
Comparing macro development for 
personal productivity tools: 

an experience in validating accessibility of 
Talking Books 

Gabriella Dodero\ Katia Lupi', and Erika Piffero^ 
1 DISI, Universita di Genova, Via Dodecanese 35, 16146 Genova, Italy 

dodero@disi.unige.it, {katia.lupi, erika.piffero}@gmail.com 
WWW home page: http://sealab.disi.unige.it/Krakatoa/DisiAbles 

Abstract. We describe an experience in developing macros for both Power 
Point and Impress, to be used in accessibility validation for educational 
multimedia (Talking Books) designed for visually impaired people. Minor 
disadvantages in the use of Impress are outlined, which however do not 
constitute a serious obstacle to adoption of Open Source tools for our purposes. 

1 Introduction 

There is a number of experiences and studies on how personal productivity tools are 
being used, and the issues in migrating from one proprietary environment, like MS 
Office, to an open source one, like OpenOffice.org, have extensively been dealt with 
(see for example [1]). However the issue of macro development in either 
environments has not yet received comparable attention, and most of available studies 
about macros are related to their use in spreadsheets or word processors [2]. 

This paper describes an experience in validating accessibility of Talking Books, 
i.e. multimedia training materials, developed with the two most popular personal 
productivity tools (Impress and PowerPoint) and validated by means of macros. It is 
the natural follow-up of a previous experience [3, 4], where we described how 
Cultural Heritage professionals without technical expertise may produce a Talking 
Book, a computer based teaching aid both for normal and for visually impaired 
people. The first Talking Book was developed with PowerPoint, following the 
detailed instructions in the manual [5]. 

The guidelines to be followed in order to make an accessible Talking Book are 
partly suggested in such a manual, partly derived from Italian legislation about 
accessibility [6, 7], as well as from the expertise of therapists employing computer 
based aids for visually impaired people. Once the content of the Talking Book has 
been developed, a tedious manual task is started, by enforcing compliance to the 
accessibility rules, in order to make it truly accessible. Automation of compliance 
checks to accessibility rules avoids such a task, and it is made possible by a suitable 
set of macros. 

Two implementations of such a validation procedure have been undertaken [8, 9], 
by developing macros for both PowerPoint and Impress (respectively using Visual 

Please use the following format when citing this chapter: 
Dodero, G., Lupi, K., Piffero, E., 2006, in IFIP International Federation for Information 
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, 
W., Scotto, M., Succi, G., (Boston: Springer), pp. 247-252 



248 Gabriella Dodero, Katia Lupi, and Erika Piffero 

Basic for Applications and Basic). Such macros have been used both to test the 
existing Talking Book for accessibility, and for developing new ones. 

This paper describes our experiences and compares the two implementations. 

2 Development of a Talking Book 

Talking Books are usually created by people with minimal computer literacy, having 
expertise or interest in cultural or entertainment activities of visually impaired people. 
So, creators of Talking Books may be schoolteachers, parents of disabled children, 
CH university students or museum personnel, all of them not being professional 
software developers. 

Talking Books creators are interested in making certain contents accessible, and 
the availability of open source applications saves them licence costs, both for creation 
and for redistribution of the Talking Book to other visually impaired people (of 
course costs due to reproduction of copyrighted contents, if any, cannot be avoided). 
To this aim, a new manual was prepared [10], which details the various operations to 
be done, illustrating how to use OpenOffice.org Impress to create a Talking Book, on 
a PC equipped with Windows XP. 

Then, we developed macros, that should be applied by the Talking Book creator 
when he/she decides to validate his product for accessibility, either during the 
development, slide by slide, or when the Talking Book is completed. Compliance 
with accessibility guidelines requires the following checks: 

Font size greater or equal to 20; 
Font must be one out of: Arial, Tahoma, Verdana, Times New Roman; 
Italic modifier not allowed; 
Double spacing between words; 
Check of brightness for text and background with the following formula 
(Red, Green and Blue are the RGB components of text or background 
colors): ((Red * 299) + (Green * 587) * (Blue * 114)) / 1000 >= 125 

• Check of contrast between text and background colors with the following 
formula (considering Color 1 the text color and Color2 the background 
color): 
[ Max (Redl, Red2) - Min (Redl, Red2)] + 
[ Max (Green 1, Green2) - Min (Green 1, Green2)] + • 
[ Max (Bluel, Blue2) - Min (Bluel, Blue2)] >= 500. 

When the check is performed, the macro user (Talking Book creator) is prompted 
with a list of possible incompatibilities. Then he/she may decide whether to manually 
correct them, or let the macro automatically perform the suggested modifications. 

In this way such a macro may be used as a pure validator, or even, it may be used 
to automatically transform a non accessible file into an accessible one. In fact, as a 
useful side result, these macros may be applied to presentations for lectures or 
conferences (PowerPoint or Impress files without audio components), so that visually 
impaired people in the audience are not discriminated. 



Comparing macro development for personal productivity tools: an experience... 249 

3 Validation macros 

Macro development within Microsoft PowerPoint and OpenOffice.org Impress can be 
done by means of two very similar object oriented programming languages, 
respectively Visual Basic for Applications and Basic. Our macros must access 
objects, and possibly change their properties in order to implement the above 
described checks. The two tools use different objects and properties in order to define 
a presentation, and the example provided in the Appendix (the function removing the 
Italic modifier) gives a flavour of such differences, most of which are just syntactical 
ones. The only significant difference in internal object structure and properties is 
described hereafter. 

A Power Point presentation consists on a set of slides, each one containing various 
shapes. Inside shapes we may find text frames, that is where macros must operate. 
Shapes describe an area inside the slide, having properties like HasTextFrame (true if 
there is text inside). 

An Impress presentation is composed by a set of draw pages, each one made by a 
set of typed elements called shapes. Text is contained only inside shapes having 
certain types, so if we wish to identify where text can be found, we have to check if 
the current shape has one of the following types: TitleTextShape, SubTitleShape, 
TextShape, OutlinerShape. 

For both tools, it is possible to customize the toolbar by adding a new button in 
order to activate the accessibility validation macro on a new presentation. 

On the other hand, we found a minor but sometimes annoying difference in 
macros behaviour. OOo does not apply macros to currently selected text elements, 
while Power Point makes no difference in treatment between selected and non 
selected texts. 

During macro development, we carefully searched websites devoted to macro 
developers, like for example www.bettersolutions.com, ww^.ooomacros.org and 
others. We realized that the Web provides many more details, useful examples, and 
explanations on how to manipulate Power Point objects with respect to what is 
available about Impress objects. 

Specifically, we were unable to find the object names and properties of 
background colors, so the check on contrast between background and text colors has 
not yet been implemented in the Impress macro. The documentation describing such 
objects and their properties for OOo appears more difficult to be searched than it is 
for Power Point, and the effort required to find out the names and properties we need, 
by actually inspecting the source code, is possible in principles, but appears too big. 
However the frequent updates to OOo related sites make us confident that information 
about background color properties will soon be available as well. 

This would complete our experience, so that our macros will finally be made 
available to the public. 



250 Gabriella Dodero, Katia Lupi, and Erika Piffero 

4. Conclusions 

We have described our experience in developing macros for both Power Point and 
Impress, to be used in accessibility validation for educational multimedia (Talking 
Books) designed for visually impaired people. We experienced minor disadvantages 
in the use of Impress macros, which however do not constitute a serious obstacle to 
adoption of Open Source tools for our purposes. 

Use of macros for improving accessibility inside personal productivity 
applications is a technique which has proven successful for Microsoft Word (see for 
example [11, 12]), yet it has not received so far a widespread diffusion as one might 
expect. Furthermore, the application of macros inside validation tools for Talking 
Books, as those we have developed, is the only one we are aware of. 

It should be remarked that there are two types of stakeholders for accessibility 
validating tools: creators of Talking Books (or just creators of PowerPoint and 
Impress presentations), and visually impaired people, who in the end shall be the 
users of such products (or the audience of such a presentation). The first experiences 
collected with the creators (a group of Cultural Heritage university students, 
developing Talking Books to illustrate the contents of various Museum rooms to 
visually impaired visitors) showed the ease of use of the validation tools, especially 
appreciating the possibility of automatic corrections. Almost no one in the creators 
group was aware of the existence of the OOo toolset, while most of them had some 
familiarity with the MS Office suite. They all worked with Impress without 
difficulties, following the detailed instructions in [10]. 

The resulting Talking Books are being experienced with a real audience including 
both normal and visually impaired people, inside the Museum. Meantime, conference 
presentations with accessible slides have already been given (at a national Computers 
and Disabilities conference, Handy TED 2005) with both normal and visually 
impaired attendees. 

5 Acknowledgements 

The authors are grateful to Silvia Dini from Istituto Chiossone, who gave precious 
suggestions about accessibility guidelines for visually impaired people, and to the CH 
students from the Muscology Course of Dr.A.Traverso, who developed the Talking 
Books. 

6 References 

[1] COSPA Consortium for Open Source in the Public Administration. Website: 
ŵ ww .cospa-proj ect.org 



Comparing macro development for personal productivity tools: an experience... 251 

[2] I.e. Laurenson, Introduction to OOo macro development, OOCON 2005, Koper, 
September 2005. Website: http://marketing.openoffice.org/ooocon2005/. 
[3] P. Signorini, Multimedia products for visually impaired people in archaeological 
museums, Graduation Thesis (in Italian), University of Genova, Laurea in 
Conservazione dei Beni Culturali, July 2005. 
[4] G.Dodero, P.Garibaldi, P.Signorini, and A.Traverso, Visually impaired people and 
archaeology: a Talking book to know the "Principe delle Arene Candide", Proc. 
Handy TED 2005 (in Italian), ITD-CNR, Genova, November 2005. Website: 
www.itd.cnr.it/handyted2005. 
[5] R. Walter, How to create talking books in Power Point 97 and 2000, ACE Centre 
2002. Website v^^vw.auxilia.it. 
[6] Dispositions to ease access of disabled individuals to computer based systems, 
Italian Law no. 4/2004, appeared on GU n. 13 on 17 Jan 2004. Website: 
http://www.innovazione.gov.it/ita/news/2003/cartellastampa/doc_leggestanca.shtml. 
[7] Requirements for compliance with Law 4/2004, Act of the Italian Ministry of the 
Innovation and Technologies, appeared on GU n.l83 on 8 July 2005. 
[8] K.Lupi, Talking Books for Visually Impaired People: user interfacing features. 
Final Report (in Italian), University of Genova, Laurea in Informatica, Oct. 2005. 
[9] E.Piffero, Access to heritage related information for visually impaired users, Final 
Report (in Italian) University of Genova, Laurea in Informatica, Oct. 2005. 
[10] L.De Lucia, How to create a Talking Book with OpenOffice.org 2.0, Final 
Report (in Italian), University of Genova, Laurea in Informatica, 2006. 

[11] A.Cantor, Enhancing the accessibility and usability of Microsoft Office 
applications using Visual Basic, Technology and Persons with Disabilities 
Conference, California State University at Northridge, 2004. Website: 
http://www.csun.edu/cod/conf/2004/proceedings/csun04.htm . 
[12] A.Cantor, Macros FAQ, version2.0.(2005). Website: 
www.cantoraccess.com/macro-docs/macrosfaq.htm 



252 Gabriella Dodero, Katia Lupi, and Erika Piffero 

Appendix: Two functions for removing the Italic font modifier 

Public Function correctItalic() 

For i = 1 To ActivePresentation.Slides.Count 

With ActivePresentation. Slides(i) 

For k = 1 To .Shapes.Count 

If .Shapes(k).HasTextFrame Then 

With .Shapes(k).TextFrame.TextRange.font 

If .Italic = msoTriStateMixed Or .Italic = msoCTrue Or .Italic = msoTrue Then 

.Italic = False 

End If 

End With 

End If 

Nextk 

End With 

Nexti 

End Function 

Function correctltalic (slides) 

for i = 0 to slides.getCountO-1 

slide = slides.getBylndex(i) 

if slide.hasElementsOthen 

for k = 0 to slide.getCountO-1 

shape = slide.getBylndex(k) 

tipo = shape. getShapetypeO 

if tipo = "com.sun.star.presentation.TitleTextShape" or 

tipo ="com.sun.star.presentation.TextShape" or 

tipo = "com.sun.star.presentation.SubtitleShape" or 

tipo = "com.sun.star.presentation.OutHnerShape" then 

fPosture = shape. getTextO-CharPosture 

if fPosture = com.sun.star.awt.FontSlant,ITALIC then 

testo = shape. Text 

cursor = shape. createTextCursor 

cursor. CharPosture = com,sun.star.awt.FontSIant.NONE 

testo. CharPosture = com.sun.star.awt.FontSlant.NONE 

testo.Insertstring(cursor,"", false) 

End If 

End If 

Nextk 

End if 

Nexti 

End Function 

The function in the top box is written for Power Point, the one in the bottom box is 
written for Impress. 




