

__
A Contribution to the Third EPIP Workshop: “What Motivates Inventors to Invent?”

Convened at Scuola Superiore Sant’Anna, Pisa, Italy, 2-3 April 2004

Free & Open Source Software Creation and ‘the Economy of Regard’1
By

Jean-Michel Dalle
Jean-Michel.Dalle@upmc.fr

Paul A. David

pad@stanford.edu

Rishab Aiyer Ghosh
rishab@dxm.org

 & Frank A.Wolak
wolak@stanford.edu

Preliminary draft: 22 March 2004

Introduction
 We report here on recent results from one phase of a collaborative program of analytical
and empirical research on the economic organization, performance and viability of the free/libre
and open source (F/LOSS) mode of software production. The focus of this inquiry concerns the
interplay of decentralized, micro-level decisions that shape the allocation of individual voluntary
software development effort on the part of individual agents, distributing these among the
distinct ‘modules’ (or ‘packages’ of code) that form large and complex “open source” system
products.

1 The research reported in this presentation could not have been undertaken without the financial support
received by the Stanford Institute for Economic Policy Research (SIEPR) Project on the Economics of Free
and Open Source Software in the form of grant awards by the National Science Foundation program on
Digital Technologiy and Society : IIS-0112962 (2001-04) and IIS-0329259 (2003-05). [See:
http://siepr.stanford.edu/programs/OpenSoftware_David/OS_Project_Funded_Announcmt.htm] David and
Wolak are grateful also for the support provided by SIEPR’s Director and staff, and the Stanford University
Vice-President for Undergraduate Education’s program for Undergraduate Research Experience.

 2

 The paper seeks to integrate several distinct sources of information and methods of
analysis in order to illuminate some of the self-organized mechanisms of resource allocation that
are at work in the projects carried on by extensive communities of “open source” developers. In
particular, it makes use of (a) behavioral generalizations of a sociological character deriving
from expert-participant observation, (b) statistical inferences about factors affecting developers’
decisions, based upon estimates obtained by fitting the equations of an econometric model of
code-signing and participation behaviors to micro-level data that has been extracted from the
code of the Linux kernel, and (c) results from experiments with an agent-based stochastic
simulation model of the dynamics of decentralized resource allocation within a large, multi-
package software project.2

 Construction and parameterization of this model, itself part of a larger simulation
structure, is informed by available micro-level evidence relating to the behavior of F/LOSS
developers and the technical properties of modularly designed code. The dual methodological
purpose served by this aspect of our work is to integrate key empirical findings, and expose some
of the links between characteristic micro-level features of “the open source way of working” and
observed meso-level performance properties of the F/LOSS development process.

 The material to be presented organizes itself naturally under three main headings.
Section 1 briefly considers the question of individual motivations and its bearing upon the
decentralized organization and spontaneous coordination that are characteristic features of the
open source software production mode – and other distributed multi-agent processes of
“collective invention.” Attention is directed to the set of “motivations-at-the-margin” that are
thought to influence contributing developers’ decisions about the specific problems or tasks that
they will tackle in the course of participating in a particular software project. Building upon the
insightful commentary of an informed observer, Eric Raymond (1999), we formulate a number
of behavioral propositions that give concrete form to the hypothesis that choices of this kind are
systematically affected by shared perceptions of their likely consequences in terms of “peer
regard” (recognition and esteem) within the open source developers’ community.

 In Section 2 we offer some indirect empirical evidence which will be seen to be at least
consistent with the view of F/LOSS developers as responsive to the socially defined norms and
incentives of a particular instantiation of “the economy of regard” – a resource allocating
structure of human interaction that has been described by Avner Offer (1997) as situated between
reciprocated gift exchange and the market. The results discussed are obtained by estimating an
econometric model for the joint open-source project code-signing and developer participation
decision, on the basis of data extracted from the code of Linux kernel (Version 2.5.25). The
model improves on the preliminary analysis described by David and Ghosh (2003), and the
implications of the estimates have an immediate bearing on debated about the salience of
considerations of “peer regard” and “collegiate reputation” effects among the incentives to which
developers of open source software systematically respond.

2 See Dalle, David and Steinmueller (2002), for further description of the integrated research program that is being
pursued by the Stanford Project working in collaboration with colleagues at GSyC – Informatics (Universidad Rey
Juan Carlos), IMRI (University of Paris-Dauphine), MERIT (University of Maastricht), and SPRU (University of
Sussex).

 3

 The paper concludes with Section 3, which briefly describes the key structural features of
and some of the recent modifications introduced into the stochastic simulation model presented
by Dalle and David (2003/forthcoming in 2004). Our focus in this exposition is confined mainly
to examining the relationship between the model’s treatment of the behavioral rules guiding the
micro-level choices made by the agents in response to the evolving project-environment that is
being formed by their collective efforts and interactions. We examine the degree to which
actions that are hypothesized to be motivated-at-the-margin by the quest for “peer regard” are
responsible for the highly skewed distributions of F/LOSS project attributes, which exhibit
extreme concentration in the numbers of developers attached and in code size. In addition to
these meso-level features of the open source world, our discussion offers some comments on the
degree to which the mode of production and its incentive structure is able to reconcile the
fulfillment of the motivating private goals that satisfy the desires and needs of expertly creative
“developer-users,” on the one hand, and the requirements of the mass of software users in the
economy at large.

1. Human Motives, Incentives and Non-market Mechanisms of Research Allocation
 Eric Raymond (1999) and other observers of open source communities suggest that
choices made by developers regarding where and how to contribute their expertise and effort are
guided by perceptions of their likely consequences in terms of recognition and esteem (including
self-esteem) from those working on the projects in question, and peers in the open source
community at large.. Economists have suggested that career considerations, involving
expectations of future material benefits from “signaling” expertise through open source
contributions motivates developers to participate.3

 These intriguing and plausible interpretative hypotheses about the force of various classes
of motives current rest largely on theoretical speculation, on analogies with the sociological
studies of academic “open science” communities, or on ethnographic material gathered by
participant observers of OS/FS communities at work. This paper, by contrast, presents objective,
quantitative evidence to substantiate the view that OS/FS developers behavior is shaped by an
“economy of peer regard.” Raymond’s propositions are in one respect much more specific than
the general notion that “reputation effects” deriving from peer evaluation of one’s public
contributions motivate open source developers, for which we are able at this time to provide a
measure of empirical support. Our evidence about the behavioral responses of open source
developers to considerations of that kind also does not permit us to distinguish among the variety
of reasons why the recognition and esteem of others is a matter of concern, and hence a motor
for action. Whether “peer regard” is sought for its possible instrumental value (as a source of
income, career advancement), rather than for its intrinsic satisfactions, is not an issue which can
be resolved with the materials under analysis here. But, as will be seen, our purposes do not

3 See Lerner and Tirole (2002). Dasgupta and David (1994), in discussing the competition for talent between “open
science” and “proprietary R&D”, propose “signalling” benefits as a rationale for the readiness with which even
young scientists who expect eventually to have an industrial research careers initially compete for lower-paid, non-
tenure track academic appointments (e.g. postdoctoral fellowships and lecturerships). An attraction of the academic
position--especially for those who regard their line of research to be particularly promising—will be the greater
scope they are afforded to submit their results for publication.

 4

require pinpointing that the underlying goals and aspirations of individual actors – as distinct
from their more proximate objectives.

 Why individuals participate at all in developing software that is made available for
general use under free and open source licenses is a question that has intrigued many economists,
and quite understandably so, because one could hardly claim to understand the mobilization and
allocation of the human resources engaged in such projects without knowing something about
the motivations of the individuals involved. But it is important to notice the difference between
the very general issues of motivation that appear to concern many recent contributions to
economics of open source software, and the more restricted scope of the present discussion.

 1.1. Motivations-at-the-margin and the decentralized allocation of creative resources
 In research on this subject it hardly would be possible to entirely eschew taking account
of what has been discovered about the variety prospective rewards – both material and psychic –
that may be motivating individuals to write free and open source software. It is only reasonable
to suppose that these will in some way influence how developers allocate their personal efforts in
this sphere. At this stage it is not necessary to enter fully into the question “Why do they do it?”
– the much discussed and debated motivational preoccupation of many studies of “the open
source phenomenon.”4 Economists, more than other social scientists, have been overly pre-
occupied by the seemingly anomalous observation that a large number of people around the
world have been contributing their software programming and related skills to code-creating
enterprises from which they have no expectations of deriving any direct pecuniary rewards. But
this putative “anomaly,” like all scientific anomalies, arises in relation to some particular
strongly held a priori expectations--“a theory,” in other words, about the way the world works.
Mainstream economic theory about the sources of human motivation, resting as it does upon the
remnants of Benthamite speculations, is so lacking in psychological sophistication that virtually
all individual behavioral phenomena could be, and were categorized as “anomalous.”5
Conventional economic analysis is far more usefully engaged where, instead of providing an
answer to the question “Why is this done?” the subject of the conversation is changed to “In
what circumstances is this done?” and “When is rather more (rather than less) of this done?”6

4 For a discussion of the literature and results of a large survey of F/LOSS developers’ characteristics and attitudes
bearing on motivation, see, e.g. Ghosh (2003), Ghosh, Glott and Robles (2003). These findings from the 2002
FLOSS survey of developers indicate that “ideological” rather than “instrumental” motives are frequently identified
as salient when developers are ask about their reasons for participating in open source software development. The
2003 FLOSS-US survey, responses to which were significantly less dominated by residents of western Europe,
revealed the same thing: 78-79 percent of respondents gave very important or important weight to both of the
following reasons: “we should all be free to modify the software we use” and “as a user of free and open source
software, I wanted to give back something to the community.”
5 Indeed, the new and growing sub-discipline of “behavioral economics” might be seen as a belatedly constructive
response to the challenge posed by this embarrassment of anomalies.
6 See, e.g., the analysis by Waterman (2003), which responds to the question “Why?” by seeking to identify the
“economically viable niches” in which free and open software development activity is likely to be sustained. This
approach can be seen to belong to a generic style of economic research that resembles statistical mechanics (see
Sanderson 1974). Rather than trying to predict the micro-level behaviour of the agents, the explanatory strategy
seeks to account for robust empirical regularities, involving population ensembles, by examining the constraints on
agents actions that determine the boundaries on distributions of observable “events” or “outcomes” (resource use
patterns).

 5

This finesse, substituting analysis of what might be referred to as “motivation at the margin,”
makes better use of the insights that the economist’s métier can provide about the way specific
incentives and constraint affect the incremental allocation of resources.

 1.2 Developer’s motives and production of code in “I-mode” vs. “C-mode”
 Although it is not necessary at this juncture to enumerate the array of diverse “devices
and desires” – that is to say, the gamut of motives from the pragmatically instrumental to the
purely felicific impulses– that may impel boys and grown men (for there are precious few girls
and women) to spend their more rather than less time in their evenings, weekends and vacations
writing code and fixing “bugs” in software, it is important for what follows that we put to one
side one widely recognized, and undeniably important class of reasons why open source code is
produced. These could be described as the individual incentives that give rise “independent
user-implemented innovations.”7 Indeed, this term may well apply to the great mass of
identifiably discrete open source software projects, because a major consideration driving many
individuals who engage in the production of open source would appear to be the direct utility or
satisfaction they expect to derive by using their creative outputs. The power of this motivating
force obviously derives from the property of immediate efficacy, which has been noticed as a
distinctive feature of computer programs. But, no less obviously, this class of motives will be
most potent where the utilitarian objective does not require developing a large and complex body
of code, and so can be achieved quite readily by the exertion of the individual programmer’s
independent efforts, or those of a small number of collaborators.

 “Independent” is the operative word here, for it is unlikely that someone writing an
obscure driver for a newly-marketed printer that he wishes to use will be at all concerned about
the value that would be attached to this achievement by “the F/LOSS community.” The
individuals engaging in this sort of software development may regard themselves as belonging in
every way to the free software and open source movements, and may be committed to using
open source development tools. Nevertheless, with respect to any particular project they have the
real option of waiting until their project is substantially, or wholly completed before publicly
revealing the source code, and thereby sacrifice their ability to exercise their legal rights to
exploit their creation for commercial gain the under protections afforded by the copyright
statutes. Being essentially isolated from significant collaboration in development process, the
issue of formal disposition of the authorship rights in a collective creation will not arise of
necessity in organization the production process, and so the entire issue of the licensing terms
may be deferred until the code is written. This option, however, typically will not be available
for projects that contemplate enlisting the voluntary contributions of numerous developers who

7 The term evidently derives from von Hippel’s (2001, 2002) emphasis on the respects in which open source
software exemplifies the larger phenomenon of “user-innovations. Of the 1562 respondents to the FLOSS-US
Survey (see David, Waterman and Arora (2003)), 56 percent scored as a “very important” or “important” the
following reason for their participation in free and open software development: “I needed to perform tasks that
could only be done with modified versions of existing software”; 53 percent gave same important to: “I needed to
fix bugs in software that I was using.” The great mass of open source projects that appear on sites such as
SourceForge and FreshMeat are small, and typically involve only a few identified developers at most. Whether
most of thse cases fit von Hippel’s category of “user-innovators” cannot be determined from their size alone.

 6

are not co-located. In such cases, the intention to mobilize the resources available in the free and
open source software development communities follows from the technical scope of the
undertaking, and provides compelling reasons to announce a licensing policy ex ante.8

For all intents and purposes software production activity in such circumstances stands
apart from the efforts that entail participation in collective developmental process, involving
successive releases of code and the cumulative formation of a more complex, multi-function
system. We will refer to the latter as F/LOSS production in “community-mode” or, for
convenience C-mode, contrasting it with software production in I-mode. Since I-mode products
and producers, almost by definition, tend to remain restricted in their individual scope and do not
provide as direct an experience of social participation, the empirical bases for generalizations
about them is still very thin, too thin to provide interesting behavioral propositions that could be
incorporated in a formal model. Besides, significant issues of resource mobilization and
coordination in production, almost by definition, do not present themselves in the case of
software generated in I-mode.9 Consequently, our attention here focuses exclusively upon
creating a suitable model to simulate the actions and outcomes of populations of F/LOSS agents
that are working in C-mode.

It would be a mistake, however, to completely conflate the issue of the sources of
motivation for human behavior with the separable question of how individuals’ awareness of
community sentiment, and their receptivity to signals transmitted in social interactions, serves to
guide and even constrain their private and public actions; indeed, even to modify their manifest
goals. Our stylized representation of the production decisions made by F/LOSS developers’
therefore does not presuppose that career considerations of “ability signalling,” “reputation-
building,” and the expectations of various material rewards attached thereto, are dominant or
even a sufficient motivations for individuals who participate in C-mode projects. Instead, it
embraces the weaker hypothesis that awareness of peer-group norms significantly influences
(without completely determining) micro-level choices about the individuals’ allocation of their

8 The present aspect of our investigations abstracts from the possible effects upon the organization of F/LOSS
production that may arise from choices among the licensing options, e.g., adding the new code the corpus of
copyright-protected “libre” software that is released under the GNU GPL and LGPL licenses, rather than using the
BDS or other variant licenses, or, indeed, simply putting it into the public domain. Such analytical attention as the
question of open source software licensing has received from economists typically ignores the possibility of that
consideration of such (production) effects might shape the licensing decision. See, e.g., Lerner and Tirole (2002),
Gaudeul (2003). In a recent and interesting departure from the “mainstream” tradition, however, Gambardella and
Hall (2004) examine a simple model that allows for the connection between the choice of licensing arrangements
and the optimality of the production regime for information goods.
9 This is not to say that there are no questions of interest for economic analysis. As we have pointed out, the decision
to release code under open source licenses, rather than keeping it closed and licensing its commercial use on terms
available under the copyright statutes, or even patenting a process implemented by an embedded form of the
software, are options among which developers make choices. In a sense these choices parallel those facing an
academic researcher who have obtained a result that is readily publishable, and must decide whether to disclose it or
first explore the possibilities of commercial exploitation, either by starting a enterprise to “work” the knowledge as a
trade secret, or to devise an application that would secure a patent and the prospect of licensing income. In the
simple case in which the discovery can be viewed as an exogenous event, and the discover independent – in the
sense that she can legally hold the exploitation rights, this is the classic IPR decision issue; it poses no significant
new issues in the case of software.

 7

code-writing inputs, whatever assortment of considerations may be motivating their willingness
to contribute those efforts.10

 1,3 Behavioral foundations for C-mode production of software
An important point of departure for our work is provided by a penetrating discussion of

the operative norms of knowledge production within communities developing free/libre and open
source software (F/LOSS), which appears in Eric Raymond’s essay, “Homesteading the
Noosphere” (Raymond, 1999: pp. 65-111). Within the “noosphere” – the “space” of ideas,
according to Raymond -- software developers allocate their efforts according to the relative
intensity of the reputation rewards that the community attaches to different code-writing “tasks.”
The core of Raymond’s insights is a variant of the collegiate reputational reward system
articulated by sociological studies of open science communities: the greater the significance that
peers would attach to the project, to the agent’s role, and the greater is the extent or technical
criticality of his or her contribution, the greater is the “reward” that can be anticipated. Although
Raymond is an astute participant-observer of these F/LOSS communities, and his sociological
generalizations have the virtue of inherent plausibility, these propositions remain to be validated
by independent empirical tests.11

Caricaturing Raymond’s more nuanced discussion, we stipulate that (a)launching a new
project is usually more rewarding than contributing to an existing one, especially when several
contributions have already been made; (b) early releases typically are more rewarding than later
versions of project code; (c) there are some rewarding projects within large software system that
are systematically accorded more “importance” than others. One way to express this is to say that
there is a hierarchy “peer regard,” or reputational significance, attached to the constituents
elements of a family of projects, such that contributing to the Linux Kernel is deemed a
(potentially) more rewarding activity than providing Linux implementation of an existing and
widely used applications program, and the latter dominates writing an obscure driver for a
newly-marketed printer. To this list we would append another hypothesized “rule”: (d) within
each discrete project, analogously, there is hierarchy of peer-regard that corresponds with (and
possibly reflects) differences in the structure of meso-level technical dependences among the
“modules” or integral “packages” that constitute that project. In other words, we postulate that
there is lexicographic ordering of rewards based upon a discrete, technically-based “tree-like”
structure formed by the successive addition of project components. Lastly, for present purposes
is can be assumed that (e) new projects are created in relation to existing ones, so that always is

10 It will be seen that the probabilistic allocation “rules” derive from a set of distinct community “norms,” and it will
be quite straightforward within the structure of the model to allow for heterogeneity in the responsiveness to peer-
influence in this respect, by providing for inter-individual differences in weighting within the rule-set. This may be
done either probabilistically, or by creating a variety of distinct “types” of agents and specifying their relative
frequencies in the population from which “contributions” are drawn. For the purposes of the basic model presented
here, we have made a bold simplification by specifying that all potential contributors respond uniformly to a
common set of allocation rules.
11 See e.g. Lakhani & Wolf (2003), Oh & Hans (2003), Niedner et al. (2003), and the systematic survey or
interviews with representative samples of F/LOSS community participants done by the FLOSS survey (Ghosh et al.,
2002) and its US counterpart – “FLOSS-US” – at Stanford University.

 8

possible to add a new module in relation to an existing one, to which it adds a new functionality.
The contribution made by initiating this new module (being located one level higher in the tree)
will be accorded less significance than its counterparts on the structure’s lower branches.

Thus, our model postulates that the effort-allocation decisions of agent’s working in C-
mode are influenced (inter alia) by their perceptions concerning the positioning of the project’s
packages in a hierarchy of peer-regard; and, further, stipulates that the latter hierarchy is related
to the structure of the technical interdependences among the modules.

For present purposes it is not really necessary to specify whether dependent or supporting
relationships weigh receive the relatively greater weight in this “calculus of regard.” Still, we
will proceed on the supposition that modules that are more intensely implicated by links with
other packages that include “supportive” connections reasonably are regarded as “germinal” or
“stem” sub-routines12 and therefore may be depicted as occupying positions towards the base of
the tree-like architecture of the software project. Assuming that files contributed to the code of
the more generic among the modules, such as the kernel or the memory manager of an operating
system (e.g., Linux) would be called relatively more frequently by other modules, this might
accord them greater “criticality”; or it might convey greater notice to the individual contributor
that that which would apply in the case of contributions made to modules having more
specialized functions, and whose files were “called” by relatively few other packages.

For the present purposes, Raymond’s rules be restated as holding that: (1) there is more
“peer regard” to be gained by a contribution made to a new package than by the improvement of
existing packages; (2) in any given package, early and radically innovative contributions are
more rewarded than later and incremental ones; (3) the lower level and the more generic a
package, the more easily a contribution will be noticed, and therefore the more attractive a target
it will be for developers. Inasmuch as “contributions” also are acknowledged by Raymond as
correcting “bugs of omission”, each such contribution – or “fix” – is a patch for a “bug”, be it a
simple bug, an improvement, or even a seminal contribution to a new package. Therefore every
contribution is associated with a variable expected payoff that depends on its nature and
“location”13.

The decision-problem for developers is then to choose which “bug” or “problem” will
occupy their attention during any finite work interval. We find here another instance of the
classic “problem of problem choice” in science, which the philosopher Charles S. Pierce (1879)
was the first to formalise as a microeconomic decision problem. But we need not go back to the
static utility calculus of Pierce. Instead, we can draw upon the graph-theoretic model that more
has recently been suggested by Caracole and Dale’s (2000) analysis of the way that the
successive choices of research agendas by individual scientists can aggregate into collective

12 Cautiousness is needed when using the word “root” to designate the germinal modules, because importing that
term from from the arboral metaphor may be confusing for programmers: we are told by one informant that in
“Unix-speak” the system administrator is called “root”, and the top of the file structure, likewise, is “root.” Indeed,
our hypothesized “dependency tree” might also be in some extent related to the more familiar directory tree
structure, but this correlation is likely to very imperfect.
13 Note that here we neglect, for the moment, the possibility that bugs can become more attractive “targets” because
they’ve existed for long and have thus drawn the attention of the community of developers, and also more specific
peer assessments of the “quality” of patches.

 9

dynamic patterns of knowledge accumulation. The latter modelling approach is a quite suitable
point of departure, precisely because of the resemblance between the reputation game that
Raymond (1999) suggests is played by open-source software developers and behavior of open
science researchers in response to collegiate reputational reward systems, as described by
Dasgupta and David (1994). Although we treat agents’ “problem-choices” as being made
independently in a decentralised process, they are nonetheless influenced by the context that has
been formed by the previous effort-allocating decision of the ensemble of researchers. That
context can be represented as the state of the knowledge structure accumulated, in a geological
manner, by the “deposition” of past research efforts among a variety of “sites” in the evolving
research space – ‘the noosphere’ of Raymond’s metaphor of a “settlement” or “homesteading”
process.

Having indicated the goal towards which this paper is advancing, a pause is order before
continuing with the presentation in Section 3 of an agent-based simulation model. The latter puts
these behavioral foundations we have been examining to work, by specifying rules guiding the
micro-level decisions of individual agents in s “virtual” open source community project. It is
therefore pertinent to ask whether any empirical evidence can be adduced in support of the
central supposition, which is that open source developers are embedded in “an economy of peer
regard” that resembles a market economy is providing signals and incentives that harness their
motives and thereby are able to guide their individual and collective efforts. The material in the
next section is an interim answer to that question.

2. Open-Source Code-Signing Behaviors and Developers’ Participation Decisions

 This section presents results obtained by estimating an econometric model of developers’
decisions in regard to the signing of contributed source code, considering this jointly with the
decision to participate in the development of one or another open source software project.
Implementation of this approach to securing indirect evidence regarding developers’
motivations-a-the-margin has not been attempted for the more complex situations raised by
choices among different and unrelated projects, which may have “local” norms, mores and
governance procedures, including differs in policy with regard to whether or not “commits” carry
the email signature of the contributors. Instead we have undertake the analysis of data extracted
from the code of the 169 distinct “code packages” or modules that can be identified as the
constitutive elements of Version 2.5.25 of the Linux kernel.14

 The model and estimation procedure described here improves upon the preliminary work
reported by David and Ghosh (2003) in two principal respects: first, it utilizes all the available
information on code-signing, rather than by excluding those modules of the kernel in which all of
the code was “credited” (i.e., signed by the committers); second, the estimates take account of

14 See Ghosh (2003) on the methodology of data extraction and its application to Versions 1.0, 2.0.3 and 2.5.25 of
the Link kernel; Ghosh and David (2003) for descriptive findings on the nature and structure of the dynamics of
authorship and technical topologies in the this project.

 10

the fact that the total number of developers contributing to a module (or ‘package’) is observed
only when all the code in the module is signed. As a result, we have substantially new, and in
some respects different findings to report. But, happily, these admit of interpretations that are
consistent with according a motivational role to developers’ considerations of “reputational
rewards” – including the physic enjoyment of collegial esteem (“peer approval”).

 This analysis uses information on a cross-section of the 169 modules identified as distinct
elements within the code of Linux kernel Version 2.5.25 [A total of 180 code packages were
identified in this and two earlier releases, Version 1.0 and Version 2.0.3, but twelve of those
directories were no longer present in Version 2.5.25.]. The data compiled for each package are:

numbytes = the total number of bytes of code written,
uncredit = the total number of bytes of code uncredited to any developer,
ndevelop = the total number of signing developers on these bytes of code,
supnum = the number of modules that this package supports (i.e., that “call it”),
depnum = the number of modules that the package depends upon (i.e., that “it calls”).

 2.1 Specifications of the estimation model

 There are three equations in this model. The dependent variable modeled in the first
equation is the logarithm of the ratio uncredited- to credited-bytes for modules that have a non-
zero amount of credited code (i.e., all the packages). This variable is assumed to depend on the
total number of developers working on a project, which is only observed when there are no
uncredited bytes on a project. The second equation predicts the total number of developers on a
package, as distinct from the total number of developers credited as (signed) contributors to that
package. The third equation summarizes the developer’s decision of whether or not to leave all
of the code committed unsigned, and hence “uncredited.” The model assumes all of these
decisions involve common unobservables in each of the three equations.

 We define the following three dependent variables

y1t = log(uncredit/(numbytes - uncredit)) = logarithm of ratio of uncredited to credited bytes in

the package assuming both uncredited and credited bytes are positive

y2t = logarithm of total number of developers that worked on package (only those cases that

signed = 1 is the value of totdev observed and equal to log(ndevelop).

y3t = dummy variable that equals 1 if all of the bytes in package t are credited (belong to physical

lines of codes that were signed).

11
Associated with each dependent variable is a set of regressors X1t, X2t, and X3t, respectively,
We posit the following three structural equations:

 11

 y1t = X1tN$1 + " y2t + ,1t (1)

 y2t = X2tN$2 + ,2t (2)

 y3t = X3tN$3 + ,3t (3)
where

 y3t = 1 if y3t* > 0, and y2t is observed and y1t is not observed;

y3t = 0 if y3t* # 0 and y2t is only known to exceed y2t
sign = log(ndevelop),

 and y1t is observed.

 We assume that ,t = (,1t, ,2t, ,3t)N is a mean zero normally distributed random vector with
covariance matrix S,

 S =
















12313

232212

131211

ωω
ωωω
ωωω

 (4)

Define $ = ($1,$2,$3)

The log-likelihood for this model can be written as:













Ω−+−−+













Ω−=Ω

∫ ∫

∫ ∫∑
∞ ∞

∞

∞− ∞−=

sign
t

c

t

ct

y X
ttttt

X

tt

T

t
t

dxdzxXzXXyy

dxdzxXyzyL

3 33

3

'
22222113

'

222
1

3

*)|),'(),)'('(((ln)1(

)|),'(,(ln),,(

β

β

βαββφ

βφαβ

 (5)

where N(x,y,z | S) is density of a multivariate N(0, S) random variable, and S* is the covariance
matrix of the multivariate normal random variable ,* = (,1t + ",2t, ,2t, ,3t).

 12

2.3 Estimation results

 Maximum likelihood estimates of this model are presented in the table below for the
following definitions of X1t, X2t, and X3t.

Table 2.1

Maximum Likelihood Estimates for the Model of Code-signing in Linux kernel 2.5.25

Variable

Parameter
Estimate

Standard
Error t-statistic

Equation 3
Constant 6.75369 0.96159 7.02346

log(numbytes) -0.549867 0.079588 -6.90894
Equation 2

Constant -5.51543 1.2634 -4.36556
supnum -0.00214 0.021799 -0.098155
depnum 0.017049 9.19E-03 1.85577

supnum*depnum 1.86E-04 3.78E-04 0.493514
log(numbytes) 0.614822 0.109806 5.59915

Equation 1
Constant -2.0408 1.62128 -1.25876
supnum 0.011551 4.27E-03 2.7026
depnum -0.026702 0.018319 -1.45763

Log(total_developers) -0.029421 0.277025 -0.106202
S11* 1.70537 0.191874 8.88797
S22* 0.564442 0.086245 6.54463

corr(,1t*,,2t*) 0.335085 0.309646 1.08215

corr(,1t*,,3t*) -0.432752 0.432335 -1.00096

corr(,2t*,,3t*) -0.6087 0.034821 -17.4811

 2.4 Interpretation and discussion

 (1) From the estimates for Equation 3 it is seen that the probability that all the code
contributed to a model will have been left unsigned (uncredited) varies inversely with the size of
the package (measured in bytes), and that the effect is quite precisely estimated.

 (1a) This finding appears to reflect the existence of a cluster of relatively small packages
in which more than half of the code is remains uncredited. Rather strikingly, for the 10 packages
in this group the proportion of unsigned code in the total number of bytes averages 70.7 percent;
a similar uncredited proportion (averaging 72.5 percent) characterizes the five smallest packages
within that group, whose average size was only 56 K-bytes. It seems plausible that in some of
these cases there was only one developer who wrote such a large part of the code (averaging 40
K-bytes) that the entire package was identified with that contributor. In such cases, signing the

 13

contribution would have been redundant if gaining peer recognition for the work was a main
motivation.

 (1b) In support of the plausibility of the foregoing suggestion, it may be noted that
inspection of the 8 packages in Linux kernel Version 2.5.25 where all the code was signed by
one developer alone, the package sizes range between 9.8 and 40 K-bytes, the median lying at 18
K-bytes. Thus, it would not represent an extraordinarily large effort for a single individual to
have contributed the unsigned portion of the small packages in which the preponderant part of
the code was left uncredited (“unsigned”).

 (2) The estimates for Equation 2 show that the number of developers contributing to a
module is an increasing function of package size, and of the number of other modules that
depend upon the package – reflecting its technical importance in the architecture of the Linux
kernel. Both effects are statistically significant, although the size effect is more precisely
estimated.

 (2a) That larger packages should require the attention of a larger number of developers is
certainly what would be expected from the software engineering perspective. But these estimates
can be read to imply also that larger packages tend to attract more “productive” contributors, in
the sense that the average amount of code contributed is significantly increasing with package
size. The estimated elasticity of numdev w.r.t. numbytes is 0.615, implying that the estimated
elasticity of (numbytes/numdev) is 0.385, significantly positive (about 3.5 times its standard
error).

 (2b) It should be stressed that (on the basis of the cross- section data studied here) it is not
possible to identify which of the two likely processes generated the appearance of “increasing
returns to scale.” The wording of the foregoing is consistent with the possibility that what might
account for the rise of average productivity with scale is that an “active” and growing module, in
attracting the attention of developers also tends to attract developers with a capacity to contribute
larger blocks of code. If it is known that more code is being added in a particular package, it is a
fair inference that there will be a larger number of developers currently active at that sight. They
represent a larger “potential peer audience,” and simply on that account the site would be more
attractive to developers who were able to make a larger contribution in terms of the amount of
code they submitted. In other words, the developer population is heterogeneous in the code-
writing capabilities of its members (at least within a limited time interval), and the dynamic
“swarming” process at sites that become active is non-random in its selection among those
capabilities. But, the hypothesized “selection effect” is not the only plausible interpretation for
the statistical result. If the early contributions to a module established an architecture that made
it feasible for subsequent individual contributors (with the same time input) to write more lines
of good code (i.e., code that would be incorporated into and survive to be found in later releases),
that would correspond to the engineering sense of increasing returns to scale. The architecture in
this scenario constitutes the indivisibility, which accounts for the non-convexity of the
production function. Obviously there is nothing that would prevent both of the conjectured
processes from operating concurrently in different package, or, indeed over the course of a given
module’s evolution.

 (2c) There is a positive and statistically significant effect upon the number of developers

 14

participating in a package when that module’s has a higher absolute dependency value – as
measured by depnum, the number of packages upon which it depends (“calls”). This contrasts
with the weakly negative, but statistically non-significant effect upon developer participation in
cases where the package is of greater “technical criticality” in the Linux kernel – were that is
gauged from its support value, supnum , the number of packages that “call” its code in order to
function.. If these absolute measures of the directed connectivity were positively correlated, say
because modules having more lines of code both called on, and were in turn called by a greater
number of packages, we might expect to find that the product term (supnum)x(depnum) had
picked up some of the positive effect of module size upon developer participation.. But there are
some very large packages in the Linux kernel which occupy positions of lower “connectedness”
– having comparatively small support – and dependency-values. This fact makes it more readily
understandable that the product term’s coefficient turns out to be statistically insignificant as
well as quite small in magnitude. What this tells us quite directly is that packages of a given size
that could be viewed solely on software engineering grounds to be “less technically critical” are
those that tend to attract contributions form a larger number of developers than would be
accounted for by their size alone. Indirectly this result could be read as consistent with the view
of some observers that while there is much esteem to be gained by making substantial
contributions to a module that is critically connected with many others – that is has a high
support value (supnum) – such work tends to go first to developers that have already acquired
wide repute, either for early contributions made elsewhere in the project, or on different open
source project altogether. In other words, for such technically important packages the entry
standards (in terms of expertise and the magnitude of the effort required) in order to make
substantial “commits” to such module can be set can be set higher, concentrating the critical code
development tasks in fewer hands.

 (2d) A first lesson that can be drawn from the preceding discussion echoes the
economists’ familiar chant about supply and demand: yes, there is a demand for opportunities to
win fame, but the supply of attractive opportunities is not perfectly elasticity, so that strong
demand tends to raise the “entry requirement” for those arena where the potential rewards for
successful performance are especially high. From the obverse of the same coin we may read a
second equally simple message: for the mass of able developers who are acquiring new skills and
experience, yet are not fabled talents, nor even versatile experts, comparatively strong attractions
would be exerted by modules that were characterized by high dependency values, and generally
low support values.15 A third point that is worth noting concerns the difference in the strength of

15 Of such packages Linux Version 2.5.25 has many to offer, primarily among its 30 network sub-projects and the
46 file system directories. Drivers also have comparatively high absolute dependency values vis-à-vis the modules
belonging to other technical categoies, including those mentioned here. The supnum values typical of the 39 driver-
packages in this version of the Linux kernel exceed their depnum values by factors between 2 and 3, but given the
relative magnitude of the estimated coefficients for those variable reported for Equation 2 in Table 2.1 the net
attraction exerted by the high “dependency-effects” are quite strong across the whole category of Drivers. It is not
the case that large number of developers were engaged on all of these packages. Quite the contrary, there is very
pronounced clustering on a few projects among those belonging to the ile system group, resulting in a very high
degree of concentration of the 1200 or so developer contributions made in this technical category: 64% occurred in
a more 6 % of the packages. The corresponding concentration of code was still more pronounced, which is what our
findings about the increase in average developer productivity with project code size: the same 6 % among the file
system modules absorbed 77.4% of the bytes written in the entire category. The phenomenon of concentration is

 15

the drive to gain recognition and peer approve, which we should expect would distinguish the
member of the two groups of developers that have figured in the forgoing discussion. Among the
already acclaimed programming “stars visible in the firmament of the open source software
universe -- and even for some non-radiant bodies, who, planet-like, may be prominent enough to
be seen from afar – the internal impulse to claim credit for each and every contribution is likely
to have dissipated. Not so in the case of the striving young, and the comparative newcomers who
have yet to possess the requisite skills to tackle big tasks in technically critical packages and
projects. If it is they who are primarily draw with greater alacrity, and in larger numbers, by
project-modules whose support value is low and whose dependency value is high, we might
expect that they would join with a high propensity to sign whatever lines of code the project
maintainer will allow them to contribute.

 (3) This brings us to the estimates of Equation 3. The “log odds” – the natural
logarithm of the ratio between uncredited and credited bytes – is essentially unaffected by the
number of developers contributing to the package, but it is seen to vary positively with supnum
and negatively with depnum. The latter pair of coefficients each is significantly different from
zero at the 5 percent significance level on one-tail tests--being greater than zero and less than
zero, respectively. Thus, the higher the support value of the module (supnum), the bigger is the
ratio of unsigned to signed code; whereas that ratio shrinks as the dependency values of the
modules rise. These results are consistent with the interpretation suggested for the respective
signs of the coefficients of the same pair of variables in Equation 2 (see 2.b, above): the
developers who make major contributions to packages that support many other modules are
likely to include a substantial core of those very active, expert and highly estimated individuals,
who have already gained the recognition of their peers (and the admiration of neophytes and
journeymen programmers). On that count, they would be expected to exhibit a weaker propensity
to seek to be credited for every line of code they contributed. By contrast, the ritual of code-
signing would most likely be adhered to more assiduously among the greater numbers of the
community. Virtually by definition, they, who are drawn to the projects where the dependency
value is high, constitute the many that fame has thus far eluded. Some may still quest for peer
esteem, while other take quiet satisfaction in having done a good piece of work that they are
proud to claim, whereas still others find themselves move by practical circumstances to consider
the value of establishing a recognized competence – with an eye to their future employment or
self-employed in the software industry.

 (3a) Neither of the technical variables’coefficients is estimated with very great precision,
but their magnitudes are substantially different. For the same absolute increments in (change in
the number of packages) in supnum and depnum, the positive effect on the proportion of code
that is credited (signed) would be much bigger for the case of a rise of the dependency measure
than would be the case for a fall in the support value. This follows obviously from a comparison
of the two coefficients in Equation 3, the latter of which is a fraction (0.435) of the size of the

quite ubiquitous across success releases of the Linux kernel, and appears in a wide swatch of open source software
products. It is one among several meso-level features that we would wish to have replicated by the results of our
stochastic simulation model.

 16

estimated coefficient on depnum. An obvious implication is that these two “technical
characteristics” of the modules in Linux 2.5.25 modules would be in approximate balance – and
therefore without net effects on code-signing propensities – where the ratio depnum: supnum was
in the neighborhood of 2.3. But, interestingly enough, that situation obtains only for a very few
packages of the Linux kernel. For the rest, a substantial minority have depnum/supnum ratios
well below unity, indeed in the neighborhood of 0.1; whereas the others’ ratios are clustered
around 3. One way to read these results is this: The impacts of the technical attributes of the
modules upon their relative attractiveness to developers with differing degrees of motivation to
seek peer recognition of their contributions is a factor that creates substantial inter-module
variance in the proportion of code that is signed, but its overall effect is that of lowering the
proportion of code that remains unsigned.

 (3c) The number of developers contributing to the package exerts no appreciable
independent effect on the probability that code is signed (credited). This result is not entirely
unexpected, in light of the results already discussed in connections with Equation 2. If it was
thought that an enlarged audience of “spectators” would induce a larger proportion of code to be
signed in the expectation of gaining greater “peer regard,” that would pre-suppose that there had
been an exogenous increase in the sized of the relevant audience -- represented by the total
number of developers engaged in contributing to the module in question. But the previous
discussion suggested the possibility that increasing returns to code size might work via a
selection effect to raise average productivity, there by checking the growth in the number of
developers. If considerations of peer regard underlay the hypothesize bias in the selection effect,
not only do we have to recognize the endogeneity of the total number of developers, but it would
appear that peer regard would not work also exert an additional indirect effect via that channel on
the developers’ code signing propensities.

Summing up:

 Two main substantive points have emerged from the foregoing discussion and are
immediately pertinent to the simulation exercises undertaken in the following section of the
paper. The first lends a measure of independent and objective support for the credence that we
place in the view of developers’ behavior as being shaped at the margin by a mixture of
psychological and material incentives formed in “the economy of regard.” The indirect
indications of the influence of considerations of “peer regard” upon code-signing behavior
remain very general in character at this stage of our research. We still are a considerable distance
from devising and econometrically implementing tests of the concrete and simplified
propositions that the simulation model described in Section 3 has drawn from Raymond’s (1999)
stimulating observations about the specific structure of “prestige” and “personal achievement
scores” that shape developers choices about how to allocate their efforts. For the purposes of
advancing the simulation modeling project, we are willing to treat these “decision rules as
maintained hypotheses, justifying that approach on the strength of the analogy between their
putative role in the world of “open source” production, and the collegiate reputational reward
system’s role in guiding resource allocation within the sphere of “open science.”

 The second point is more straightforward, or if you like, “less tortured.” It follows

 17

immediately as an implication finding that there is (significantly) increasing average productivity
with increases in code scale. An “active module” in a major projects, like an active project
among the population of projects on sites such as SourceForge, would attract new developers at a
higher rate per K-byte than is likely to do when the size of its code has grown much bigger (in K-
bytes, or in thousand (physical) single lines of code, K-SLOCs). Hence, in early phases of a
new module’s development vis-à-vis that taking place in other modules, it would appear that the
clustering of larger numbers at that site was an attractor of new contributors. Although our
discussion indicates that there are other underlying explanations available for the observable
phenomenon, an we prefer one or more of them to the view that there is a “causal” feedback
mechanism at work, it may nevertheless be useful at this stage in our stimulation work to try to
capture the apparent effect of numbers of recently active developers in raising the attractiveness
that the module-project holds for new contributors. At some subsequent stage, however, it may
be appropriate to introduce the complications needed to capture the effects of changes in the
strength of the selection effects as the project matures.

 This part of our research also carries a general methodological message. It demonstrates
the potentialities of using quantitative information extracted from the open source code itself, in
order to illuminate the issue of developer’s motives without having recourse to first hand
knowledge gained by participant observers. Surmises on the part of the latter, like the ‘insights’
supplied to ethnographers by local informants, are not always accurate in representing the mores,
motives and perceptions of the mass of “non-informative” participants. Behavioral evidence of
the sort examined here, however limited in scope, and however qualified are the inferences to
which it leads, should therefore supplement the analysis of survey responses.

3. A F/LOSS Community in Action: Simulation Studies of Production in C-Mode

{Material to be added in the following draft…look for Release v6}

 18

REFERENCES

Arora, Seema, Paul.A. David and A. Waterman. 2003. “Interim Results from FLOSS-US, the 2003 Web-
based Survey of Free and Open Source Developers,” SIEPR-Project NOSTRA Working Paper
(25th February).

Bezroukov, N. 1999. ‘Open Source Software Development as a Special Type of Academic Research
(Critique of Vulgar Raymondism),’ First Monday.
(http://www.firstmonday.dk/issues/issue4_10/bezroukov/index.html): Accessed 1 Feb. 03.

Bonaccorsi, Andrea and Cristina Rossi. 2003a. “Why Open Source software can succeed.” Research

Policy 32 (7):1243-1258 (July) [Special Issue on “Open Source Software Development”, Edited by
Eric von Hippel and Georg von Krogh.

———2003b. “Licensing schemes in the production and distribution of open source software: An

empirical investigation.” http://opensource.mit.edu/papers/bnaccorsirossilicense.pdf

———2003c. “Altruistic Individuals, selfish firms? The structure of motivation in open source software.”

http://opensource.mit.edu/papers/bnaccorsirossimotivationshort.pdf

———2003d. “Contributing to the common pool resources in open source software: A comparison
between individuals and firms.” http://opensource.mit.edu/papers/bnaccorsirossidevelopers.pdf

———2003e. “Comparing motivations of individual programmers and firms to take part in the open
source movement: From community to business.”
http://opensource.mit.edu/papers/bnaccorsirossimotivationlong.pdf

Boston Consulting Group. 2002. Survey of free software/open source developers conducted by the
Boston Consulting Group. See www.osdn.com/bcg

Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition of the 1982 volume. Addison Wesley Publishing Company.

Carayol, Nicolas and Jean-Michel Dalle. 2000. “Science wells: Modelling the ‘problem of problem choice’
within scientific communities.” Presented at the 5th WEHIA Conference, GREQAM, Marseille, June.

Comino, Stefano and Fabio M. Manenti. 2003. “Open Source vs Closed Source Software: Public Policies
in the Software Market.” http://opensource.mit.edu/papers/cominomanenti.pdf

Cowan, Robin and Elad Harison. 2004. “On Substitution of Intellectual Property and Free Disclosure: An
Analysis of R&D Strategies In Software Technologies.” Forthcoming, Economics of Innovation and
New Technology.

Dalle, Jean-Michel and Paul A. David. 2001. “On open source software and the organization of cathedral-
building: metaphors and realities.” Working Paper, SIEPR-NOSTRA Project on the Economics of
Open Source Software, December.

________. 2003. “The Allocation of Software Development Resources in ‘Open Source’ Production

Mode,” SIEPR-Project NOSTRA Working Paper, (15th February).

Dalle, Jean-Michel, Paul A. David and W.E. Steinmueller. 2002. “An Agenda for Integrated Research on

the Economic Organization & Efficiency of OS/FS Software Production.” Available at:
http://siepr.stanford.edu/programs/OpenSoftware_David/FLOSS%20Conf%20Stmt_JMD+PD+ES_v
6.htm

Dalle, Jean-Michel and Nicolas Jullien. 2000. “NT vs. Linux, or some explorations into the economics of
free software,” In: Application of simulation to social sciences, G. Ballot and G. Weisbuch, eds.
Paris, France: Hermès, pp. 399-416.

 19

Dalle, Jean-Michel and Nicolas Jullien. 2003. “ ‘Libre’ software : turning fads into institutions?”, Research
Policy, 32(1):1-11.

Dasgupta, Partha and Paul A. David. 1987. Information Disclosure and the Economics of Science and
Technology. ch. 16 in Arrow and the Ascent of Modern Economic Theory, (G. Feiwel, ed.), New
York: New York University Press, 1987, pp. 519-542.

———1994. “Toward a new economics of science”, Research Policy, vol. 23, no. 5, pp. 487-521.

——— 1998a. Communication Norms and the Collective Cognitive Performance of ‘Invisible Colleges in
Creation and Transfer of Knowledge: Institutions and Incentives, Physica-Verlag Series
Contributions to Economics, G.Barba. Navaretii et al., eds., Berlin, Heidelberg, New York: Springer-
Verlag.

——— 1998b. "Reputation and Agency in the Historical Emergence of the Institutions of ‘Open Science’,"
Center for Economic Policy Research, Publication No. 261, Stanford University, (revised March
1994), further revised :December.

——— 1998c. Common Agency Contracting and the Emergence of ‘Open Science’ Institutions, American
Economic Review, 88(2): 15-21 (May).

——— 2000. “Patronage, Reputation, and Common Agency Contracting in the Scientific Revolution:
From Keeping ‘Nature’s Secrets’ to the Institutionalization of ‘Open Science.” (Unpublished; under
review at Journal of Economic History).

———2001. “Path dependence, its critics and the quest for ‘historical economics’,” in Evolution and Path
Dependence in Economic Ideas: Past and Present, eds. P. Garrouste and S. Ioannidies.
Cheltenham, Glos.: Edward Elgar, 2001.

David, Paul A., Seema Arora and W. Edward Steinmueller. 2001. “Economic Organization and Viability of
Open Source Software: A Proposal to The National Science Foundation,” SIEPR, Stanford
University, 22 January.

DiBona, Chris, Sam Ockman, and Mark Stone. 1999. “Introduction,”In: Open Sources: Voices from the
Open Source Revolution, C. DiBona, S. Ockman, and M. Stone, eds. Sebastopol, Calif.: O'Reilly &
Associates, pp. 1-17.

Franke, Nikolaus and Eric von Hippel. 2002. “Satisfying heterogeneous user needs via innovation toolkits:
the case of Apache security software,” MIT Sloan School of Management Working Paper No. 4341-
02, January.

Gambardella, Alfonso and Bronwyn H. Hall. 2004.”Proprietary vs. Public Domain Licensing of Software
and Research Products.” Working Paper. Scoula Superiore Sant’ Anna, Pisa. February. (Revised
version forthcoming in Research Policy.

German, D. M. 2002. “The Evolution of the GNOME Project,” Workshop Proceeding presented at
‘Meeting Challenges and Surviving Success: The 2nd Workshop on Open Source Software
Engineering’ (May 19-25), Available at http://opensource.ucc.ie/icse2002/German.pdf.

Ghosh, Rishab Aiyer. 1998. “Cooking pot markets: an economic model for the trade in free goods and
services on the Internet,” First Monday, 3(3)
http://www.firstmonday.org/issues/issue3_3/ghosh/index.html

Ghosh, Rishab Aiyer. 2003. “Clustering and Dependencies in Free/Open Software Development:
Methodology and Preliminary Analysis,” MERIT-Infonomics Institute and SIEPR-Project NOSTRA
Working Paper (First version: June 2002; revised: 15th February).

Ghosh, Rishab Aiyer and Paul A. David. 2003. “The nature and composition of the Linux kernel developer
community: a Dynamic Analysis,” SIEPR-Project NOSTRA Working Paper (21st February).

 20

Ghosh, Rishab Aiyer, Rudiger Glott, Bernhard Kreiger and Gregario Robles. 2002. The Free/Libre and
Open Source Software Developers Survey and Study—FLOSS Final Report. June.
http://www.infonomics.nl/FLOSS/report/

González-Barahona, Jesús M. et al. 2002. “Counting potatoes: The size of Debian 2.2,” (Version 3a: 3
January). http://people.debian.org/~jgb/debian-counting/counting-potatoes/.

Gonzalez-Baharona, Jesus M., Luiz Lopez and Gregorio Robles. 2004. "The community structure of the
modules in the Apache project." GSyC Working Paper, Universidad Rey Juan Carlos (Mostoles).
February.

Harhoff, Dietmar, J. Henkel and Eric von Hippel. 2000. “Profiting from Voluntary Information Spillovers:
How Users Benefit by Freely Revealing their Innovations.” (July).
opensource.mit.edu/papers/evhippel-voluntaryinfospillover.pdf.

Kelty, Christopher M. 2001. “Free Software/Free Science.” First Monday, December.
www.firstmonday.org/issues/issue6_12/kelty/index.html.

Koch, S. and G. Schneider. 2000. “Results From Software Engineering Research Into Open Source
Development Projects Using Public Data,” Vienna University of Economics and Business
Administration http://opensource.mit.edu/papers/koch-ossoftwareengineering.pdf

Kogut, B. and A. Metiu. 2001. “Open-Source Software Development and Distributed Innovation,” Oxford
Review of Economic Policy 17 (2): 248-64.

Krishnamurthy, S. 2002. “Cave or Community? An Empirical Examination of 100 Mature Open Source
Projects,” University of Washington, Bothell. May.
http://opensource.mit.edu/papers/krishnamurthy.pdf.

Kuan, Jennifer. 2001. “Open Source Software as Consumer Integration into Production,”
http://opensource.mit.edu/papers/Jenny%20Kuan%20-
%20Open%20Source%20Software%20As%20Integration%20into%20Production.pdf.

Kuwabara, Ko. 2000. “Linux: A Bazaar at the Edge of Chaos,” First Monday, 5:3 (March).
firstmonday.org/issues/issue5_3/kuwabara/index.html

Lerner, Josh and Jean Tirole. 2002. “The Simple Economics of Open Source.” National Bureau of
Economic Research (NBER) Working Paper 7600 (March). www.nber.org/papers/w7600.

Lerner, Joshua and Jean Tirole. 2003. ”The Scope of Open Source Licensing.”
http://opensource.mit.edu/papers/lernertirole2.pdf

Madey, G., V. Freeh and R. Tynan (2002). The Open Source Software Development Phenomenon: An
Analysis Based on Social Network Theory. Proceedings Americas Conference on Information
Systems (AMCIS2002), Dallas, TX.

Mateos-Garcia, J. and W. E. Steinmueller. 2003a. "The Open Source Way of Working: A New Paradigm
for the Division of Labour in Software Development?" Falmer, UK, SPRU -- Science and
Technology Policy Research, INK Open Source Working Paper No. 1. January.

———2003b. “Dynamic Features of Open Source Development Communities and Community
Processes,” Brighton: SPRU -- Science and Technology Policy Studies, Open Source Movement
Research INK Working Paper No. 3. February.

Merton, Robert K. 1973. The Sociology of Science: Theoretical and Empirical Investigations. Edited and
with an introduction by Norman W. Storer. Chicago: University of Chicago Press.

Nichols, D. and M. Twidale. 2003. "The Usability of Open Source Software,"First Monday.
(http://firstmonday.org/issues/issue8_1/nichols/index.html): Last Accessed 5 February 03.

Offer, Avner. 1997. “Between the Gift and the Market: The Economy of Regard”, Economic History
Review, vol. 50, 3 (Aug. 1997), pp. 450-476.

 21

Raymond, Eric S. 1998a. "The Cathedral and the Bazaar," First Monday, volume 3, number 3 (March),
firstmonday.org/issues/issue3_3/raymond/index.html and www.tuxedo.org/~esr/writings/cathedral-
bazaar.

———1998b. "Homesteading the Noosphere," First Monday, 3: 10 (October),
firstmonday.org/issues/issue3_10/raymond/index.html and
www.tuxedo.org/~esr/writings/homesteading.

 ———1999a. “A Response to Nikolai Bezroukov, ” First Monday, 4:11 (November 1999).
firstmonday.org/issues/issue4_11/raymond/index.html.

Reagle, Jr. Joseph M. 2003. “Socialization in Open Technical Communities.”
http://reagle.org/joseph/2003/socialization/voluntary.html

Rheingold, Howard. 1993. The Virtual Community: Homesteading on the Electronic Frontier. Reading
MA: Addison-Wesley Publishing Company.

Shah, Sonali. 2003. “Understanding the Nature of Participation and Coordination in Open and Gated
Source Software Development Communities.” Chapter 4 of dissertation.
http://opensource.mit.edu/papers/shah3.pdf

Tapscott, D, D Ticoll, and A Lowy. 2000. Digital Capital: Harnessing the Power of Business Webs.
Cambridge MA: Harvard Business School Press.

von Hippel, Eric. 2002. "Horizontal innovation networks - by and for users" Cambridge, MA,
Massachussetts Institute of Technology, Sloan School of Management, Working Paper No. 4366-
02. June.

Waterman, Andrew H. 2003. “Why They Do It and What that Implies for the Boundaries of Open Source
Development Projects,” SIEPR-Project NOSTRA Working Paper. (First draft: November 2002.
Revision: February)

 22

STANFORD=SIEPR Open Source Software Project Working Papers

Note: Abstracts of all the papers listed here, and full texts of selected items Papers are available at:
http://siepr.stanford.edu/programs/OpenSoftware_David/NSFOSF_Publications.html.

Arora, Seema, Paul A. David and Andrew H. Waterman (2003). “Interim Results from FLOSS-US, the

2003 Web-based Survey of Free and Open Source Developers,” SIEPR-Project NOSTRA
Working Paper (February).

Arora, Seema and Paul A. David (2003). “Commercialization of Open Source Software: Symbiotic or
Parasitic?,” SIEPR-Project NOSTRA Working Paper. (8 February; revised September).
[Presently under revision for submission to the Harvard Business Review].

Dalle, Jean-Michel Dalle and Paul A. David (2003). “The Allocation of Software Development Resources
in ‘Open Source’ Production Mode,” SIEPR-Project NOSTRA Working Paper, (February 15).
[Accepted for publication in Joe Feller, Brian Fitzgerald, Scott Hissam and Karim Lakhani,
Making Sense of the Bazaar, forthcoming from MIT Press, 2004.]

David, Paul A. and Rishab Aiyer Ghosh (2003), “Free and Open Source Software Developers and “the
Economy of Regard: A Quantitative Analysis of Code-Signing Patterns within the Linux Kernel,”
SIEPR-Project NOSTRA Working Paper, (February 22).

David, Paul A., Andrew H. Waterman and Seema Arora (2003). “FLOSS-US: The Free/Libre Open
Source Software Developer Survey for 2003: A First Report.” (September) [Available at:
http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf.]

Juan Mateos Garcia and W. Edward Steinmueller (2003a), “The Open Source Way of Working: A New
Paradigm for the Division of Labour in Software Development?,” INK Open Source Research
Working Paper No. 1, University of Sussex-SPRU (January).

Juan Mateos Garcia and W. Edward Steinmueller (2003b), “Aplying the Open Source Development
Model to Knowledge Work,” INK Open Source Research Working Paper No. 2, University of
Sussex-SPRU (January).

Rishab Aiyer Ghosh (2003), “Clustering and Dependencies in Free/Open Software Development:
Methodology and Preliminary Analysis,” MERIT-Infonomics Institute and SIEPR-Project NOSTRA
Working Paper (First version: June 2002; revised: February 15). [Accepted for publication in Joe
Feller, Brian Fitzgerald, Scott Hissam, Karim Lakhani, eds., Making Sense of the Bazaar,
forthcoming from MIT Press in 2004..]

Rishab Aiyer Ghosh and Paul A. David (2003), “The nature and composition of the Linux kernel developer
community: a Dynamic Analysis,” SIEPR-Project NOSTRA Working Paper (February 21).

Steinmueller, W. Edward (2003), “Exploring the limits of the ‘open source’ production mode: differences in
the value of collective effort in knowledge-creation activities when coordination requirements
vary,” INK Open Source Research Working Paper No. 3, University of Sussex-SPRU, August.

Waterman, Andrew H. (2003), “Why They Do It and What that Implies for the Boundaries of Open Source
Development Projects,” SIEPR-Project NOSTRA Working Paper. (First draft: November 2002.
Revision: February).

