
Collaborative Maintenance in Large
Open-Source Projects

Matthijs den Besten'" ,̂ Jean-Michel Dalle*'̂ and Fabrice Galia^
* Universite Pierre et Marie Curie, Paris, France

<jean-michel.dalle@upmc.fr>
^ Universite Paris-Dauphine, Paris, France

<matthijs.denbesten@lamsade.dauphine.fr>
^ Universite Pantheon-Assas Paris II, Paris, France

<galia@u-paris2. fr>

Abstract. The paper investigates collaborative work among maintainers of open
source software by analyzing the logs of a set of 10 large projects. We inquire
whether teamwork can be influenced by several characteristics of code.
Preliminary results suggest that collaboration among maintainers in most large
open-source projects seems to be positively influenced by file vintage and by
Halstead volume of files, and negatively by McCabe complexity and size
measured in SLOCs. These results could be consistent with an increased
attractivity of files created early in the history of a project, and with maintainers
being less attracted by more verbose code and by more complex code, although
in this last case it might also reflect the fact that more complex files would be
de facto more exclusive in terms of maintenance.

1 Introduction

Teams in general, and virtual teams in particular, enjoy an increasing interest from
scholars in organizational science.^'^ In the absence of a strong managerial hand, it is
not obvious indeed how team members collaborate - especially when the members
are located in various parts of the world. Nonetheless, in many circumstances virtual
teams appear to be remarkably successful and until now, no real and clear
understanding exists of the conditions of their success and efficiency.

In this context, the work of virtual teams is at least partly traceable in the activity
logs that those teams leave behind in, their virtual environments. Open source
software projects are natural candidates in this respect, i.e. for quantitative empirical
studies of virtual teams, given their increasing economic success and the free and easy
access they typically provide to such data."* Several steps in this direction have already
been made by others^ This conviction that the by-products of collaboration provide a
wealth of data that could be harnessed is also behind the study of collaborative
maintenance activity in open source project logs that we present here..

Section 2 introduces open source software and reviews some of the research done
in that area. In section 3, we describe the database we studied and how we created it,
and we introduce a few important methodological caveats. It is followed, in section 4,

Please use the following format when citing this chapter:
den Besten, M., Dalle, J.-M., and Galia, F., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 233-244

234 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

by an analysis of the results of our investigations. We conclude by briefly pointing
out several avenues for further research.

2 Open Source Software

Open source software (OSS) is a type of software that has become increasingly
prevalent over recent years. In contrast to closed source software, in OSS the human
readable source code of the software program is distributed along with the program
itself. With this source code it becomes then possible for users of the program to
scrutinize the inner workings of the program and to adapt the program to their needs.
The most famous example of OSS is Linux, an operating system developed based on
Unix that is developed by Linus Torvalds and many other developers.̂ Microsoft, a
dominant player in the market for operating systems, acknowledged the strength of
Linux very early on, in what is now known as the "Halloween document" ,̂ and since
then, the software industry has looked for ways to adapt features of the open source
development model in more traditional closed environments.̂ '̂

Yet, there is still something particular, and largely puzzling, about the OSS
development model. In general, what is understood as the OSS development model is
that it corresponds to the community-based voluntary self-organizing effort of various
virtual teams of physically dispersed computer programmers to develop software -
that is itself open to inspection to everyone who is interested. Eric Raymond famously
likened the OSS development model to the interactions that are going on in a
"bazaar".^ However, since then, several case studies of open source software projects
showed that in many projects' hierarchies tend to persist and that there is larger
diversity in organizational forms from one project to the other than would have been
expected.'̂ Indeed, in so far as there is a OSS development model, recent research
seems to point towards an "onion model" of organization in which a core team of just
a few developers is aided by a larger group of co-developers who are in turn aided by
an even larger group of bug-submitters and feature-requesters, etc. '̂ That is, open
source development typically involves the participation of a large number of users
who report bugs and request features, to be compared to a more limited number of co-
developers who suggest software code that addresses those bugs and features; and to
yet a smaller set of core developers who review the suggested code contributions and
incorporate them in the existing code base.

What makes open source software projects particularly attractive as a topic for
research is that virtually the whole development process is recorded and that the
archives of these recordings are freely available for investigation. More in particular,
open source software projects typically feature mailing lists where developers discuss
their work and non-developers submit requests or ask for help. In addition, there may
be discussion forums and bug tracking tools. Last, but not least, the source code is
available and, when, as is often the case, a version control system is employed, in fact
all old versions of the source code so that the development process can be traced back
to the start. Researchers of software engineering have started to make use of this
wealth of data to inform their investigations. Notable examples are the work of Walt

Collaborative Maintenance in Large Open-Source Projects 235

Scacchî ,̂ who performed an in-depth ethnographical analysis of the implicit ways in
which requirements are gathered in open source projects, and that of Mockus and
Herbsleb^ ,̂ who studied the pace with which bugs were resolved based on
information in mailing lists and software logs. Hashler and Kocĥ "* propose a larger
scale mining of the available information and discuss what kind of questions could be
explored on the basis of that information.

The data that we looked at for our particular investigation of the allocation of
tasks in open source software project teams was extracted from logs of development
activity that are maintained by software version control systems. Version control
systems are used by development teams in order to keep track of what was
contributed, when and by whom. If conflicts arise due to a change in the code, a
version control system makes it possible to undo that change and revert to the source
code as it was before the change was made. Note, however, that in most OSS projects,
a possible change has already been thoroughly reviewed before it is applied to the
source code. Also, the people who commit the change are not necessarily the ones
who wrote the code incorporated in that change. Rather, they are likely to be the
maintainers of a part of the source code, who after a review of a change suggested by
others, decide it is a good change and apply it to their part of the source code. In some
cases, each change has to be approved of by a committee of core developers. In other
cases, the review of suggested changes is completely up to the digression of the
maintainer of the part of the source code to which the change is applied.

3 Database & Caveats

To create a database adapted to our investigations, we selected a set of open-
source projects, attempting to obtain a set that was diverse in terms of product
complexity, task uncertainty, and target audience. In addition, the projects needed to
have a minimum amount of code, contributors and development history: in the list
below, the logs typically span a period of five to ten years. Obviously, only those
projects that provided easy access to their code repositories could qualify. In the end
we settled for ten projects: An operating system - NetBSD, a data base - PostgreSQL,
a web server - Apache, a web browser - Mozilla, an instant messaging application -
Gaim, a secure networking protocol - OpenSSH, a programming language - Python, a
compiler - GCC, an interpreter for the PostScript language and for PDF - Ghostcript,
and a version control system - CVS, Several of these projects, most notably Mozilla
and Apache, have already received a lot of attention from researchers. Others, like
Gaim, stand out because of the amount of activity or because of the sheer length of
activity. Finally, and although we only selected "large" projects, we selected projects
whose sizes belong to different orders of magnitude (in terms #contributors, #files,
#years of history), which could have an impact on their characteristics, and we would
precisely like to discriminate between characteristics of projects and features more
generally associated with the open-source mode of software development. There are
also strong and potentially relevant differences among these projects in terms of
organization and in terms of maintenance policies.

236 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

We extracted CVS logs for all these projects. CVS is the most widely used version
control system for open source software development and its logs are relatively easy
to parse.'^ The log lists for each file each revision of that file and for each revision
when the revision was made, who was responsible for the revision and how many
lines of code were added to and deleted from the file as a result of the revision
(example given in Annex). At this level of analysis, we have restrained our sample to
all the files that contain source code written in C or C++ i.e. to files with .c, .C, .cc, or
.cpp suffixes. However, in some projects, e.g. Python, most code is obviously written
in another language (e.g. python, precisely). In others, specially in gcc, there is a large
portion of test files.

For each of the 10 projects, we computed descriptive data similar to what is
available for various open-source projects'^ reported partially in Table 1. Then, more
specifically for the purpose of studying collaborative maintenance, for each file that
was studied and for each month we computed how many distinct maintainers had
committed a change to that file during that period, and how many commits the file
had received during the same period.

Before we proceed to presenting our investigations and their results, a few caveats
have to be mentioned, which appeared as we progressed in the series of experiments
that we conducted with our database.

1. About the constitution of the database and its suitability for econometric
inquiries, it is not fully clear where the boundaries of a given project are.
For instance, Apache and Mozilla have their own repositories but both host
multiple applications. Lacking a clear rule for now about where to draw
these limits, we decided that in the case of Apache, we would restrict
ourselves to the logs concerning Apache HTTP Server 2.0. In the case of
Mozilla, we considered the whole suite. In the case of NetBSD, we only
looked at the kernel of the operating system, while in the case of OpenSSH,
which is part of OpenBSD, we focused at the subdirectory within OpenBSD
where OpenSSH resides.

2. The first date recorded in the repository does not necessarily coincide with
the creation date of the project. However, the earliest record in the log does
not necessarily coincide with the start of the project itself as the decision to
adopt CVS could have been made well into the development of the project:
A case in point is GCC, which started well before the first recorded commit
in 1997.

3. For now, we only consider the main branch and ignore activity in other
development branches. More generally, it is not completely clear when a file
is really part of the project's code base. That is, some files are explicitly
deleted when they are no longer needed, but we cannot be sure that this
policy is always enforced. Some files are "bom dead" (which happens when
a file is created in a branch other than the main branch). Sometimes files that
are registered as dead are "revived". All of this is mainly CFiS-specific.

Collaborative Maintenance in Large Open-Source Projects 237

Finally, it might be necessary to investigate at some point whether CVS
accounts could be used by more than one maintainer, which could create
another potential source of bias.

4 Empirical Investigations

To study collaborative maintenance activity, the econometric tests presented in this
paper address two different measures for each file, the average number of maintainers
per month ("maint's"), and the average number of revisions per month ("revisions").
The first measure can be considered as an indicator of collaborative maintenance
while the second addresses activity more specifically.

However, previous investigations^^ have attracted our attention to the time variability
of collaborative maintenance and activity on a given file. We had typically found that
in 80 to 90% of the cases, only one maintainer had committed a change to a given file
during a given month. As a consequence, we investigate also two other variables: the
maximum number of maintainers per month over the period ("max maint's") and the
maximum number of revisions of files per month over the period ("max revisions") in
order to address this issue. These last two variables focus on intensive periods of
maintenance and activity to deal with the fact that there are large periods of low
activity, which is rather intuitive once said, but which we fear might create a
significant bias: in doing so, they allow us to focus specially on periods of teamwork.

We run several specifications for all 10 projects, trying to explain four dependant
variables (maint's, max maint's, revisions and max revisions) by the size of the file
defined as its number of single lines of code ("SLOCs"), the maximum McCabe
complexity index for all functions in the file ("McCabe"), Halstead volume
("Halstead") of the file, and the date of creation of the file ("Relative creation date").

Taking Apache as an example (Table 2), we find that:

a. maint's is explained positively by the relative creation date of the files: even
controlling by their age, younger files attract on average more maintainers than older
ones. A similar, but opposite, dependence characterizes max maint's: in that case, the
older the file the higher the maximum number of maintainers during one month.
Similar dependencies (positive for revisions and negative for max revisions), and
therefore similar tentative explanations, characterize activity: still controlling by their
age, younger files attract more activity on average, but a lower maximal activity per
month. Generally, younger files tend to attract a higher average number of
maintainers per month, and a higher average number of revisions per month, but
lower maxima in both cases.

-> This could be explained by a larger global audience of the project, meaning that
more recent files could attract more numerous maintainers just because the population
of developers would be larger, because the growth of the total number of maintainers
for the project over time, meaning that the files could therefore be "touched" by more
maintainers simply because there are more maintainers in the project. At the same

238 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

time, older files have more intense (collaborative) maintenance & activity peaks: this
could maybe be related to older files - files with an older vintage - being more
attractive to development and maintenance activity because of their importance in the
project, or to the fact that early development activity was more collaborative in itself,
due for instance to the role of initial core teams.

b. File size, measured in SLOCs, does not explain the average number of maintainers
per month on a file, nor the average number of revisions jDcr month, except when
associated with Halstead, but has always some explanatory power for the related
maxima. McCabe is not significant for maint's, whereas it is for the 3 other dependent
variables. Halstead is significant for the estimations of all 4 dependent variables, and
renders SLOCs insignificant: indeed, Halstead is more strongly correlated to SLOCs
(though both complexity variables actually are). Adjusted R2 are considerably higher
for both maxima with Halstead.

-> This could be consistent with the idea suggested above that there are limited
periods of intense activity for files, outside of which "normal" activity is less relevant
for this kind of analysis. In all circumstances, Halstead has a strong explanatory
power, which is relatively intuitive is we analyse it as a combination of size and
complexity of code.

c. Results with Halstead are therefore presented in synthetic form for all 10 others
projects in Table 3. There are only few differences such as the absence of explicative
power of the relative creation date for gaim^ except for maint's, which would notably
deserve further and more specific investigations. The significance of SLOCs, and the
sign of the dependence when it exist, appear more subject to variations than for
Halstead, but might point more to a measurement issue more than to actual
differences among projects, save at least for Python where it is probably in relation
with the number of files written in python, precisely, and which have therefore been
excluded for now from our analysis.

-> These results confirm the robustness of the findings and interpretations presented
above, and suggest that these characteristics could generally characterize the open-
source mode of development in large projects. Together with results obtained for
Apache, they might also suggest more subtle dependencies associated with other
measures of code size (SLOCs) or complexity (McCabe).

d. In this last respect, and turning back to Apache, Table 4 presents an additional
estimafion of max maint's using Halstead, SLOCs, McCabe, and Functions (which
gives the number of functions in a file). Interesfingly, all these variables are
significant: a higher number of functions tends to significantly increase the maximum
number of maintainers in a file; on the contrary, higher McCabe and SLOCs
significantly decreases the number of maintainers.

-> This finding could be consistent with an enhanced division of labour between
maintainers inside a given file when more modular, i.e. allowing for more maintainers
when there are more functions; and with more complex and longer files being more
difficult to maintain and less attractive for maintainers respectively.

Collaborative Maintenance in Large Open-Source Projects 239

e. Finally, Table 5 also presents a more complete estimation of max revisions using
Halstead, SLOCs, McCabe, Functions and now Max maint's, as it appears reasonable
indeed to suggest that the maximal activity on a file could be explained by the
maximum number of maintainers. It is indeed so, and the relative creation date,
SLOCs and Functions lose all statistical significance, which Halstead and McCabe
retain.

-> This validates the idea that vintage explains the maximum number of maintainers
on a file and thus indirectly its maximum activity, and also that the division of a file
into functions is consistent with organizing maintainer collaboration more than with
explaining activity per se. Halstead and McCabe have a strong positive and negative
explanatory power vis a vis activity, respectively, controlling by the number of
maintainers: therefore, they could also provide explanations for the attractivity of a
file per se (in terms of contributions).

Generally speaking, and awaiting further confirmation of these results on a larger
collection of open-source projects, our investigations suggest that a metrics of code
size and complexity such as Halstead volume and file vintage are major determinants
of teamwork on files. In this respect, the significance of vintage could be consistent
with the idea that core teams play a specially significant role when projects are recent.
In this general framework, more modular code - here, more functions in files - is
associated with more maintainers, which is consistent with insights from modularity
theory and with a more efficient division of labour. Still in this context, more
complex files attract a lower number of collaborative maintainers, maybe because
they induce a more exclusive selection of who could maintain a given piece of
specially complex code. Finally, more "verbose" code - more lines of code for a
given complexity - is less attractive for maintainers, perhaps because it could
correspond to less attractive features inside projects. These findings appear consistent
with suggestionŝ '̂̂ ^ according to which maintainers would respond to technical
considerations, either based on use value or on challenge and peer regard, in their
motivations and in their choices among modules, and therefore in the global
allocation of efforts in large open-source software projects.

5 Further Work

This paper documented investigations of detailed development records to study
collaborative maintenance in open-source projects. The success that many of these
projects have had in recent years and the voluntary nature of their development
process make them extremely interesting to study, especially since abundant
documentation of the development history of each project is readily available on the
Internet. We came to the conclusion that collaborative maintenance in large open-
source projects seems to be generally influenced by Halstead volume and also by the
vintage of the files in a given project. Further studies are needed to uncover the role
played by various factors which would be candidates to increase the explanatory
power of the simple econometric models presented in this paper, including notably
more technical characteristics of files. Furthermore, the extent to which maintainers

240 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

actually coordinate their work is not yet clear, nor are the dynamic interplay of the
variables we have studied or the fact that such dynamics can give birth to hot spots. It
could be interesting too to study more qualitatively subsets of files, and more deeply
the interactions between maintainers within files.

Acknowledgments

Our research has been partly supported by Calibre^ a EU FP6 Coordination Action.
The support of the US National Science Foundation (NSF Grant No. IIS-0326529
from the DTS Program) is also gratefully acknowledged by one of us (JMD).

REFERENCES
1. C. U. Ciborra, Teams, Markets and Systems (Cambridge University Press,

1993).
2. J. Olson and K. M. Branch, in: Communication, Management Benchmark

Study, edited by E. L. Malone (Office of Science, Department of Energy,
Washington D.C., 2002) pp. 133-142.

3. W. vander Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A. Weijters, Workflow Mining: A Survey of Issues and Approaches, Data &
Knowledge Engineering, 47, 237-267 (2003).

4. S. Koch and G. Schneider, Effort, Cooperation and Coordination in an Open
Source Software Project: Gnome, Information Systems Journal, 12(1), 27-42,
(2002).

5. J. Y. Moon and L. Sproull, Essence of Distributed Work: The Case of the
Linux Kernel, First Monday, 5, (2000).

6. V. Valloppillil, Open source software: A (new?) development methodology.
Microsoft memo, 1998 (unpublished).

7. J. Matusow, S. McGibbon, and D. Rowe, in: Proceedings of the 1st
International Conference on Open Source Systems, edited by M. Scotto and
G. Sued, (Genoa, 2005), pp. 263-266.

8. G. D. Prato and D. Gagliardi, in: Proceedings of the 1st International
Conference on Open Source Systems, edited by M. Scotto and G. Succi,
(Genoa, 2005), pp. 237-240.

9. E. S. Raymond, The Cathedral and the Bazaar, First Monday, 3 (1998).
10. S. Krishnamurthy, Cave or Community? An Empirical Investigafion of 100

Mature Open Source Projects, First Monday, 6 (2002).
11. K. Crowston and J. Howison, The Social Structure of Free and Open Source

Software Development, First Monday, 10 (2005).
12. W. Scacchi, Understanding the Requirements for Developing Open Source

Software Systems, lEE Proceedings - Software, 149, 24-39 (2002).

Collaborative Maintenance in Large Open-Source Projects 241

13. A. Mockus, R. T. Fielding, and J, D. Herbsleb, Two Case Studies of Open
Source Software Development: Apache and Mozilla, ACM Transactions on
Software Engineering and Methodology, 11, 309-346 (2002).

14. M. Hahsler and S. Koch, Discussion of a Large-Scale Open Source Data
Collection Methodology, Proc. HICSS 3S, (2005).

15. G. Robles, S.Koch, and J. M. Gonzalez Barahona, Remote Analysis and
Measurement of Libre Software Systems by Means of the CVSAnalY Tool,
Proc. ICSE 2, (2004),

16. J. Howison, M. Conklin, and K. Crowston, in: Proceedings of the 1st
International Conference on Open Source Systems, edited by M. Scotto and
G. Succi, (Genoa, 2005), pp. 54-60.

17. A. Capiluppi, A. E. Faria, and J. F. Ramil, Exploring the Relationship between
Cumulative Change and Complexity in an Open Source System, Proceedings of
the Ninth European Conference on Software Maintenance and Reengineering
(2005).

18. J.-M. Dalle and P.David, Simulating Code Growth in Libre (Open-Source)
Mode, in: The Economics of the Internet, edited by N. Curien and
E. Brousseau, (Cambridge University Press, 2005).

19. J.-M. Dalle and P. David, The Allocation of Software Development Resources
in 'Open Source' Production Mode, Discussion Paper 02-27, 2003 (Stanford
Institute for Economic Policy Research).

20. M. den Besten and J.-M. Dalle, Assessing the Impact of Product Complexity on
Organizational Design in Open Source Software: Findings & Future Work,
Proceedings of the ECCS 2005 Satellite Workshop: Embracing Complexity in
Design (2005).

242 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

ANNEX

Table 1: Descriptive elements of the sample in the database. Other statistics available
upon request.

apache

CVS

gaim

gcc

gostscript

mozilla

NetBSD

openssh

postgresql

python

First
mont
hof
act.

07/96

12/94

03/00

08/97

03/00

03/98

03/93

09/99

07/96

08/90

Files

4133

1062

5158

34757

2819

40545

19514

289

4102

4643

"c"

files

(#)
657

287

681

16405

932

8370

7081

138

904

419

maint's

(total

#)
79

30

39

250

23

595

267

50

25

88

maint's
(av)

7.67

3.67

3.62

2.56

3.68

7.77

6.48

5.32

4.53

5.94

max
maint's

(av)

2.60

1.41

1.74

1.19

1.76

1.90

1.66

2.21

1.92

1.94

revisio
ns (av)

32.38

23.74

26.91

6.30

9.08

21.11

18.00

35.56

42.00

31.59

max
revisio
ns (av)

5.96

3.01

4.62

1.46

1.76

3.31

2.94

4.93

4.38

4.78

McCa
be

(av)

18.24

19.25

17.10

17.62

25.04

15.39

10.03

19.67

18.75

21.53

Halstead

(av)

14483.73

16643.53

25181.14

4526.51

21445.66

18064.63

15846.91

13779.09

17190.52

33965.03

SLOCs

(av)

523.85

1456.00

3581.71

3546.63

3197.25

1606.94

7805.33

9230.17

1246.06

14453.06

Table 2: Econometric estimations (OLS) for Apache. Dependent variables: average
number of maintainers per month, maximum number of maintainers per month,
average number of revisions per month, and maximum number of revisions per month
(parameter estimate, above, and standard error, below). Stars signal confidence levels
- 95% = *, 99% = **, and 99.9% = ***.

maint's maint's l^ax Max revisions revisions Max Max
maint's maint's revisions revisions

I n t e r c e p t 0.14039*** 0.12214*** 3.21049*** 2.93030*** O.6O443*** O.398OO*** 6.56893*** 4.98504***

0.02860 0.02683 0.11575 0.09999 0.12597 0.11208 0.58216 0.48336

SLOCs

Mc Cabe

Halstead

Relative
creation
date

1.165E-5

1.227E-5

6.8159E-4

6.4246E-4

9.11E-3***

1.05E-3

4.30E.6

1.212E-5

2.12E-6***

7.54826E-7

8.95E-3***

9.9214E-4

4.090E-5**

5.047E-5

7.39E-3***

2.56E-3

-3.433E-2***

4.10E-3

-1.189E-4**

4.553E-5

3.280E-5***

2.83E-6

-3.057E-2***

3.58E.3

1.3514E-4

5.404E-5

8 89E-3**

2.83E-3

1.824E-

2***

4.61 E-3

1.579E-

5***

5.064E-5

2.786E-***

1.5E-6

1.948E-

2***

4.15E-3

7.047E-4***

2.5383E-4

4.469E-2***

1.288E-2

-7.575E-2***

2.060E-2

-2.0944E-4

2.2009E-4

1.855E-4***

1.370E-5

-5.449E-2***

1.733E-2

Collaborative Maintenance in Large Open-Source Projects 243

Table 3: Summary of econometric tests (OLS) for all 10 projects with variable
Halstead. Full results, including results with variable McCabe, available upon request.
Stars signal confidence levels - 95% = *, 99% = **, and 99.9% = ***; (-) signals a
negative coefficient.

Project

Intercept

SLOCs

Halstead

Relative

creation

date

Adjusted

R2

Apache

maint'
s

i | » K i K

0.1456

max revisio
maint ns

's

JtcJtote « » < *

}tc9te« * * *

f. * * *

0.3272 0.1792

max
revisio

ns

r.***

0.3210

CVS

maint'
s

0.1668

max
maint'

s

(-)***

0.2392

revisio
ns

0.2233

max
revisio

ns

/ ***

0.3601

Gaim

maint'
s

0.2116

max
maint'

s

0.0256

revisio
ns

0.5750

max
revisio

ns

**

0.0615

Project

Intercept

SLOCs

Halstead

Relative

creation

date

Adjusted

R2

GCC

maint'
s

f.***

0.2259

max
maint

's

(•

0.3091

revisio
ns

(-)***

* 3 ¥ *

0.2731

max
revisio

ns

f.***

0.3334

Ghostcript

maint'
s

(-)**

0.036

0

max
maint'

s

• * *

(-)***

0 4648

revisio
ns

0 2028

max
revisio

ns

* * •

/ . •) * * *

0.4648

Mozilla

maint'
s

(-)*

0.0313

max
maint'

s

/ \#*5(C

0.2623

revisio
ns

0. 1341

max
revisio

ns

**

/ ***

0.2862

Project

Intercept

SLOCs

Ha}§£ead

Relative

creation

date

Adjusted

R2

NetBSD

maint'
s

»»*
j ^ * *

0.0780

max
maint

's

nnn

(-

0.2765

revisio
ns

5 (C * *

« » S

s * t s (c *

0.1001

max
revisio

ns

^ 3 1 ^

^ . J * * *

0 2496

OpenSSH

maint'
s

0.1657

max
maint'

s

t e * *

**̂ *
^ _ J * * *

0.5289

revisio
ns

++*

(_ j * * *

0.3576

max
revisio

ns

* *+

/_***

0.4869

PostgreSQL

maint'
s

**

0.1413

max
maint'

s

«»
*««

(-)***

0.2593

revisio
ns

0.1814

max
revisio

ns

/_***

0.3229

244 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

Project

Intercept

SLOCs

Halstead

Relative

creation date

Adjusted R2

Python

maint's

(-)**

0.0946

nnax revisions
maint's

(-)*** (-)**
*** ***

f_*** * * *

0.2830 0.0553

max
revisions

/ ***

0.1137

Table 4: Further econometric estimations (OLS) for Apache. Dependent variables:
maximum number of maintainers per month and maximum number of revisions per
month (parameter estimate, above, and standard error, below). Stars signal confidence
levels - 95% = *, 99% = **, and 99.9% = ***.

Max Max Max Max Max Max
maint's maint's maint's revisions revisions revisions

Intercept 3.21049*** 2.93030*** 3.07637*** 6.56893*** 4.98504*** -2.61835***

0.11575 0.09999 0.10384 0.58216 0.48336 0.75211

SLOCs 4.090E-5** -1.1890E-4** -5.1764E- 7.047E-4*** -2.0944E-4 l.OOE-3

5.047E-5 4.553E-5 4*** 2.5383E-4 2.2009E-4 5.4907E-4

1.2736E-4

McCabe 7.39E-3*** -9.55E-3** 4.469E-2*** -3.457E-2**

2.56E-3 2.97E-3 1.288E-2 • 1.272E-2

Halstead

Functions

Max

maint's

3.280E-5***

2.83E-6

4.708E-5***

3.96E-6

8.26E-3***

2.41E-3

1.855E-4***

1.370E-5

1.0795E-4***

1.918E-5

-1.657E-2

1.032E-2

2.64696***

0.19833

Relative -3.433E-2*** -3.057E-2*** -3.053E-2*** -7.575E-2*** -5.449E-2*** .2.358E-2

creation 4.10E-3 3.58E-3 3.61E-3 2.060E-2 1.733E-2 1.643E-2

date
Adjusted 0.1580

R2

0.3272 0.3669 0.0909 0.3210 0.5243

