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Abstract. Monitoring the performance of processes is often considered critical 
in classic engineering fields. However, in the area of software engineering 
(and especially in the Open Source context) it seems that the literature has not 
yet taken into consideration the problem of identifying the process 
characteristics and performance of debugging. The aim of this paper is the 
identification of the performance characteristics of the bug fixing process of 
Open Source applications, focusing on continuity and efficiency indicators. 
The importance of such indicators is even more relevant today, since Open 
Source software is now adopted also in many business contexts. We have 
analyzed the debugging process of 9 active and popular Open Source projects, 
collecting a dataset comprising more than 65,000 closed bugs. Results have 
highlighted four types of bug fixing processes that can be distinguished by 
considering temporal continuity and efficiency dimensions. 
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1 Introduction 

Debugging is defined in [9] as “the activity of locating and correcting errors” in 
software programs. It is an important part of the software development and 
maintenance process, since a lot of time is spent by developers in activities related to 
the location and resolution of bugs. As pointed out by a NIST research [21], software 
bugs are so prevalent and so detrimental that they cost the U.S. economy an 
estimated $59.5 billion annually, or about 0.6 percent of the gross domestic product.  

In the literature, many studies have focused on debugging. Relevant results have 
been achieved in the field of software testing, with the aim of detecting the presence 
of errors in programs. An overview of software testing can be found in [16, 2, 13, 9]. 
However, as noted by [9], debugging is “one of the least understood activities in 
software development and is practiced with the least amount of discipline; it is often 
approached with much hope and little planning”. In particular, one of the most 
difficult problems is bug localization, that is, finding where bugs are located in the 
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source code (as opposed to testing, which is concerned with the identification of the 
presence of bugs). Consequently, bug localization is one of the most widely 
addressed problems. Techniques such as statistical debugging [20, 12, 25, 17, 1] try 
to identify bug predictors (e.g., software quality metrics like CK object-oriented 
metrics [5]) that may refer to the actual bug location. 

Although some studies have already been published [15, 6, 19, 14, 7], it seems 
that the problem of identifying the process characteristics and performance of 
debugging has not been taken into account yet.  

For other “classic” engineering processes, performance indicators are considered 
critical. The importance of such indicators is even more relevant today since Open 
Source software is now adopted also in many business contexts. As noted by 
Wasserman and Capra [24], Goldman [10], Goth [11] and Riehle [18], when 
evaluating an Open Source product for business adoption a number of variables 
different from those considered for the classical proprietary software should be taken 
into account. For example, the quality of the support provided by the community, or 
the quality of the bug fixing process itself are cited as new software selection 
variables to be taken into account in the Open Source context. 

The aim of this paper is the identification of the performance characteristics of 
the bug fixing process of Open Source applications that can be used as indicators to 
assess the quality of the process itself. In particular, our goal is to focus on variables 
related to the continuity and efficiency of the bug fixing process, since these 
characteristics are among the most relevant when assessing debugging performance, 
especially in a business context. 

The paper is structured as follows: Section 2 describes the data sample we have 
used for the analysis of bug fixing processes, Section 3 presents the analysis and the 
related empirical results, while Section 4 discusses the main findings and presents 
some concluding remarks on this work.  

2 Data Sample 

The dataset used for this study is composed by 9 active and popular Open Source 
projects: Table 1 shows the summary descriptive statistics of the dataset. Each 
application is identified by a mnemonic code. 

A tool developed ad-hoc has been used to collect data. In particular, the tool has 
been used to parse the information provided by the bug tracker of each project. In 
order to guarantee the homogeneity of the collected dataset, we have used the same 
parameters to query each bug tracker. That is, we have focused on bugs with closed 
status related only to Microsoft Windows and Linux operating systems. Moreover, 
we have excluded all external components or additional plugins, analyzing only bugs 
located in the core components of each project (the project sizes reported in Table 1 
are however related to the whole applications).  
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Table 1. Dataset summary statistics. 

Mnemonic 
Code

Domain Size 
(KSLOC)

Collected 
Bugs

Time span 
(months)

Bug tracking 
Tool

A IDE 2,063 51,485 65.4 Apache’s JIRA 
B IDE 152 2,529 76.6 SF Tracker Tool 
C DBMS 713 8,478 48.5 bugs.php.net Bugs Sys 
D DBMS 810 997 26.2 Apache’s JIRA 
E DBMS 660 577 78.8 SF Tracker Tool 
F DBMS 159 737 65.9 SF Tracker Tool 
G DBMS 392 515 34.0 SF Tracker Tool 
H DBMS 522 270 65.8 Apache’s JIRA 
I DBMS 153 713 8.0 Apache’s JIRA 

Total
Average

 5,624 
624

66,301
7,367

ns
52.1

The selection of bugs related to the core components of each application has been 
performed by manually specifying the correct parameters when querying the bug 
tracking systems. After the data collection phase, a manual data preprocessing has 
been carried out to ensure data cleaning and normalization. For each bug, we have 
collected information about its status (either opened or closed), the opening and 
closing dates, the affected project component, the level of priority/severity, the 
textual description, the application version affected and the operating system. 

3 Empirical Analyses and Results 

This section presents the analyses that we have performed on our dataset and related 
empirical results. In particular, we have focused our analyses on the time required to 
close bugs (referred to as MTTR - Mean Time To Repair, by analogy with hardware 
systems), defined for a generic bug b as follows: 

MTTR(b) = dateclosed(b) - dateopened(b),

where dateclosed(b) and dateopened(b) refer to the change of bug status (closed and 
open, respectively) registered by the project bug tracker tool. As a consequence, we 
have focused our analyses only on closed bugs.

The influence of the release train mechanism on the bug fixing process. The 
first analysis that we have carried out on the dataset has been a qualitative evaluation 
of the MTTR values for each project. To accomplish this task, we have considered 
for each application in our dataset the scatter plot of the MTTR values of each bug 
collected by the bug tracker. Figure 1 shows an example for project C. Each data 
point in the plot identifies a closed bug; the X axis reports the bug's opening date, 
while the Y axis reports the MTTR value. 
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It is worth noting that Figure 2 (the scatter plot of MTTR values of project F) 
shows a set of oblique lines: these lines can be interpreted as an effect of the release 
train mechanism, since each line includes the bugs that have been closed in the 
proximity of a release date. The intuitive meaning of this phenomenon is that when a 
release date approaches, developers hasten to correct bugs with the aim of including 
corrections in the forthcoming release. In fact, if changes are verified and committed 
before the scheduled deadline, they can be included in the release; otherwise, they 
would shift to the next release. Figure 2 shows how each line can be traced back to 
the release date of a version of the application. By checking the dates identified on 
the plots against the official release dates taken from the website of each project, we 
have verified that more than 90% of official release dates could be correctly 
identified in this way. 

From the bug fixing quality point of view, this phenomenon is certainly relevant. 
If bug corrections are made too close to the release date, the overall quality of the 
bug fixing process can be worse, due to the possible inaccuracy of interventions and 
scarce documentation of changes. As noted by Capra et al. [4], these are some of the 
most relevant causes that contribute to increase software entropy, which is proved to 
negatively affect overall software quality and increase maintenance costs. 

The bug fixing process quality continuum. A fundamental point that has to be 
taken into account when considering the quality of the bug fixing process is the 
analysis of the bug opening and closing trends.  

Fig. 1. Scatter plot of MTTR values of project C. 
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The bug opening trend is related to the process of submission and acceptance of 
new bugs by considering the cumulated number of opened and verified bugs over 
time. The bug closing trend is the cumulated number of bugs that are resolved and 
closed over time. Figure 3 shows an example of bug opening and closing trend 
curves. As it can be noted, the distance between the two curves at a given point in 
time represents the number of bugs simultaneously open at that time. The closing 
trend curve can be directly derived from the distribution of MTTR values: for each 
time interval (typically on a daily basis), the increment of the closing trend curve is 
equal to the number of closed bugs in that time interval. 

A high quality debugging process is generally considered to be continuous over 
time [23]. That is, there should not be any discontinuity in the debugging process and 
the number of closed bugs should grow at least as fast as the number of opened bugs 
to avoid the uncontrolled growth of unresolved bugs. 

The characteristics of the ideal bug fixing process can be translated into visual 
properties of the bug opening and closing trend curves: 

Process continuity - trend smoothness: if the bug fixing process is continuous, 
then the closing trend curve is smooth and without peaks or steps. 
Process efficiency - number of open bugs: if the debugging process is efficient 
(i.e., bugs are closed at least at the same rate with which they are opened), the 
closing trend curve stays near to the opening trend curve, without increasing the 
overall number of open bugs. 

Fig. 2. Influence of the release train mechanism on bug fixing process of project F. 
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Based on these considerations, it is possible to assess different quality levels of 
the bug fixing process by analyzing the bug opening and closing trend curves. It is 
worth noting that, at this point, evaluations are qualitative. Figure 4 shows four 
examples of trend curves for projects in our dataset, ordered by the quality level of 
the bug fixing process. As it can be noted, a high variance of the quality level of the 
bug fixing process can be identified among the projects in our dataset. 

 Sample bug fixing processes: a) project E; b) project I; c) project D; d) project B.

Fig. 3. Bug opening and closing trends. 

Fig. 4.
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Case a) of Figure 4 denotes a low quality bug fixing process since the closing 
trend shows a step, corresponding to a mass correction of bugs. At the opposite end, 
case d) can be considered as a high quality bug fixing process: the closing trend 
curve is smooth and very close to the opening trend curve. Cases b) and c) are 
positioned along the quality continuum between these two extremes: case b)
represents a discontinuous process since the closing curve shows numerous steps, 
while case c) is a more continuous but not efficient process, since the closing trend 
curve is quite far from the opening trend curve. Please note that these considerations 
are not influenced by the fact that in practice there might be some bugs that are never 
fixed, as noted for example by [7]: since this seems to be a very common problem 
[14, 7, 22], it can be considered a common bias uniformly spread across projects. 

The projects in our dataset can thus be divided into four categories on the basis of 
the visual properties of the opening and closing curves: 
a) Inefficient and discontinuous; 
b) Inefficient and continuous; 
c) Efficient and discontinuous; 
d) Efficient and continuous. 

Distinctive properties of the bug fixing process. The distinction between 
different levels of quality of the debugging process should be quantified. Along with 
the scatter plot we have considered also the distribution of MTTR values. Figure 5 
shows two examples related to projects B and E. This kind of graph shows the 
number of bugs that have been closed with the same MTTR value. By analyzing the 
distribution of the MTTR values of a project, two statistical indexes can be 
considered to quantify the quality level of the debugging process: skewness and 
kurtosis. The values of such indexes can provide significant information to compare 
different bug fixing processes, given that the MTTR values are comparable. 

The skewness index  is a measure of the asymmetry of the distribution of the 
MTTR. That is, the distribution shows different tail shapes on the two sides of the 
average value. Considering the debugging process, the skew is typically positive, 
since it is more frequent that the MTTR distribution is right-tailed: in fact, the mean 
value of MTTR is typically influenced by a number of bugs whose closing times are 

Fig. 5. Distribution of MTTR values for a) project E and b) project B. 
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much higher than the average one (i.e., a high value of skewness can be considered 
as indicator of the presence of “superbugs”, see [7]).   

The kurtosis index  is a measure of the peakedness of the distribution of the 
MTTR. Higher kurtosis values indicate that most of the variance is due to a few very 
high deviations, as opposed to frequent small deviations from the mean value of 
MTTR. From the bug fixing process point of view, a high kurtosis means that the 
variance of the MTTR distribution can be explained by a few bugs that have required 
extremely long closing times. As a consequence, high kurtosis values are desirable, 
since they can be considered as an index of efficiency. For instance, by considering 
case a) of Figure 5, it is clear that many bugs show a closing time much higher than 
the average MTTR value, while in case b) the number of bugs with very high MTTR 
is considerably lower and negligible with respect to case a).

4 Conclusions 

Results indicate that the release train mechanism, widely adopted in the Open Source 
context, affects the debugging process. In particular, there is empirical evidence that 
a great number of bugs tends to be resolved close to scheduled releases. From a 
project management point of view, this phenomenon should be taken into account 
when scheduling releases, since if they are too frequent the quality of interventions 
for bug resolution could be lowered. Consequently, software entropy could be 
increased, leading to higher maintenance costs/effort. From the user point of view, a 
project with a debugging process that is too affected by the release train mechanism 
could be less dependable due to inaccurate bug corrections. 

Another relevant empirical result is that even in the Open Source context, which 
is commonly addressed to as a high quality software development practice [8, 3], the 
quality of the bug fixing process is extremely variable. The projects in our dataset 
showed different quality levels, which can be positioned along a continuum 
depending on the performance of the bug fixing process. 

The quantitative distinction between different bug fixing quality levels can be 
measured by means of two statistical indexes of the MTTR distribution, namely 
skewness and kurtosis. These indexes measure two relevant characteristics of the 
debugging process, temporal continuity and efficiency.  

Future work is focused at extending the empirical data set of applications to 
provide better statistical significance and at better understanding the skewness and 
kurtosis indexes from a software development process point of view. 
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