
Contributor Turnover in Libre Software
Projects

Gregorio Robles and Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos, Spain
{grex,jgbJQgsyc.escet.urj c.es

Abstract. A common problem that management faces in software
companies is the high instability of their staff. In libre (free, open source)
software projects, the permanence of developers is also an open issue,
with the potential of causing problems amplified by the self-organizing
nature that most of them exhibit. Hence, human resources in libre soft­
ware projects are even more difficult to manage: developers are in most
cases not bound by a contract and, in addition, there is not a real
management structure concerned about this problem. This raises some
interesting questions with respect to the composition of development
teams in libre software projects, and how they evolve over time. There
are projects lead by their original founders (some sort of "code gods"),
while others are driven by several different developer groups over time
(i.e. the project "regenerates" itself). In this paper, we propose a quan­
titative methodology, based on the analysis of the activity in the source
code management repositories, to study how these processes (developers
leaving, developers joining) affect libre software projects. The basis of
it is the analysis of the composition of the core group, the group of de­
velopers most active in a project, for several time lapses. We will apply
this methodology to several large, well-known libre software projects,
and show how it can be used to characterize them. In addition, we will
discuss the lessons that can be learned, and the validity of our proposal.
Keywords: open source, human resources, turnover, mining software
repositories

1 Introduction

Employee turnover (the ratio of the number of workers replaced in a given period
to the average number of workers), is known to be high in the (proprietary)
software industry [1]. In the libre software world^ the study of turnover has
not been a research target (at least to the knowledge of the authors) profusely.
Most of the attention has been focused on the organizational structure of the

In this paper we will use the term "libre software" to refer to any software licensed
under terms compliant with the FSF definition of "free software", and the OSI
definition of "open source software", thus avoiding the controversy between those
two terms.

Please use the following format when citing this chapter:
Robles, G., and Gonzalez-Barahona, J.M., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 273-286

274 Gregorio Robles and Jesus M. Gonzalez-Barahona

projects, and how developers move to a central position in that structure, but
not on how they are replaced when leave it.

In this line, probably the best known model about the organizational struc­
ture of Hbre software projects is the onion model [2, 3, 4], a visual analogy
that represents how developers and users are positioned in communities. In
this model, it is possible to differentiate among core developers (those who
have a high involvement in the project), co-developers (with punctual, but
frequent contributions), active users (that contribute only occasionally) and
passive users [8, 7].

But the onion model provides only a static picture of a project, lacking
the time dimension that is required for studying joining and leaving processes.
Advancing to fill in this shortcoming, it has been complemented by Ye et al. with
a more theoretical identification and description of the roles, including also some
dynamism [11]. According to this refinement, a core developer is supposed to go
through all the outlying roles, starting as a user, until she eventually reaches the
core group. An alternative approach is proposed by Jensen and Scacchi [6], who
have studied and modelled the processes of role migration for some libre software
communities, focusing on end-users who become developers. They have found
different paths for this process, concluding that the organizational structure of
the studied projects is highly dynamic in comparison to traditional software
development organizations.

With respect to abandonment, it is worth mentioning a study [9] which
analyzes how many Debian developers leave the project, and how this affects
it (i.e. what happens to those software packages that become unmaintained).
The authors propose a half-Hfe parameter, defined as the time required for a
certain group of contributors to fall to half of its initial population, which is of
7.5 years for the Debian project.

Given these precedents, the research goal for the study presented in this pa­
per is to gain further understanding of the evolution of libre software developers,
and especially of the "core group", those most active. Therefore, we will study
the evolution over time of this core in some libre software projects. We consider
at least two possible scenarios: one in which the first core group is highly stable
and does not change over time, and one in which the core group "regenerates".
This first case (which will be codenamed the code gods scenario) assumes that
projects rely heavily on their initiators and that their absence would suppose
a great loss for, if not the death of, the project. The second scenario assumes
that as time passes, the core group changes its composition with some of the
initial members leaving the project, but others joining and filling the gap. One
of the main goals of this study is to find which of these two approaches is the
most common in fibre software projects.

This paper is organized as follows. First, the methodology that has been used
to extract information from source code management systems is described. The
next section contains the results of applying the methodology to 21 large libre
software projects. Finally, conclusions are drawn and some hints about further
research are given.

Contributor Turnover in Libre Software Projects 275

2 Methodology

Our methodology is based on mining source code management system reposito­
ries, in our case the well-known and widely-used CVS systems. We analyze the
log history of the versioning systems using CVSAnalY [10], a tool that retrieves
the information related to every commit to the repository, and inserts it to a
database where it can be conveniently analyzed.

To identify the "generations" of the core developers, we split the project
life-time into ten equally large intervals, which means that intervals will be
of different lengths depending on the project, but will have the same relative
importance in the context of its history. Selected projects for this study are all
at least three years old, and therefore the minimum length of the time interval
is more than three months (which is considered to be significative enough,
although further research should clarify if this is a correct assumption or not).

For each interval we consider the activity measured in terms of commits to
the repository. The most active 20% of all commiters (rounded by excess) for
that interval is what we consider the "core group". Therefore, for each project
we identify ten different core groups, one per interval. Of course, the composition
of the core group in each interval depends on the total number of commiters
in that interval. If only 10 commiters participated in the first interval, the core
group would be composed of two persons. If in the last interval the number
of participants is 19 commiters, the core group would have 4 members. This
means that the core group has always the same relative importance, despite the
growth in number of developers in the project.

Some other possibilities for selecting the fraction of commiters that form a
core groups, or the duration of the intervals could be considered. Using these
other approaches would lead to different definitions of "core group" and "gener­
ation" . However, after experiencing with some of them (we tried with thresholds
of 5% and 10%, and with 5 and 20 intervals), we have found that they do not
give more insight.

The technique we use is based on visualizing the contribution of the core
groups over time. We identify the core group in the first interval, and then plot
its contribution not only for the first time interval, but also for all the others.
After that, we go on with the core group that corresponds to the second interval,
plotting the aggregate^d contribution of all of its members for all the intervals,
and so on, until we have done that for the core groups in all the intervals. In
the end, we obtain ten curves (one per core;group) which show the evolution of
the contributions for all of them since the beginning to the end of the project.

To better understand the visual information that the plots provide, it is
important to notice that core groups may have members in common. This is the
case if a commiter is part of the most active 20% in several time intervals. This is
not easy to identify at first sight, since we plot only the aggregated contribution
of all the members of the core group. Though, in some cases, subsequent core
groups will be composed by the same persons. In that case, this will be easy to
identify visually, as the corresponding curves will have exactly the same shape.

276 Gregorio Robles and Jesus M. Gonzalez-Barahona

For each project, we will plot the resulting data in three different graphs,
which differ in how the contribution of the various core groups (the vertical
axis) is represented:

- Absolute graph. Displays the absolute number of commits by each core group
(vertical axis) for each interval over time (horizontal axis).

- Aggregated graph. Displays the aggregated number of commits by each core
group since the beginning of the project (vertical axis) vs. time (horizontal
axis). This graph is the integral of the absolute graph.

- Fractional graph. Displays the fraction of the total commits performed by
each core group for each interval (vertical axis) vs. time (horizontal axis). This
graph provides the same information than the absolute graph, but normalized
by the number of commits performed in each period.

From our experience the fractional plot is usually the better one to perform
the generations analysis. Nonetheless, it should be compared to both the abso­
lute and the aggregated graphs since, for instance, periods of little or a lot of
activity cannot be identified in the fractional graph.

From the observation of the resulting graphs, it can be inferred whether the
same core group rides the project from its beginning to current days or not.

3 Observations on some libre software projects

The 21 case studies shown in the next subsections will help us considering the
convenience of this methodology. Among them, we have selected three examples
to illustrate the study more in detail. Two of them can be considered as canon­
ical patterns: no generations (The GIMP), and several generations over time
(Mozilla). The third one (Evolution) shows results which cannot be assigned to
the previous patterns. The rest of case examples, up to 18, will provide us with
some evidence about the most frequent pattern found in large libre software
projects.

3.1 Observations on The GIMP

The GIMP can be considered as a canonical example of a project with "code
gods". Table 1 provides a small summary of the most important facts related
to our analysis. The size of the code developed is over half a million lines of
code, with an activity of more than 100,000 commits (which means that The
GIMP is a very active project).

Although The GIMP started before December 1997 (which is why the date
appears in brackets in table 1), it was only then when it was uploaded to the
GNOME CVS repository, so we have only data from that moment onwards.
The version 1.0 of The GIMP was released in June 1998, so we can consider
it a stable project by that time. The length of the intervals in which we have
divided the project is shghtly over half a year (7.5 months).

Contributor Turnover in Libre Software Projects 277

Project
Size

Commits
Start

Ver 1.0
Interval

Generations

The GIMP
557 K

125,590
(Dec 97)

Jun98
7.5 months

Code god

Table 1. Summary of the most important facts for The GIMP project

'^' \ /

Fig. 1. Right: Absolute graph for The GIMP project. Left: Aggregated graph for The
GIMP project.

Figure 1 shows on the left the absolute graph of commits for each core group
and for each interval. We can see that there are at least two groups (generations),
as it seems that the core group in the beginnings is different from the ones found
in the rest of the intervals. In any case, the members of these core groups do
not all leave the project as their contribution in subsequent intervals is in the
thousands.

A detailed study of the developers forming the core groups yields that one
of the most active is present in all of them. The second and third most active
developers enter during the third interval (which starts around mid-99) and
stay in the project until today.

The plot on the right in figure 1 strengthens this perception. Here the com­
mits performed by each core group are displayed as aggregated. Parallel curves
are indicative of core groups for which the most contributing developers are the
same. We can easily identify the first two core groups as their curve is below
the rest of the curves for later intervals. On the other hand, the shape of the
curves from the core group in the third interval onwards shows that they only
differ in the number of members of the core group, which as we have seen is
variable depending on the total number of contributors for a given interval.

The fractional graph, depicted in figure 2, gives further information. Now
the vertical axis has been normaHzed to 100% of the total commits done in
a given interval. By definition the maximum in each interval will correspond

278 Gregorio Robles and Jesus M. Gonzalez-Barahona

KwHt ti o«

.1 / \

\ /

Fig. 2. Fractional graph for The GIMP project.

to the core group that has been identified in it. In the case of a "code gods"
project, the other core groups should be near that maximum (or at the same
level) as the composition has not changed much over time. In the case of The
GIMP this is true, except for the first two intervals, as we have seen in the
previous plots. There is a fall of the contribution of the two first core groups,
especially in the sixth interval, where it lies under 20%.

Interestingly enough, all core groups show a development share of more than
80% in their corresponding intervals, and even over 90% for those core groups
after the third interval. This shows again evidence about the inequality that
exist in the contributions of libre software projects. We knew by now that a
20%-80% Pareto distribution is a common work distribution pattern in libre
software projects [5]; these graphs shows that, at least for The GIMP (but we
will see that this happens in almost all other projects considered in this paper)
this is general even for (large enough) time intervals in the project.

3.2 Observations on Mozilla

We have selected the Mozilla Internet suite as the example of libre software
project in which several generations can be identified. Mozilla is a well-known
libre software project, the follow-up of the Netscape Internet suite. Mozilla is
a multi-million project, with more than three million source lines of code. The
CVS activity around the project is over 650,000 commits, more than five times
larger than that of The GIMP (which is by itself already a large libre software
project); Table 2 summarizes the relevant information for our analysis.

The Mozilla project started in 1998. Although its beginnings were not very
promising, the project surpassed its early problems, and its version 1.0 was
released in June 2002. Following our methodology, we have ten intervals of 6.5
months each, slightly below the 7.5 months used for The GIMP.

Contributor Turnover in Libre Software Projects 279

Project
Size
Commits
Start
Ver 1.0
Interval
Generations

Mozilla
3,414 K
663,454
(Oct 1998)
Jun 2002
6.5 months
Multiple

Table 2. Summary of the interesting information on Mozilla.

L4 I

. te^^/

/ , ' ' A ^, ,/ ,

'/* ~̂ r . * f \̂ , -' ^

Fig. 3. Right: Absolute graph for the Mozilla project. Left: Aggregated graph for the
Mozilla project.

Figure 3 groups the absolute (left) and aggregated (right) plots of the ten
core groups for each interval. At first sight, we can already see that there exist
many differences between these plots and the corresponding ones of The GIMP.
The absolute graph shows interesting information about the overall activity in
the repository. It can be seen how in the first two intervals, and for the fifth
one, the peak of the core groups is not that high, a fact that is indicative of
less activity. Attending to the aggregated graph, we can see how the number
of curves which follow their own way (i.e. are not parallel one to each other) is
larger. In other words, the composition of core groups varies more frequently
than in The GIMP.

Once more, the figure which provides more information is the fractional one
(see 4). It shows clearly several generations over time. For all of them, there are
peak values of over 75% in their intervals (over 80% in later ones).

Interestingly enough, the core group in the last interval contributed already
in the early stages a small amount of commits (around 5%). Its contribution
grows then almost continuously (the sequence in the ten intervals is the follow­
ing: 5%, 11%, 18%, 21%, 21%, 34%, 27%, 55% and finally 78% where it is the
leading core group). The core group that achieves its peak contribution in the
first interval has an opposite trend with a substantial decline as time passes. In
between we find several core groups that have both behaviors found in the first
and last core group: an increasing shape until they arrive to the peak and a

280 Gregorio Robles and Jesus M. Gonzalez-Barahona

* . . ^ (, 4 <,1%K «

A -^

(̂ v̂̂ r̂ "̂ '̂ \

•!)jrc* »-i«r< - ifei i'-«l«i.-

Fig. 4. Fractional graph for the Mozilla project.

declining part afterwards. If we compare this figure with the corresponding one
for The GIMP, it can be observed that the more chaotic a fractional graph is
(or the less background color we can see in it), the more generations there are.
"Code god" projects have a tendency to show parallel curves, while projects
with many generations show a lot of curves crossing each other.

3.3 Observations on Evolution

Finally, we have selected a project which shows a mixed behavior between code
gods and generations. This is the case of Ximian Evolution (currently renamed
to Novell Evolution), a groupware solution for the GNOME project. Table 3
shows the most important information about this software, a medium-sized
appHcation with around 200 KSLOG. The amount of commits is in the order
of magnitude of The GIMP.

The history of Evolution gives further insight about the results which will
be shown below. Evolution started as a community-driven project in December
1998. By the end of the 1999 it was chosen by a small start-up company called
Ximian as a strategic application. This meant that hired developers started to
work on it, changing its governance to one more typical of a company-driven
project. Version 1.0 was delivered in late 2001. The duration of each interval is
around 6.4 months, similar to the one for Mozilla and The GIMP.

The absolute graph on the right of figure 5 gives a clear idea of the lower
activity that prevailed in Evolution before Ximian developers took over the
project in the third interval. Then, an increase in activity can be observed
during several years (reaching up to 16,000 commits in each interval), declining
in the last year to values close to 9,000 commits per interval. The aggregated
graph on the right supports our findings: we can see how the first two core
groups (which are identical in their composition) do not contribute after the

Contributor Turnover in Libre Software Projects 281

Project
Size
Commits
Start
Ver 1.0
Interval
Generations

Evolution
208 K
92,333
Dec 1998
Dec 2001
6.4 months
Composition

Table 3. Summary of the interesting information on Evolution.

initial periods, while the third one shows to be a combination of the first two
with some new developers that have prevailed from then. The other core groups
show the typical code god behavior with almost parallel curves.

.«»c»i.

.«.**[

i I[
« [̂

..4

;;:,; ̂ i:i:^ ::. ^ j .

^ ;̂i(|ĵ ;,L:4::S ;̂;̂

/ > ^ %

/ ; /

j ^ / - - , • • • " • •

A
«̂«

...

..«

«

"';>.<.. «.-,.t',J',, :,. <w. x;MVvh»."

4;u s; , ;;-;;-;;«;:;; . :;s;: ,^.- . : . : . .

^.....~v-.?..T.v.-:~rr^^'..... i ,

Fig. 5. Right: Absolute graph for the Evolution project. Left: Aggregated graph for
the Evolution project.

The fractional graph shown in figure 6 is the best one to observe the mixed
behavior. We can see how during the first three (even four) intervals we have
a similar pattern to niultiple generations. From then on, the code god pattern
is clearly identifiable with a small reminiscence from the past in the curve
that achieves its peak in the third interval and that does not disappear in the
following intervals.

3.4 Observations on other libre software projects

In this subsection we want to infer which of the three described behaviors (code-
god, multiple, composition) is the most common pattern in large libre software
applications. The selected case studies are part of GNOME (Gnumeric, GTK+,
Galeon and Nautilus), KDE (kdelibs, KOffice, kdepim, kdebase, kdenetwork and
KDEvelop), Apache (Jakarta-commons, xml-xalan and ant). Mono (mono and
mcs) and FreeBSD. In the case of FreeBSD, we analyze only the src module of
its CVS repository which contains many applications besides the kernel.

282 Gregorio Robles and Jesus M. Gonzalez-Barahona

Tuol-^Hi": I.? on'vxHr •:op o»»'Tii irr»l>u (>«"-!v»t)i*̂ <»

^s A "tv -r-v^t

t'̂ * y-x -'••••'" ^"--"•-'

Fig. 6. Fractional graph for the Evolution project

Table 4 shows a summary of the projects, which will be relevant for our
analysis. The starting years of the projects range from December 1993 (earher
commits of the FreeBSD project) to June 2001 for the Mono project. With the
exception of Jakarta-commons, all of them have delivered a 1.0 version, so we
can assume they are stable software. The length of each interval depends on the
starting date of the repository. Hence, we have intervals ranging from 1 year to
three months (for Mono and mcs, the two younger applications). The project
size, the number of commits and commiters have been added to give additional
insight on the applications and to show that they can be considered large in
size and in number of contributors.

Fractional graphs for the selected projects are shown in the two 2x4 matrix
tables (tables 5 and 6). They have been ordered, putting those that have several
generations (multiple) first, then those that have a composite behavior and
finally the projects that have a code god behavior. After a quick inspection
of the fractional graphs, it is easy to classify eight of the projects as having
multiple generations, six as showing a composite model, and finally only two
projects behaving as having code gods.

4 Conclusions and further research

In this paper we have shown a methodology to answer the question of how the
transition (developers joining and leaving) in a libre software project is. We
have used the methodology to classify projects in three categories: those based
on "code gods", those with generations of core developers, and those which
show a mixed model. Most of the projects we have analyzed enter clearly into
one of the presented categories.

Contributor Turnover in Libre Software Projects 283

Project Start Ver 1.0 Size Interval Commits Commiters Type
PreeBSD (src)

kdelibs
j akart a-commons

mcs
kdenetwork

kdevelop
koffice

kdepim
g tk+

galeon
xml-xalan
kdebase

ant
nautilus
gnumeric

mono

Mar 93
May 97

1 Mar 01
Jun 01
Jun 97
Dec 98
Apr 98
Jun 97
Dec 97
Jun 00
Nov 99
Apr 97
Feb 00 (
Feb 98
Jul 98

Jun 01

Dec 93
Jul 98

-
Jun 04
Jul 98

Dec 99
Jan 01
Jul 98

Apr 98
Dec 01
Oct 00
Feb 99

[Aug 03)
May 01 '•
Jun 02
Jun 04

1500K
615K
429K

1081K
293K
386K
780K
512K
388K

90K
337K
362K
120K
200K
229K
222K

12.1
8.3
3.3
2.7
8.1
6.2
7.1
8.1
7.7
4.5
4.9
8.3
4.7
7.3
6.9
2.7

554,764
217,961

39,370
32,566
98,282
69,890

172,564
93,632
68,279
31,153
54,267

330,009
43,955
63,760
81,019
11,936

352
441

72
114
332
152
247
284
265
110
32

450
33

236
166
91

M
M
M
M
M
M
M
M
C
C
C
C
C
C
G
G

Table 4. Summary of the findings for a generations analysis applied to the projects
listed in the first column. Start is the starting date of the CVS, Ver 1.0 the date of
version 1.0 if available, size gives the size of the software in SLOG, interval gives a
tenth of the life-time (in months), commits the total number of commits, commiter the
total number of commiters and generations their type (G = code gods, M = multiple,
C = composition).

T h e methodology we present is quant i ta t ive , based on the d a t a publicly
available in t he CVS reposi tory of t he projects . It uses information ab o u t t he
his tory of source code managemen t sys tems (mainly who performed commi ts
and when he did i t) , and could be therefore influenced by diff'erent policies t h a t
projects may have regarding the use of versioning sys tems. However, we have
checked t h a t using other pa ramete r s , such as number of lines changed (instead
of number of commits) yield similar results .

Fur the r research should s tudy how much the selection of t h e interval length
aff'ects t h e (visual) results . Our experience so far proves t h a t selecting t ime slots
larger t h a n five to six mon ths are sufficient to identify t he existence of several
generat ions, b u t it does not allow to recognize t he to ta l number of t h e m .

On the o ther hand , our sample is composed of large libre software projects .
An interest ing future research act ivi ty could be to invest igate t he results ob­
ta ined from applying th is methodology to projects wi th a smaller number of
cont r ibutors .

T h e research we make public here is backed by a reasonably large number
of projects analyzed, bu t can of course be improved in the future by analyzing
more cases, and by compar ing the results to o ther s tudies , such as t he growth
of t he code size, or of t he change over t ime of the project s t ruc tu re . Our results
show t h a t a major i ty of projects have mult iple core groups over t ime, so t h a t
a na tu ra l regenerat ion process can be inferred. Pro jec t s t h a t are still led by

284 Gregorio Robles and Jesus M. Gonzalez-Barahona

founding core groups have been the less frequent, with only 3 cases over 21
applications under consideration.

In any case, the study of the behaviour of human resources in libre software
projects, and the relationship between its join/leave patterns and the evolution
of the project, is a field to explore. Our study tries to be a first step in this
direction, focused on studying its dynamics, and on finding how projects cope
with the changes caused by those patterns.

References

1. Barry W. Boehm, editor. Software risk management IEEE Press, Piscataway,
NJ, USA, 1989.

2. K. Crowston, B. Scozzi, and S. Buonocore. An explorative study of open source
software development structure. In Proceedings of the ECIS, Naples, Italy, 2003.

3. Kevin Crowston and James Howison. The social structure of oss development
teams. In Proc Intl Conf on Information Systems, Seattle, USA, 2003.

4. Kevin Crowston and James Howison. The social structure of free and open source
software development. First Monday, 10(2), February 2005.

5. Rishab A. Ghosh and Vipul Ved Prakash. The orbiten free software survey. First
Monday, 5(7), May 2000.

6. Chris Jensen and Walter Scacchi. Modeling recruitment and role migration pro­
cesses in OSSD projects. In Proceedings of 6th International Workshop on Soft­
ware Process Simulation and Modeling, St. Louis, May 2005.

7. Stefan Koch and Georg Schneider. Effort, cooperation and coordination in an open
source software project: GNOME. Information Systems J, 12(l):27-42, 2002.

8. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
Open Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, ll(3):309-346, 2002.

9. Gregorio Robles, Jesus M. Gonzlez-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proc 1st Intl Conf Open Source Systems, pages 100-107, Genoa, Italy, July 2005.

10. Gregorio Robles, Stefan Koch, and Jesus M. Gonzalez-Barahona. Remote analysis
and measurement of libre software systems by means of the CVS Anal Y tool. In
Proc 2nd Workshop on Remote Analysis and Measurement of Software Systems,
pages 51-56, Edinburg, UK, 2004.

11. Yuwan Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. The
co-evolution of systems and communities in Free and Open Source software devel­
opment. In Stefan Koch, editor, Free/Open Source Software Development, pages
59-82. Idea Group Publishing, Hershey, Pennsylvania, USA, 2004.

Contributor Turnover in Libre Software Projects 285

> ' : /

i .'

!̂ - .'V.V/

At -̂

'L „

/ / \
N

rA^\

v»-mt ^> .«

r'

7
f̂ /

f

> ^-x^U-v

\̂

y

' \

V.

If « . -

x ' .

/

\i

< %

,>r'

4^. ' - ' f '5

' ""
>4 KI

\

/'

i...

^y>U*1,*,.„K.'-

*v.» ><;,i..

< ^^t .^^v:

^Y*:::,j?: f̂ '

/ . / •
'^ / / i

i '

i .

» ^ t W v « . . -

, » V* ^ i v i

-/̂ *!,%

'S.'-^ " '

\

\

v t -x»^ u>v^.f

v,»»x. >

^is^c: ^ - ^ ^

s

,^ «!;rr.,-;^-tr.%/,Nr^'.^v:;;^a r "

•' ... h \

/

• / /
. . , .^

N)

««
»» >-

1 \

. 1

^ - > / '
- /̂ .
- , " / •

:L_

1
I

/

\

'

A
^ \

—r-

t

1

>'

\
i

.J

~5f7 't* xiVx »

z :: .4 .

^
y' ^*

\

"-••

' ^-^ 4.

•"7777"

x ^ ^

/
'

/
- ̂ ̂
-

7m7T
. . t

'2hi

/
/

/

"̂-̂

4.

^ H

^

V^j

Table 5. 2x4 matrix with fractional generation plots for 8 libre software systems.
Projects with heavy generational turn-over have been situated at the top. More infor­
mation can be found in table 4.

286 Gregorio Robles and Jesus M. Gonzalez-Barahona

^̂ . . i U \ ; X f̂'̂ -V%v , -
1̂

A 1r

/ \ I

" > / V

1 ^^

i f

•

.- .\ /

,L-u»»«

'

^

'

I

*̂

/**•

)S*

/'

*) OU .V .« ' „,i . , ™ ^

• • . \ • - , : ' • ~ -

\
\

i , 1

; - / . /
•^., •^ 7

/

1 W /

/ / ^ /

:_.^--i

/ /

Table 6. 2x4 matrix with fractional generation plots for 8 libre software systems.
Projects with heavy generational turn-over have been situated at the top. More infor­
mation can be found in table 4.

