. Our intent, therefore, is to study and
develop a theory of the process of software evolution. Given
this objective, sequence analysis which focuses on under-
standing a process is a more appropriate methodology than
the more traditional variance-oriented approaches that
focus on identifying cause-effect relationships such as
regression analysis [3]. It is also possible to link process
and variance methodologies, when the intent is to deter-

mine the causes and effects of different process typologies
[1]. We focus here on sequence analysis methods as we wish
to first understand the process and patterns of software
evolution. The identification, ordering, and comparison of
evolutionary paths can be accomplished using three
sequence analytic methods: phase mapping, gamma analy-
sis, and gamma mapping.

2.9 Phase Mapping

Phase mapping is a method that is applied to sequentially
ordered events and that groups ªlikeº events into dis-
cernible phases. The starting point for phase mapping is a
series of time-ordered categorical event codes. In our study,
the event codes correspond to labels for the change events
in our coding scheme (Table 2), and are sorted by date of
occurrence. Fig. 6 shows the first 20 change events for the
Financial Sales Reporting System and for the Manifest
Shipping System.

The ordered events are then ªparsedº into discrete
phases based upon the assumption that phases are
indicated by consecutive occurrence of a number of events
of the same type. We used a flexible phase mapping
procedure to detect phases in our data. Under this
procedure, a phase is defined when there are at least three
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consecutive events that share the same event type. The

length and complexity of the event data influence the choice

of the number of events that defines a phase. For our data,

we discovered that a rule of minimally four consecutive

occurrences of an event to identify a phase was most

appropriate (a rule of minimally three consecutive occur-

rences resulted in too many detailed phases, and five

resulted in too few phases) [34], [36].
The flexible phase mapping procedure produces a

detailed phase map that describes phases which can be of

different lengths, identifies phase recycling or repetition,

and identifies ªnullº or disorganized periods that do not

appear to cohere as phases. We used the Winphaser

software5 to conduct the mapping procedure, with our rule

of minimally four consecutive event occurrences to identify

a phase. We then manually refined the maps created by

Winphaser to label the null periods or collapse them with
other phases. The maps were normalized (based on a scale
of 100 units) so that the length of each phase represents its
proportion of the original data. Normalization is helpful
when comparing phase maps for phenomena that have
different lengths of event sequences.

Fig. 7 and Fig. 8 show the phase maps for the two
systems. The phase map for the Financial Sales Reporting
System reflects two distinct periods of change in the system
(period 1 occurs between 10 and 30 on the scaled timeline
and period 2 occurs between 45 and 80 on the scaled
timeline). In both periods, significant addition of new
modules to the systems occurred. The first period appears
to be characterized largely by addition of new modules and
corrections until the modules stabilize. The second period
involves more complex enhancements as well as addition of
new modules and does not appear to have many phases of
corrections. A number of phases relate to enhancements
and corrections to computations or algorithms, suggesting
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Fig. 5. Manifest shipping system.

Fig. 4. Financial sales reporting system.

5. Winphaser is a software package for sequence analysis that was
developed by Dr. Michael E. Holme, University of Utah.



that this system may be computationally complex. The
phase map for the Manifest Shipping System on the other
hand, reflects changes that do not appear to coalesce into a
small number of distinct periods. Frequent enhancements to
the user interface suggest that this system may be more
interactive than the other system.

2.10 Gamma Analysis

While intriguing, these phase maps provide only a starting
point for understanding and comparing the evolution of the
systems. A more precise, statistical analysis of the phases is
needed. Such an analysis can be accomplished using
gamma analysis. Gamma analysis [34] provides a measure
of the general order of phases in a sequence and a measure
of the distinctness or overlap of phases. It calculates a
gamma score, a nonparametric statistic based on the
Goodman-Kruskal gamma that assesses the proportion of
ªAº phases that precede or follow ªBº phases in a sequence.
A pairwise gamma score is given by �PÿQ�=�P�Q�,
where P is the count of A phases preceding B phases, and Q
is the count of B phases preceding A phases. Gamma
analysis of a sequence yields a table of pairwise gamma
scores for each possible pair of event types. The gamma
tables for the Financial Sales Reporting System and the
Manifest Shipping System are shown in Table 5 and Table 6.
Note that the gamma tables are approximately symmetric;
the northeast corner is the inverse of the southwest corner
of the matrix.

The precedence score for a phase is the average of its
pairwise gamma scores. The precedence score indicates the
location of the phase in the overall ordering of phases and
can range from ÿ1 to �1. A precedence score close to ÿ1
suggests that the phase occurs toward the end of the
sequence, while a score close to �1 indicates that the phase
occurs toward the beginning of the sequence. The separa-
tion score between a pair of phases can be determined by

the absolute value of the pair-wise gamma scores. It
assesses the relative distinctness of the phases and can
range from 0 to 1. The closer the score is to 1, the greater the
separation of phases. A value of gamma near 0 indicates
that the phases do not precede or follow each other
systematically. Typically a value of 0:50 or greater is used
as a cutoff to indicate that the phases are separate [34]. This
value can be interpreted to mean that the phases are
distinct, and one phase precedes or follows the other at least
50 percent of the time.

For example, referencing Table 5 and Table 6, the
precedence scores of ÿ0:87 and ±1:00 for the Enhance Data
Handling Delete Phase (EnhDatDel) in the Financial Sales
Reporting System and Manifest Shipping System, respec-
tively, indicate that this phase occurs near the end relative
to the other phases for both systems. The separation scores
for the EnhDatDel phase (1:00 in both systems) indicate that
this phase is distinct from the other phases.

2.11 Gamma Mapping

Gamma mapping is the final process in gamma analysis.
Precedence and gamma separation scores are used to
construct gamma maps. Phases are ordered sequentially
on the basis of precedence scores (ordered from �1 to ÿ1).
Boxes are drawn to indicate the degree of separation of the
phases. Phases with a separation score greater than 0:50 are
boxed. Those with separation scores between 0:50 and 0:25
are indicated with an incomplete box. Those with a
separation score below 0:25 are not boxed separately, but
rather together to indicate the high degree of overlap. The
gamma maps provide a concise way to compare phase
typologies.

Fig. 9 and Fig. 10 show the gamma maps for the Financial
Sales Reporting System and Manifest Shipping System.
These figures suggest that while there are some similarities
in the evolutionary phase typologies for the systems, there
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are also significant differences. The gamma map for the
Financial Sales Reporting System begins with a large phase
in which new modules are introduced, and changes are
made to data handling, logic, and user interfaces. The next
phase includes additions and deletions of data handling
and changes to computations. This phase is followed by
separate phases for deletion of logic, corrections to logic,
and adaptations to the user interface. The final phase in the
typology includes deletions of data handling.

The evolutionary phase typology for the Manifest
Shipping System begins with the phase of new module
introduction followed by logic adaptations. The next large
phase includes first a subphase in which logic and user
interfaces are changed and corrected. This subphase is
followed by a subphase that focuses on adds, changes, and
corrections to data handling. The final phase in the typology
focuses on deletions of data handling.

Comparing the typologies for the systems, it appears that
both systems start and end with rather similar phases.
Generally both systems begin with introduction of new
modules and changes to logic and user interfaces. Both
systems appear to have later phases in which logic or data
handling are deleted. However, the intervening phases are
quite different for the systems. Further analysis could

examine characteristics of the systems that may explain
differences in their evolutionary paths. These characteristics
could include business and environmental factors as well as
technical elements of the systems.

To illustrate, one could relate the size, complexity and
cost characteristics of the systems to the event frequency,
phase maps, and gamma maps and use them to make a
number of observations and propositions. The Financial
Sales Reporting system has higher complexity in terms of
data and computations relative to the Manifest system (as
reflected in the normalized complexity metrics). Such
complexity may be correlated with the higher frequency
of corrections, adaptations, and enhancements to data
handling and computations for the Financial system. The
Manifest Shipping system is more interactive as reflected by
the high percent of on-line (62 percent) vs. batch (38
percent) modules. This may relate to the higher frequency
with which the user interface is modified in this system.
Thus, one could predict evolution patterns based upon the
design characteristics and functionality embodied in the
systems. One could also formulate hypotheses to predict the
consequences of following different evolution typologies.
For our systems, the gamma map for the Financial system
appears to be more disorganized and less principled (the
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Fig. 7. Financial sales reporting system phase map.

Fig. 8. Manifest shipping system phase map.



phases are not as separate as in the Manifest system and do
not coalesce into distinct and coherent subphases). This
may suggest entropy in the Financial system. Note that the
average costs to enhance, correct, and adapt this system are
extraordinarily high relative to the Manifest system despite
the similarities in size and functionality (e.g., it costs almost
$6,000 to make one correction to the Financial system, vs.
less than $400 per correction for the Manifest system). One
could, therefore, predict that evolution patterns reflecting

disorganized activity suggest system entropy, and correlate
this with high maintenance costs.

3 RESEARCH APPROACH CONCLUSIONS

3.1 Discussion

Given that this is an article about research methods, it
seems appropriate to focus the discussion on the research
approach taken on this project. Given that empirical
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research in software evolution is so rarely accomplished, in
hindsight, what are seen as the critical success factors and
methodological issues here?

Most important for the success of empirical research on
software evolution is the participation of a good commercial
partner. The minimum characteristics of a good data site for
this type of research must include a site that retains a
significant number of past versions or releases of the
software systems being studied. Unfortunately, since most
organizations do not require these previous versions to
conduct day-to-day operations, they are typically dis-
carded, which means that their value as artifacts in
researching and improving the organization's software
process cannot be tapped. Second, and related to the first,
not only did this organization have the prior system
versions, but the prior versions were meaningful, because
the organization had enforced good change control dis-
cipline. Modifications to systems were consistently logged.
This allowed the research team to recreate the system's
history. Finally, and an overarching criterion, the organiza-
tion was highly cooperative and generous with the research
team, sharing not only their data, but also staff time and
other resources. Without this cooperation, the research
would not have been possible.

Another whole category of critical success factors
includes the recognition that, in order to conduct an
empirical research program of this magnitude, a highly
disciplined research approach is required. The significantly
larger scale of the data (25,000 change events vs. typical 25
releases in prior research) meant that more typical,
relatively ad hoc approaches to such procedures as data
collection and data analysis, would not be effective. In
addition, the scale of the project meant that a relatively
larger research team would need to be assembled in order
to provide both the manpower and the variety of skills
necessary to accomplish the work. Of course, such an
approach is significantly more costly than is usual. In
addition, having a research team implies that attention must
be paid to a variety of coordination tasks: formal proce-
dures, documentation, training, reliability testing, and
database management, to name the most important.

In addition to performing original longitudinal research
in software evolution, we also had the desire to expand
upon prior software maintenance research, e.g., having an
error classification scheme with 30 categories rather than
only the typical three (corrective, adaptive, and perfective).

Such an approach, while desirable from the standpoint of
improving the richness of the data and allowing for more
detailed examination of the process, adds significantly to
the time and cost of the work.

We had both a willingness and a need to consider
analytical approaches from other research domains and
disciplines. The need arose from the relatively limited prior
empirical research in software evolution, which does not
provide a broad base for this work. As a consequence, many
new choices on research methods had to be made. In this
article, we have illustrated one such new method, phasic
analysis from the social sciences. We have found the social
sciences to be relatively advanced in the examination of
historical patterns and processes and believe many of the
methods developed in these disciplines can be gainfully
applied in analyzing the evolution of software systems.

3.2 Summary

In this paper, we have focused on the processes, design, and
structure of our empirical research into software evolution.
We began by reviewing the prior research of software
evolution. Our review revealed a limited number of studies
that have been largely focused in two major areas: under-
standing and describing the dynamics of software evolution
and developing a taxonomy of maintenance categories.
These studies have revealed initial insights into software
evolution, suggesting that there may be recognizable
patterns in the evolution of software systems, and that
such patterns may be associated with system entropy and
other outcomes. While intriguing, the scope of these studies
has been limited in terms of research approach and
empirical data. We argue that there is a need for more
longitudinal research of software maintenance. Many of the
problems in software maintenance are caused by a lack of
precise knowledge of the maintenance process and of the
cause and effect relationships between software practices
and maintenance outcomes. The major benefits and
penalties of software practices for maintenance are realized
over the life cycle of the software, a life cycle that typically
extends to many years and involves many different kinds of
maintenance activities. An understanding of how software
maintenance activities and costs change over time can
inform current maintenance and development practice.
Longitudinal empirical studies of software evolution are
essential in providing the data necessary to perform such
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analyses and develop new software engineering principles
and theories.

We have designed an approach for longitudinal research
that enlarges the scope of the empirical data available on
software evolution so that evolution patterns could be
examined across multiple levels of analysis (system and
module), over longer periods of time, and could be linked to
a number of organizational and software engineering
factors. Our study has involved the construction of a very
large database chronicling, in considerable detail, the
historical growth and change of 23 software applications
over a period of up to 20 years. In order to accomplish this
we first identified and partnered with a commercial
organization with both sufficient raw data and a willingness
to cooperate with the research. We designed and imple-
mented a set of procedures to ensure that the data were
collected, transformed, and analyzed in a highly reliable
manner, so that the final results will have high credibility.
In addition, we have created and adapted new methods and
techniques with which to deal with these data, including
the categorization of maintenance causes into a range of
parameters, and the application of phasic analysis from the
behavioral sciences. We believe that this approach has
created a rich and reliable empirical data set from which a
variety of research results will be driven, beginning with
evaluation of existing scientific theories (e.g., the ªlawsº of
software evolution), and ending with the development of
completely new insights made possible by the novel data.

Other studies of software evolution could build upon
and extend our approach by examining software evolution
in different contexts. It would be interesting, for example, to
compare the evolution of traditional ªlegacyº systems with
systems that have been developed using different ap-
proaches such as object-oriented design. Such a comparison
could be instructive in determining the efficacy of improved
software design methods. Furthermore, it would be
informative to compare evolution patterns across different
kinds of organizations and industries to assess the
importance of environmental factors in driving software
evolution. Finally, it may be useful to examine the historical
empirical data we have collected by employing other
methods such as simulation to predict the occurrence of
evolution patterns in software systems.
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