
Continuous Integration in
Open Source Software Development

Amit Deshpande, Dirk Riehle

TechSolve, Inc.
6705 Steger Drive

45237 Cincinnati, OH, U.S.A.

SAP Research, SAP Labs LLC
3475 Deer Creek Rd

94304 Palo Alto, CA, U.S.A.

amit@amit-deshpande.com dirk@riehle.org

Abstract. Commercial software firms are increasingly using and contributing
to open source software. Thus, they need to understand and work with open
source software development processes. This paper investigates whether the
practice of continuous integration of agile software development methods has
had an impact on open source software projects. Using fine-granular data from
more than 5000 active open source software projects we analyze the size of
code contributions over a project’s life-span. Code contribution size has stayed
flat. We interpret this to mean that open source software development has not
changed its code integration practices. In particular, within the limits of this
study, we claim that the practice of continuous integration has not yet signifi-
cantly influenced the behavior of open source software developers.

1 Introduction

Open source software is having a major impact on software and its production proc-
esses. Many software products today contain at least some open source software
components. Some commercial products are completely open source software. For
commercial software firms it is therefore important to understand open source soft-
ware development processes and ensure that employed developers are capable of
participating in them [13].

Open source software development processes are different from commercial
software development processes like the spiral model [5] or agile methods [4]. Open
source processes can vary from project to project. With no single well-defined open
source process, it is unclear for hiring managers what skills to look for when hiring
people for open source software projects.

One common hypothesis is that open source software processes are similar to
agile development processes and hence that agile method skills could serve as a
proxy for open source software development skills [12] [14]. However, this hypothe-
sis has never been validated. Indeed, it is impossible to prove as long as open source
processes remain as vaguely defined as they are today.

This paper analyses the use of continuous integration within open source soft-
ware projects. Continuous integration is a practice where software developers work

Please use the following format when citing this chapter:

Deshpande, A. and Riehle, D., 2008, in IFIP International Federation for Information Processing, Volume 275; Open
Source Development, Communities and Quality; Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell,
Giancarlo Succi; (Boston: Springer), pp. 273–280.

274 Amit Deshpande and Dirk Riehle

in small increments, contributing code to the project frequently, and ensuring that the
project compiles and passes its test suites at any time [11].

Continuous integration is a core agile methods practice. If it is also an important
open source development practice, managers can hire more confidently developers
for open source projects who have been educated in agile methods and who have
appropriate experience with continuous integration.

To answer the question “Have open source projects increasingly been using con-
tinuous integration?” we looked at the individual actions of developers from 5122
active open source software projects. Specifically, we looked at the size (in source
lines of code) of code contributions and their frequency.

The paper is organized as follows. Section 2 frames our hypothesis. Section 3
discusses our database and the details of the validation approach. Section 4 presents
the results of the analysis. Section 5 discusses the shortcomings and limitations of
the analysis. Section 6 discusses related work. Section 7 concludes the paper.

2 Is Open Source Using Continuous Integration?

Agile software development methods like Extreme Programming “embrace change”:
There is no insistence on following a master-plan, but the willingness to respond to
(requirements) change quickly [3]. This is in stark contrast to traditional approaches
to software development with their insistence on detailed planning ahead.

It is not obvious how open source projects relate to agile methods. According to
Fugetta, “[Agile methods] can be equally applied to proprietary and open source
software” [1]. Thus, with the advent of agile methods around 1997/1998, one might
expect to see an adoption of agile methods practices in open source software deve-
lopment over the last ten years.

Thus, we are asking: What is the impact of (the arrival of) agile methods on
open source software development processes? And then, more specifically: Is con-
tinuous integration a widely used practice in open source software projects? The
answer to this question is important to software firms who engage with open source
software projects, because they need to hire, cultivate, and maintain the appropriate
skill sets of their employees to work with open source projects.

We chose continuous integration as a representative practice of agile methods
like Extreme Programming [3] or SCRUM [6]. “Continuous integration is the prac-
tice of making small well-defined changes to a project’s code base and getting im-
mediate feedback to see whether the test suites still pass” [11].

If continuous integration had not been employed in open source projects before
its first formulations around 1997 but has been increasingly employed since then, we
would expect to see a statistically significant behavioral change in how open source
software developers contribute code to open source projects. Specifically: We would
expect to see that the average size of code contributions, the individual check-in into
a source code repository, would have gone down over the last ten years, and we
would expect to see that the average frequency of such check-ins has gone up.

To investigate this hypothesis, we analyzed more than 5000 active open source
software projects, as discussed in the following sections.

Continuous Integration in Open Source Software Development 275

3 Data Source and Approach

For the analysis, we use the database of the open source analytics firm Ohloh.net
[10]. The database contains 5122 current and active open source projects from 1990
until May 2007.

We analyze the last 16 years from January 1990 to December 2006. The database
contains the most popular open source projects as measured by the number of in-
links to their website. The in-links are provided by the Yahoo! search engine.

Ohloh.net goes down to the level of the individual developer action. Specifi-
cally, Ohloh.net provides each individual commit action of all the projects over their
entire history. A commit is the action with which a developer contributes a piece of
code to the project’s repository.

3.1 The Commit Action

A commit action is the atomic contribution of source code to a code repository. We
measure the amount of work that went into a commit in Source Lines of Code
(SLoC) added, changed, and removed, ignoring empty lines and comments. SLoC is
based on applying the Unix diff command to two consecutive source file versions.

Unfortunately, Ohloh.net counts a changed line as an old line removed and a
new line added. One line of code edited will be tracked as one line added and one
line removed. Table 1 represents the resulting three cases. From this data alone we
cannot determine the exact number of lines of code affected. Thus, in Section 3.3 we
will take two approaches representing the upper and the lower bound respectively.

3.2 Commit Action Filtering

We want to study the size of a commit over time. In order to perform a valid analysis
we impose four filters to exclude special and undesired events:

1. The initial commit (creation) of a file

2. The final commit (deletion) of a file

3. Commits of a size larger than three standard deviations above the average

4. Commits of a size smaller than three standard deviations below the aver-
age

Filter 3 eliminates the cases where a developer adds a large amount of external code
to an existing file and Filter 4 eliminates commits where a large amount of code is
removed, like in a major refactoring. None of these events helps us understand
changes in commit size patterns.

276 Amit Deshpande and Dirk Riehle

3.3 Analysis of Commit Size

Approach 1 adds the number of lines of code added in one commit to the number of
lines of code removed in the same commit. Following the discussion of Section 3.1,
editing a single line will be counted as one line added plus one line removed. Thus,
the size calculated by Approach 1 represents the upper bound for the commit size.

from 1990 to 2006. The size is shown on the Y-axis and time is shown on the X-axis.
To smooth out fluctuations and to highlight the longer-term trends or cycles we fit a
moving average (period = 10) curve on the plot. The commit size is nearly constant
and shows no significant trend or pattern over time.

0

20

40

60

80

100

120

Aug-87 May-90 Jan-93 Oct-95 Jul-98 Apr-01 Jan-04 Oct-06 Jul-09

Time

So
ur

ce
 L

in
es

 o
f C

od
e

(S
Lo

C
)

Figure 1: Upper bound of commit size in SLoC over time (Approach 1)

Approach 2 subtracts the number of lines of code removed from the number of lines
of code added. Thus, an edited line will not be counted, and the value reflects the net
change to the size of a file only. Thus, the commit size as calculated by Approach 2
represents the lower bound for the actual size of the commit.

Table 1: Data semantics (SLoC = Line of Source Code)

Case Commit Action SLoC Added SLoC Removed

1 One line of code added 1 0

2 One line of code removed 0 1

3 One line of code edited 1 1

Figure 1 shows the average size of a commit (as defined by Approach 1) per week

Continuous Integration in Open Source Software Development 277

Figure 2 shows the average size of a commit (as defined by Approach 2) per week
using the same axes labeling and moving average curve. The commit size is nearly
constant and shows no significant trend or pattern over time.

We tested the validity of our results using hypothesis testing. The null hypothesis
is: The average commit size in any year is equal to the average size during the next
year. The research hypothesis is: The average commit size in any year is greater than
the average commit size during the next year.

-20

-10

0

10

20

30

40

50

60

70

Aug-87 May-90 Jan-93 Oct-95 Jul-98 Apr-01 Jan-04 Oct-06 Jul-09

Time

So
ur

ce
 L

in
es

 o
f C

od
e

(S
Lo

C
)

Figure 2: Lower bound of commit size in SLoC (Approach 2)

No clear picture resulted at the 95% confidence level. In a few cases, we could reject
the null hypothesis, in most we could not. Within the limits of the study we conclude
that the commit size remained constant with no significant trend or pattern over time.

4 Results of Analysis

Our analysis does not validate the hypothesis that open source software developers
are practicing continuous integration. Our indicator, the average size of a commit,
remained almost constant over the years with no significant trend or pattern. We ap-
plied a similar analysis (not given in this short paper) which showed that the commit
frequency has remained stable over time as well.

One explanation is that open source projects have not adopted continuous inte-
gration on any significant scale. An alternative interpretation is that open source
software development has always practiced continuous integration. In that case, the
advent of agile methods did not lead to any changes, simply because it had long ar-
rived in open source software development before.

278 Amit Deshpande and Dirk Riehle

5 Limitations of Analysis

The analysis and the conclusions we draw have at least the following limitations.

Sample size. We considered 5122 open source projects. The total number of
open source projects is much larger. However, our data source focuses on
active projects of significant popularity. So we believe the sample we are
using is relevant for analyzing agile methods practices in open source.

Data quality. We couldn’t calculate exact numbers of commit size due to
the way Ohloh.net tracks changes to source code files. (See Section 3.1.)
We believe that working with a lower/upper bound does not restrict the va-
lidity of our results as we care about the trend and not the actual values.

Data incompleteness. Some amount of revision control information in open
source projects has been lost forever, as projects have moved from one code
repository to another. However, this is old data, and we believe the lack of
some of the early histories do not affect the validity of our conclusions.

Improper summation across different programming languages. One may
argue that commit size depends on the programming language. We analyzed
variation across languages and found that the programming language does
not have a significant impact on the results presented in this paper.

Improper summation across different project sizes. Some open source pro-
jects are small, some are large. Barry Boehm argues that agile methods
don’t scale well beyond a certain size limit [2]. Our data confirms within the
given limitations that the practice of continuous integration has not found
increasing adoption in open source projects over the last ten years.

We are working to remove these and other limitations. However, we believe that
while the respective critiques can be made, the effects are limited, as argued above.

6 Related Work

Angioni et al. describe MADD, a “Methodology for Agile Distributed Development”
and compare the similarity, differences and applicability of agile practices in open
source development [9]. Less than 73% of the developers were knowledgeable about
agile development practices. Less than 10% of the developers used core agile prac-
tices like pair programming or small iterations.

Turnu et al. studied the effect of applying agile methodology in the open source
development environment [8]. Specifically, they studied the effects of applying Test
Driven Development on open source development by using a simulation model de-
veloped from the Apache HTTP server project data. They concluded that use of agile
methods in open source development can yield better results in terms of code quality.

Continuous Integration in Open Source Software Development 279

7 Conclusions

Software firms seeking to work with open source software need to understand open
source software development processes. Our analysis of the size of code contribu-
tions by open source software developers indicates that the core agile methods’ prac-

Acknowledgements

We would like to thank Prem Devanbu and Gregorio Robles for their feedback on
earlier versions of the paper as well as their encouragement for the work presented.
We also would like to thank Oliver Arafat and Mario Fernandez for proofreading the
paper. Finally, Amit Deshpande performed parts of this work while being employed
at SAP Labs, LLC.

References

[1]

[2]

[3]

[4] Cockburn, A.: Agile Software Development. Addison-Wesley, 2001.
[5]

IEEE Computer (May 1988) 61-72.
[6]

2001.
[7]

13, 2007, from http://www.idc.com/getdoc.jsp?containerId=IDC_P13018
[8]

[9]

[10] Ohloh Corporation, see http://www.ohloh.net.
[11]

Reducing Risk. Addison-Wesley, 2007.

method skills are not a good proxy for open source software development skills.
development practices. Hence, we conclude within the limits of our study that agile
tice of continuous integration has not had a significant impact on open source

Fugetta, A.: Open Source Software—An Evaluation. The Journal of Systems
and Software (66) 77-90.
Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer (January
2002) 64-69.
Beck, K.: Extreme Programming Explained: Embrace Change. Addison
Wesley, 1999.

Boehm, B.: A Spiral Model of Software Development and Enhancement.

Schwaber, K.: Agile Software Development with SCRUM. Prentice-Hall,

Lawton, M.: Open Source Business Models. IDC, 2007. Retrieved on Sept

Turnu, I., Melis, M., Cau, A., Setzu, A., Concas, G., and Mannaro, K. Mode-
ling and Simulation of Open Source Development using an Agile Practice.
J. Syst. Archit. 52, 11 (Nov. 2006) 610-618.
Angioni, M., Sanna, R., Soro, A.: Defining a Distributed Agile Methodology
for an Open Source Scenario. In Scotto, M., Succi, G. (eds.): Proceedings of
the First International Conference on Open Source Systems. Springer Verlag
(2005) 209-214.

Duvall, P.: Continuous Integration: Improving Software Quality and Reducing

280 Amit Deshpande and Dirk Riehle

[12]

Processes in Software Engineering. Springer-Verlag (2004) 85–93.
[13]

ceedings of the 2005 SAISCIT: 268-277.
[14]

Engineering, Portland, Oregon, USA.

Koch, S.: Agile Principles and Open Source Software Development: A
Theoretical and Empirical Discussion. In: Extreme Programming and Agile

Morkel Theunissen, WH, Boake, A. Kourie, DG. In Search of the Sweet
Spot: Agile Open Collaborative Corporate Software Development. In Pro-

Warsta, J. and Abrahamsson, P. Is Open Source Software Development
Essentially an Agile Method? In: 3rd Workshop on Open Source Software

