IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

Process Aspects and Social Dynamics of
Contemporary Code Review: Insights from Open
Source Development as well as Industrial
Practice at Microsoft

Amiangshu Bosu, Member, IEEE, Jeffrey C. Carver, Senior Member, IEEE, Christian Bird, Member, IEEE
Jonathan Orbeck, Member, IEEE, and Christopher Chockley, Member, IEEE,

Abstract—Many open source and commercial developers practice contemporary code review, a lightweight, informal, tool-based code
review process. To better understand this process and its benefits, we gathered information about code review practices via surveys of
open source software developers and developers from Microsoft. The results of our analysis suggest that developers spend
approximately 10-15% of their time in code reviews, with the amount of effort increasing with experience. Developers consider code
review important, stating that in addition to finding defects, code reviews offer other benefits, including knowledge sharing, community
building, and maintaining code quality. The quality of the code submitted for review helps reviewers form impressions about their
teammates, which can influence future collaborations. We found a large amount of similarity between the Microsoft and OSS
respondents. One interesting difference is that while OSS respondents view code review as an important method of impression
formation, Microsoft respondents found knowledge dissemination to be more important. Finally, we found little difference between
distributed and co-located Microsoft teams. Based on our findings, three key areas that warrant focused research are: 1) exploring the
non-technical benefits of code reviews, 2) helping developers in articulating review comments, and 3) assisting reviewers’ program

comprehension during code reviews.

Index Terms—Code Review, Open Source, OSS, Survey, Peer impressions, Commercial projects

1 INTRODUCTION

In recent years, many open source software (OSS) and com-
mercial projects have adopted peer code review [2], a practice
where developers subject their code to scrutiny by their peers.
While the underlying concepts of contemporary code review [45]]
are similar to the traditional Fagan inspection [22], there are also
marked differences. A Fagan inspection is a heavyweight process
requiring synchronous meetings among the participants in mul-
tiple phases. Conversely, contemporary code review is defined as
being lightweight, more informal, asynchronous, and supported by
specialized tools [2]]. Despite studies that show Fagan inspections
improve software quality [21], their typically high cost and for-
mality have prevented widespread adoption [29], [54]]. Conversely,
contemporary code review has addressed many shortcomings of
Fagan inspection and has shown increasing adoption in industry
and OSS contexts [3]], [38]], [45].

Because many OSS projects, e.g. Apache [47], Chromiunﬂ
Mozill Q and Androi now require peer-review prior to

A. Bosu is with the Department of Computer Science, Southern Illinois
University, Carbondale, IL. Email: abosu@cs.siu.edu.

J. Carver, J. Orbeck, and C. Chockley are with the Department of Computer
Science, University of Alabama, Tuscaloosa, AL. E-mail: carver@cs.ua.edu,
Jjdorbeck@ua.edu, cmchockley@ua.edu.

C. Bird is with Microsoft Research,
cbird@microsoft.com

Manuscript received: TBD

! https://www.chromium.org/developers/contributing-code
2 https://www.mozilla.org/hacking/reviewers.html

3 https://wiki.qt.io/Qt_Contribution_Guidelines

4 https://source.android.com/source/life- of-a-patch.html

Redmond, WA. Email:

merging new code into the main project codebase, there are a
large number of developers regularly participating in code reviews.
From the industrial perspective, Google [56] and Facebook [33]
have adopted mandatory code reviews and approximately 50,000
Microsoft developers actively practice code reviews [14f]. Our
recent survey of OSS developers found that they spend approx-
imately six hours per week in code review [11]. Given the large
number of developers who practice code review, the total time
devoted to code review is quite significant. Therefore, increasing
the effectiveness of contemporary code review can greatly improve
software development productivity.

To improve a process or practice, empirical researchers use a
three-step approach: (1) understand the current process to identify
improvement opportunities; (2) evaluate the current process and
new ideas; and (3) improve the process by incorporating sugges-
tions [58]]. The high-level goal of this study, which addresses the
first step in this empirical framework, is to better understand the
contemporary code review process and its benefits. Specifically,
the goal of the study is to provide that understanding by gathering
information about 1) the code review process, 2) developers’
expectations from code review, and 3) how code review impacts
developers’ impressions of their peers. To gather this information,
we rigorously designed and validated a survey instrument. We
sent the survey to code review participants from 36 popular OSS
projects and received 287 responses. We have already published
the validation of the survey instruments along with partial results
of the OSS survey [[11]].

Prior research has identified differences between the software

https://www.chromium.org/developers/contributing-code
https://www.mozilla.org/hacking/reviewers.html
https://wiki.qt.io/Qt_Contribution_Guidelines
https://source.android.com/source/life-of-a-patch.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

engineering practices in OSS and commercial contexts [34]], [42].
Because this prior work did not specifically address code review,
we replicated the survey in a commercial context (i.e., Microsoft)
to analyze whether there were any differences between OSS and
a commercial organization relative to our study goal. To provide
additional insight into the similarities or differences between OSS
and Microsoft developers, we specifically recruited two types of
survey participants from Microsoft: those that work on collocated
projects and those that work on distributed projects. Because
code review is an interactive process, we hypothesized that the
Microsoft participants who work on distributed projects would
have similar views about code as the OSS participants (whose
projects are also distributed). Our Microsoft survey received 416
responses.
The primary contributions of this study are:

e A better understanding of developers’ perception about
contemporary code review;

e A better understanding of why and how developers collab-
orate during code reviews;

o Empirical evidence regarding the perceived non-technical
benefits of code reviews;

e A comparison of code review practices between OSS and
Microsoft projects; and

e An illustration of the process of systematically designing
and analyzing a software engineering (SE) survey.

The remainder of the paper is organized as follows. Section 2]
provides a brief description of contemporary code review process
and prior literature on code reviews. Section E| defines the research
questions. Section E| describes the research method. Section |§|
characterizes the study participants. Section@provides the results.
Section [7] discusses the implications of the results. Section [§] de-
scribes the threats to validity. Finally, Section[9] provides directions
for future work and concludes the paper.

2 BACKGROUND

This section provides a brief background and prior research on
contemporary code review.

2.1 Contemporary Code Review Workflow

One key aspect of contemporary code review is that it is tool-
based. Some popular code review tools include: Gerriﬂ Phabrica-
toﬂ and ReviewBoarcﬂ Figure (1| provides a simplified overview
of the contemporary code review workflow. First, the author
creates a patch-set (i.e. all files added or modified in a single
revision), along with a description of the changes, and submits
that information to the code review tool. Then the author (or
someone else) selects the reviewer(s) for the patch-set. The code
review tool then notifies the reviewer(s) about the incoming
review. During the review, the tools highlight the changes between
revisions in a side-by-side display. The reviewers and the author
can insert comments into the code. After the review, the author
can address the comments and upload a new patch-set to initiate
a new review iteration. This review cycle repeats until either the
reviewers approve the changes or the author abandons the change.
If the reviewers approve the changes, then the author commits the
patchset or asks a project committer to commit the patchset to the
project repository.

https://www.gerritcodereview.com/
http://phabricator.org/
https://www.reviewboard.org/

6
7

O

‘\U{'h

Reviewer

3. Notifies the
reviewer

Code Review
infrastructure

2. Author identifies
the code to be
reviewed and submits
the patchset, and
select reviewers

5. Approves the
change

N)y N

|)
‘ IJ——' 9
AL , [lel» &

1. Author writes/ 6. Author checks in ¢) [4 |
Code Repository

updates code the code to repository
Author

S
Fig. 1: Simplified code review workflow

2.2 Overview of Contemporary Code Review Research

In recent years, there have been several studies on understanding
contemporary code review practice. Rigby has published a series
of studies examining informal peer code review practices in OSS
projects [46], [47], [48]], and comparing the review practices be-
tween commercial and open source projects [45]. To characterize
the code review practices, Rigby and German proposed a set of
code-review metrics (i.e. acceptance rate, reviewer characteristics,
top reviewer vs. top committer, review frequency, number of
reviewers per patch, and patch size) [46]]. Other researchers calcu-
lated similar metrics for five OSS projects and concluded that code
review practices vary across OSS projects based on age and culture
of the projects [[1]]. However, these findings were contradicted in a
later study, which found that despite large differences among five
OSS projects and several commercial projects, their code review
metrics were largely similar [45].

After seeing the successful adoption of code review practices
by OSS projects, many commercial organizations have recently
adopted peer code review practices [2[], [3]], [44], [53]. Contrary
to OSS projects, code review participants at Microsoft use both
synchronous and asynchronous communication media. They also
consider communications during code reviews essential for under-
standing code changes and design rationale. Microsoft developers
expressed a need to retain code review communications for later
information needs [53]]. Another study at Microsoft found that
although finding defects is a primary motivation for code reviews,
other benefits (e.g. knowledge dissemination, team awareness, and
identifying better solutions) may be more important. The major
challenge is understanding the code changes [2].

While these studies characterized the code reviews in commer-
cial projects, only one study [45]], which focused on quantitative
aspects of code reviews, has compared and contrasted between
the code review practices of OSS and commercial projects. Since
developers’ motivations and project governance differ between
0SS and commercial organizations [32], [42], code review collab-
orations may also differ between OSS and commercial projects.
This lack of research was one of the motivations for gathering
information about contemporary code review from both OSS and
commercial developers.

While most of the earlier exploratory studies focused on
understanding the code review practices, a few recent studies
have focused on understanding the impact of different factors on
code reviews. Code review characteristics such as review size,

https://www.gerritcodereview.com/
http://phabricator.org/
https://www.reviewboard.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

component, priority, organization, reviewer characteristics, and
author experience significantly influence both review completion
time and outcome [5]]. Moreover, a reviewer’s prior experience
in changing or reviewing the artifact and the reviewer’s project
experience increases the likelihood that s/he will provide useful
feedback [14]. While these studies focused on technical human
factors and characteristics of the code changes, no studies have fo-
cused on the non-technical human factors (i.e., author’s reputation,
and relationship between an author and a reviewer). Because code
review facilitates direct collaboration between people, a better
understanding of the impacts of various human factors is crucial
to improve the code review practices.

A few recent studies have investigated various technical bene-
fits of code reviews. Although the primary goal of code reviews is
defect detection, because three-fourths of the review comments are
related to maintainability issues code review may be more benefi-
cial for projects which require highly maintainable code [6]. Code
reviews have significant impact on software quality. A recent study
found that both low code review coverage (i.e., the proportion of
changes that have been reviewed) and low review participation
(i.e., the number of reviewers) often increase the likelihood of
post-release defects [38]. While these studies focused on the
technical benefits of code review, only one study [2] has explored
the non-technical benefits of code reviews. The evidence about
the non-technical benefits (i.e., impressions formation, knowledge
sharing, and mentoring) has been mostly anecdotal. Empirical
evidence regarding various benefits of code reviews can encourage
project managers to adopt code reviews for their projects.

While this prior work provides several important insights
into contemporary code review, a number of key aspects are
yet unexplored. First, developers who regularly use code reviews
should be able describe scenarios when code reviews can be
helpful or not useful. Second, experienced reviewers should also
be able to describe the best strategies for code review and help
other developers write acceptable code. Finally, because code
reviews involve direct collaboration between participants, various
types of social interactions are crucial for successful code reviews.
However, these three aspects of code review have not received
enough attention from researchers. One of the goals of our work is
to provide a better understanding of these aspects to guide project
managers’ decisions about the usefulness of code review and help
improve code review effectiveness.

2.3 Our Previous Survey

The work in this paper builds on the results of our previous survey
of contemporary code review practices in OSS projects [11]. In
that paper, we developed and validated the survey instrument
described in Section 4| We used that survey to gather data from
287 OSS developers who had been active in contemporary code
review. That paper reported one of the primary quantitative results
from the survey, specifically that there is a high level of trust,
reliability, perception of expertise, and friendship between OSS
peers who have participated in contemporary code review for a
period of time. In this paper, we expand these results to include
qualitative data from the first survey as well as to compare the
results with those from the a second survey conducted with
commercial developers.

3 RESEARCH QUESTIONS

To address the study goal, we explore eight research questions.
The remainder of this section defines each question.

3.1 Importance of Code Review

Code reviews require significant effort. They delay merging of
code to the main branch by 1-2 days [45]]. However, recent studies
indicate that only one-fourth of code review comments relate
to functional defects [6]], [19], which raises questions whether
developers perceive the effort spent in code review as beneficial.
To better understand how developers view the importance of code
review, the first research question is:

RQ1: Why do developers consider code reviews important

(or not important) for their projects?

3.2 Code Review Process

Because projects often mandate the use of code review, developers
spend a significant amount of time performing code reviews. To
quantify this effort, the second research question is:

RQ2: How many hours, on average, do developers spend in

code reviews?

In our prior study of code review-based social networks in
OSS projects, we observed the presence of sub-communities and a
higher volume of interactions between some developer pairs [|12].
Subsequently, we found that, in OSS projects, experienced de-
velopers received more timely feedback on review requests than
newcomers [13]]. These results suggest that a history of inter-
actions may influence a reviewer’s acceptance and prioritization
of particular reviews. The next research question investigates this
phenomenon.

RQ3:

How do developers decide whether to accept an
incoming code review request?

Reviewers may use different criteria to determine whether a
code change is of high quality. For example, reviewers may have
different opinions on the effects of coding style on quality [14].
The next research question seeks to better understand these factors:

RQ4: Which code characteristics are indicative of low qual-

ity code?

The goal of code review is not only to identify issues in a
code change but also to help the author resolve those issues.
Experienced reviewers can mentor code authors regarding coding
techniques, project design, or API usage. The next question seeks
to better understand this mentoring process:

RQS5: How do reviewers help authors of low quality code
improve it to the level required for inclusion in the
project?

3.3 Impact of Code Review on Peer Impressions

The intense interactions during the code review process allow
participants the opportunity to gain a unique insight into the
abilities of their peers. For example, if a reviewer repeatedly finds
the contributions of a particular code author to be of high quality,
the reviewer may consider that author to be highly competent or
intelligent. As a result, code review collaborations may help the
participants form accurate perceptions of each other. Moreover,
a reviewer may be more likely to trust project-related decisions
made by an author known to be competent. Because some of the
primary benefits of contemporary code review are non-technical,
i.e. beyond defect detection [2], it is important to understand
what those non-technical benefits may be. To help identify these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

benefits, we present three research questions. The first question,
on the positive side:

RQ6: How does the use of a high-quality or an outstanding
problem-solving approach affect the reviewers’ per-

ception of the code author?

Conversely, low-quality code may result in negative impres-
sions. Therefore, the next question is:

RQ7: How does a poorly written code affect the reviewers’

perception of the code author?

As addressed in previous research questions, code reviews
could have either positive or negative impacts on the impressions
that teammates have of each other. To help judge the overall value
of code reviews, we ask:

RQ8:

What is the effect of code review on peer impression?

4 RESEARCH METHOD

We conducted two surveys to answer the research questions and
compare OSS projects to commercial projects. The first survey
targeted OSS developers. The second survey targeted Microsoft
developers. We have published partial results of the first sur-
vey [[L1]]. The remainder of this section describes the survey design
process, participant selection criteria, pilot tests, data collection,
and data analysis methods.

4.1 Survey Design

Because our goal was to measure peer impression constructs, we
followed well-regarded social and behavioral research methods
to build scales [20]], [23]]. In this approach, rather than directly
asking the participants about each of the constructs of interest, the
researchers define a number of scale items that focus on different
aspects of the same underlying construct. Then, during analysis,
the researchers are able to gain a more complete understanding of
the construct based on the diverse set of scale items.

To understand peer impression, we identified four key con-
structs. For each construct, we defined a set of statements (scale
items). We drew these statements from well-established scales in
psychology, information science, or organizational behavior. To
ensure they were complete for software engineering, we added
a few additional statements. The four constructs along with the
sources for the statements are:

1) trustworthiness [30]], [37[], [43], [51]],
2) reliability [30], [43]], [49],

3) perception of expertise [49]], and

4) friendship [[16], [49].

Table [1l lists the statements for each construct. For each
statement, the respondents used a 7-point scale to indicate whether
it better described a code review partner{ﬂ or a non-code review
partnerﬂ We defined the scale as follows: 1 = describes a code-
review partner and NOT a non-code review partner, 4 = describes
both equally and 7 = describes a non-code-review partner and
NOT a code-review partner. To avoid any bias, the survey tool
presented the statements in a random order without the name of

the corresponding construct.
8 a person who reviews your code or whose code you review on a regular
basis

a person who has been a peer for some time, but you have rarely reviewed
their code

4

The survey also contained four multiple choice questions,
fourteen open-ended questions, and one rating-scale question to
address the research questions and gather demographics. Table
lists the those additional questions (renumbered for the sake of
simplicity). In the remainder of the paper, we will refer to the
questions by those numbers.

Note that for both sets of questions, there were some minor
differences between the OSS survey and the Microsoft survey.
Section explains these differences.

4.2 Participant Selection

Developers must have participated in a sufficient number of
contemporary code reviews (as authors or reviewers) before they
can accurately understand the code review process, the non-
technical benefits of code review, and the effects on peer im-
pression formation. To ensure valid results, we only surveyed
developers with sufficient experience. For Survey 1, we mined
the code review repositories of 34 OSS projects that used either
Gerrit, ReviewBoard, or RietVeld, to identify developers who had
participated in at least 30 code review requests (either as the author
or the reviewer) and identified 2,207 developers. Similarly, for
Survey 2, we queried Microsoft’s CodeFlow analytics platform [J8]]
to select 2,000 developers who had participated in at least 30
contemporary code reviews.

One of the study goals was to analyze whether developers
from a commercial organization behaved differently depending
on whether their project was collocated or distributed. We hy-
pothesized that commercial developers who worked on distributed
projects would be more likely to behave like OSS developers
(whose projects are also distributed). To test this hypothesis
across all research questions, we specifically recruited Microsoft
developers from two types of projects: 1) projects in which most
developers are collocated, 2) projects in which most developers
are distributed.

4.3 Pilot Tests

To ensure the comprehensibility and validity of the scale items
(statements) with respect to the constructs, we conducted five pilot
tests. First, researchers from Psychology, Computer Science, and
Management Information Systems reviewed the questions. This
review led to several changes, including: (1) increasing the rating
scales from 5- to 7-point, (2) rewording some questions to remove
bias, and (3) adding questions for a broader perspective of the
code review process.

Second, software engineering graduate students piloted the
survey to identify any difficulties in understanding the questions
and to estimate the time required to complete the survey.

Third, we sent the survey to 20 OSS code review partici-
pants from two projects in our database. The completion rate
of this version of the survey was low. To address this problem,
we rephrased some questions, reformatted the behavioral scale
questions (Table [I) so they would appear less daunting, and
reordered some questions.

Fourth, we sent the improved survey to 24 OSS code review
participants from another project in our database. We received
enough responses to analyze the internal consistencies of the four
peer impression constructs. This analysis indicated that reliability
scale had questionable internal consistency. Therefore, we added
two questions to that construct.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

TABLE 1: Behavioral Scale Questions

Construct Item Question 0SS MS
trust_1 My communication with him/her is more informal (e.g. unofficial, friendly) v v
trust_2 S/he is less likely to intentionally misrepresent my point of view to others v v
Trust trust_3 S/he is less likely to take advantage of me (e.g. exploit or deceive for personal benefit) V' v
trust_4 I am more likely to share my personal information (e.g. feelings, opinions, or achievements) with v v
him/her
trust_5 I am more likely to consider contributing to a new Free/Open Source project at his/her request v
expertise_1 It is easier for me to identify whether s/he has the ability to provide help in a specific project area v v
P . expertise_2 I more easily know if s/he is the best person to contribute to a specific project area v v
erception of - - - - e - - -
Expertise expertise_3 It is easier for me to identify if s/he is the right person to fix a given bug report v v
expertise_4 I am more likely to seek his/her help in a project-related area (e.g. coding problem, design v v
decision, task assignment, documentation)
expertise_5 I am more aware of his/her level of work and dedication to the project v'F vE
reliability_1 I am more comfortable assigning a critical task to him or her vE v
Reliability reliability_2 I am more likely to be satisfied with the results of a task assigned to him or her v vE
reliability_3 S/he is more likely to complete a project-related task (not just code review) s/he accepts even if v v
it requires a large amount of work
reliability_4 S/he is more likely to follow project coding and design guidelines v v
reliability_5 I am more willing to accept his/her advice v v
friendship_1 I would feel a stronger sense of loss at his/her departure from the project v v
friendship_2 S/he has a better understanding of me (e.g. aware of my preferences and feelings) v v
Friendship fr%endsh%p_B S/he is more likely to respond to my mailing list posts vE
friendship_4 I communicate more frequently with him/her v v
friendship_5 If s/he does something I do not like, I am more likely to talk to him/ her about it. v
friendship_6 I am more likely to consent working together with him/her on a project design task. v

* - items dropped during analysis of that survey to improve the internal consistencies of scales.

TABLE 2: Survey Questions

Q1. (OSS) | Which Free/Open Source project are you most actively involved in?

Q1. (MS) ‘What product do you currently work on?

Q2. How many years have you worked in software development?
Q3. On average, how many people contribute code or review code in a given month for the project?
Q4. ‘What proportion of the overall code commits in the project undergo peer code review?

(O Less than 10% O 11% - 25% O 26% - 50% O 51% - 75% () More than 75%

Q5. (0OSS) | Do you receive financial compensation for your participation in the project?

O Yes O No

Q5. (MS) Do most of the code change reviews that you are asked to participate in come from authors who are at your site or from a distributed site (a site
that is in another time zone or more than 100 miles away)?

(O Most come from people that are at a different site than myself O Most come from people in the same site as myself

O Approximately half from people in same site and half from distributed sites

Q6. Do you think peer code review is important in your project?
O Yes O No
Q7. Why do you think peer code review is important (or not important) for your project?
Q8. On the project, how many hours per week, on average, do you spend reviewing other contributors code?
Q0. From approximately how many different contributors do you review code each week for the project?
Q10. ‘What proportion of your code commits do you submit for peer code review?
(O Less than 10% O 11% - 25% O 26% - 50% (O 51% - 75% (O More than 75%
QIl. Is the identity of the contributor relevant to you when you decide whether to review a code contribution?
O Yes O No
QI12. Please explain why the identity of the contributor is relevant to you when you decide whether to review a code contribution.
Q13. ‘When you review poorly written code, does it affect your perception of the code author?
O Yes O No
Ql4. Please explain how does poorly written code affect your perception of the code author.
Ql5. When you see poorly written code, how do you help the code reach the level required to be included in the project (if at all)?
Ql6. Please rate the following factors on a 6-point scale based on how strongly each indicates that code your are reviewing is poorly written.

(5 - Most important, 4 - Second most important, 3 - Third most important, 2 - Forth most important, 1 - Fifth most important, O - Not in top five)

Poor readability

Lack of comments

Does not maintain application integrity

Poor performance

Unnecessary complexity

Lack of modularity (large functions / classes)

Does not follow coding convention of the project

Inadequate exception handling

Duplicated code (Identical or similar code exists in more than one location)
A large parameter list to a function

Ql17. ‘When you review code of high quality or that has an outstanding approach to solve a problem, does it affect your perception of the code author?

O Yes O No

QI8. Please explain how does high quality or an outstanding approach to solve a problem affect your perception of the code author.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

Finally, we sent the survey to 117 OSS code review par-
ticipants from 11 other projects. The completion rate was near
20% and the internal consistency of each construct was sufficient
(Cronbach’s o > O.. Therefore, we deemed the survey ready
for broad distribution. We incorporated feedback from the pilots
into the final survey.

4.4 Data Collection

There were a few differences in the data collection process for the
two surveys.

4.4.1 OSS Survey

In February 2013, we sent a survey invitation to each of the
2,04@ active contemporary code review participants in our OSS
database. Of those, 231 emails were undeliverable, leaving 1,815
valid invitations. Two weeks later we sent a reminder email.
Approximately two weeks later we closed the survey after the
daily response rate decreased to almost zero. We received 287
responses (response rate of ~16%).

4.4.2 Microsoft Survey

Questions Q1 and Q5 on the OSS survey were specific to OSS
developments. For the Microsoft survey, we modified these ques-
tions to fit the commercial development context. Two scale items
(trust_5 and friendship_3) were specific to the OSS development
context and therefore excluded from the Microsoft survey. As a
result of those excluded items, the friendship scale had only three
remaining scale items. To ensure that all scales had an adequate
number of items, we added two items to the friendship scale.
The last two columns of Table [l| indicate exactly which items
were included in each survey. In September 2013, we sent an
invitation to the revised survey to 2,000 Microsoft developers who
had participated in contemporary code review. After one week, we
closed the survey. We received 416 responses (response rate of
~21%).

4.5 Data Processing and Analysis

The following subsections describe the data processing and analy-
sis steps for the behavioral scale questions and the five open-ended
questions.

4.5.1 Behavioral Scale Questions

We analyzed three forms of validity for the survey. First, we used
expert researchers from Psychology, Management, and Computer
Science to review the survey question for face validity [36].
Second, we carefully chose appropriate items from prior validated
scales to ensure content validity [36[]. Finally, we performed a
principal components analysis with VARIMAX rotation to mea-
sure the construct validity [36] of the scale items. Table [3]reports
the «v coefficients measures for the scales and their interpretations
based on the two surveys.

This approach ensured high reliability and validity of the
behavioral scales used in this study. In a prior article, we have
detailed the reliability and validity measures of the survey instru-
ments [[11]. We also validated the reliability and validity of the
four modified scales used in the Microsoft survey using a similar

process.
10 Chronbach’s « is widely used to calculate the internal consistency of
multiple-item measurements (e.g. the behavioral scale constructs). The
results of this test are interpreted as follows: o > .9 — excellent, o« >
.8 = good, o > .T — acceptable, and o < .7 — questionable.
112207 total less the 161 used in the pilots

TABLE 3: Coefficient Alpha (Cronbach’s «) of the scales

Construct 0SS Microsoft

«a Interpretation « Interpretation
Trust 756 Acceptable 798 Acceptable
Perception of Expertise 811 Good .839 Good
Reliability .810 Good 736 Acceptable
Friendship .700 Acceptable 758 Acceptable

4.5.2 Open-ended Questions

For the open-ended questions, we followed a systematic qualitative
data analysis process. First, two analysts (Research Experience
for Undergraduates (REU) students) extracted the general theme
from each response to the OSS survey. Next, the first two authors
worked with those analysts to develop an agreed-upon coding
scheme for each question. Using these coding schemes, the two
analysts independently coded the responses. After coding, they ex-
amined their results to identify any discrepancies. They discussed
and resolved those discrepancies. For the Microsoft survey, the last
two authors used the same process to analyze the qualitative data.
For the five open-ended questions in the two surveys, we coded a
total of 2626 responses.

5 DEMOGRAPHICS

To provide proper context for the results, this section describes the
demographics of the projects represented by the respondents and
of the respondents themselves.

5.1 Projects represented

Table[d]provides the results to Question Q1 (Table[2) about respon-
dents’ primary projects. The number in parenthesis represents the
number of respondents who listed that project. As an indication of
the frequency of code review in these projects, approximately 83%
of the OSS respondents and 90% Microsoft respondents indicated
that more than 75% of the code changes in their projects undergo
code review. Furthermore, almost two-thirds of the respondents
in both surveys indicated that they submit every code change for
code reviews. Therefore, the survey respondents are actively using
contemporary code review.

5.2 Respondent demographics

Table 5] shows the results from survey questions 2, 8 and 9. In each
case, we grouped the responses into four categories by analyzing
the frequency distributions of the responses. We then checked
these categories to ensure they also made logical sense.

For the OSS survey, 60% of the respondents were paid to work
on the project and 40% were volunteers (Q5). The percentage of
paid participants is not surprising because the list of projects we
drew from included some large sponsored projects (e.g. Android,
Chromium OS, Qt project, and OpenStack), in which most of
the participants are employees of the sponsoring companies. This
distribution is slightly higher, but in the same range as previous
OSS surveys that had 40%-50% paid OSS participants [10], [31].

For the Microsoft survey, approximately 69% of the respon-
dents indicated that most of the code review requests come from
developers at the same site, 13% come from a different site, and
the remainder are equally split.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

TABLE 4: Respondents’ primary projects

Open Source Projects Microsoft Projects
Qt Project (36) | OpenStack (32) CyanogenMod (28) | Bing (54) Windows (48) Office (43)
TYPO3 (20) Android (19) MediaWiki (17) Azure (24) Visual Studio (22) | XBox (13)
oVirt (17) Linux kernel (16) | Chromium OS (14) | Ad Center (11) Exchange (10) Dynamic AX (12)
Eclipse (9) Gromacs (9) ITK (9) Windows Phone (10) | IE (6) SQL Server (6)
LibreOffice (8) | OpenAFS (6) Scilab (5) Dynamic CRM (4) Sharepoint (4) Skype (3)
VTK (5) Gerrit (4) AOKP (2) Halo (3) TES (3) HPC (3)
Couchbase (2) Debian (2) Others (24) Autopilot (3) Lync (3) Others (131)

TABLE 5: Demographics of the respondents

Question Mean Median Category description % of Respondents
0SS Microsoft | OSS Microsoft OSS | Microsoft
Low: Less than 2 years 20% 8%
Q2. Experience in software devel- 7 vears 107 vears | 5 vears 9 vears Medium: 3 to 5 years 33% 19%
opment y Y y y High: 6 to 10 years 26% 33%
Veteran: More than 10 years 21% 40%
Low: Less than 2 hours 30% 26%
Q8. Averagjc “““?ber. of hours per Medium: 3 to 5 hours 32% 48%
w.eek spe’:nt in reviewing other con- 6.4 hours 4.7 hours 5 hours 4 hours High: 6 to 10 hours 26% 21%
tributors” code Very High: More than 10 hours | 12% 5%
Small: Less than 2 peers 20% 12%
9.Number of contributors’ code Medium: 3 to 5 peers 45% 58%
rQeviewe d each week 6.3 peers | 5.5 peers 5 peers 5 peers High: 6 to 10 peers 7% 25%
Very High: More than 10 peers 8% 5%

6 RESULTS

The following subsections describe the results of the two surveys.
For each of the eight research questions introduced in Section [3]
we compare the results from the OSS survey with the results
from the Microsoft survey. To help clarify the results, we also
include excerpts from the qualitative responses to the open-ended
questions. In this section, we identify each of the respondents
using a unique identifier, with OSS-XXX and MS-XXX indicating
respondents from the OSS Survey and the Microsoft Survey,
respectively. Unless explicitly stated, the opinions of the OSS
and Microsoft respondents were similar. Therefore, the chosen
quotations best represent the set of responses from both samples
(OSS and Microsoft).

As a result of the coding process (Section f.3.2)), each of the
open-ended questions had a large number of detailed categories.
For this presentation of the results, we abstracted the detailed
categories into a smaller number of high-level categories. Further
analysis of the data using the more detailed categories can be
found on a supplemental websiteEl In a qualitative analysis, each
open-ended response could match multiple codes. Therefore, the
sum of the percentages can be greater than 100%.

For each question, we tested the normality of the answer
distribution using the Shapiro-Wilk test [52]]. In cases where the
distribution was non-normal, we used non-parametric statistics.

6.1 RQ1: Why are code reviews important?

In response to Q6, 98.6% of the OSS respondents and 100% of
the Microsoft respondents considered code reviews to be important
for their project. Figure 2] shows the reasons why the respondents
found code reviews to be important for code quality (Q7). Al-
though the relative order of the responses was the same in the
both surveys, the distribution of answers was significantly different

12 |http://carver.cs.ua.edu/Data/Journals/CodeReviewSurvey/

between the OSS respondents and the Microsoft respondents
(x% = 21.38,df = 5,p < .001).

The OSS respondents emphasized maintainability slightly
more than the Microsoft respondents did. Because OSS partic-
ipants come from diverse locations, backgrounds and expertise
levels, the quality of submitted code can vary greatly. Therefore,
OSS reviewers have to focus more on maintaining consistent code
quality. Conversely, there is less quality variation in code from
Microsoft developers. Therefore, Microsoft respondents are able
to focus more on finding defects and improving project awareness
during code reviews.

Microsoft developers told us that knowledge sharing is one of
the primary purposes of code review. Newcomers to a team often
are included on reviews so they can learn more about the codebase
and how code reviews are conducted. In some cases, there is an
explicit mentor-mentee relationship between an expert and a less
experienced developer that is manifested in code reviews. We are
unaware of a similar use for code reviews in OSS projects.

Interestingly, eliminating functional defects was only the third
most important reason for code reviews in both surveys. This
result is consistent with earlier findings that the other benefits of
contemporary code review i.e. knowledge transfer and identifying
better solutions, may be more important than defect detection [2]].
Prior research on software inspection also reported the follow-
ing benefits provided by software inspections: defect identifi-
cation [27], [50], knowledge sharing [15], [50], [57]], increased
project awareness [15], [[50], and reduced development costs [26],
[40]. Moreover, our prior work found that approximately half of
code review comments relate to maintainability issues, with less
than a quarter related to functional defects [14]. The following
subsections provide details on the reasons why developers con-
sider code reviews important for their projects.

6.1.1 Improve Maintainability

The majority of respondents from each survey (OSS: 71%, Mi-
crosoft: 61%) indicated that code review improves project main-

http://carver.cs.ua.edu/Data/Journals/CodeReviewSurvey/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

Microsoft. OSs

Maintainability -

Knowledge sharing - I—
Functional defects - IEEG—_—_————
Community building - I
Minor Errors, Typos - I—
Other-
0% 26% 46% 66%

Percentage of respondents

Fig. 2: Importance of code reviews

tainability in terms of efficiency as well as other maintainability
attributes, i.e. legibility, testability, adherence to style guidelines,
adherence to application integrity, and conformance to project
requirements. In general, developers are more cautious when they
know that changes are subject to peer review.
If you know someone is going to look at you, you dress better.
When you know someone is going to question you for certain
decisions, either you don’t make them or you are prepared to
defend it. So, in general, it improves quality and makes you
better developer by forcing you to look at your code the way
others look. [MS-50]
In addition to code quality, reviewers evaluate the code’s con-
formance to project requirements. This conformance is especially
important in OSS projects where contributors can have different
personal goals.
By requiring approval from core maintainers, it also helps to
keep undesirable code out. [OSS-48]
Code reviews and the subsequent discussions also help maintain-
ing project design constraints and result in better designs.
It allows experts on particular areas of the (vast) codebase
to detect issues with changes early, helps generate improved
design ideas. [OSS-118]
Similarly,
..reconsidered crucial design decisions and ended up thinking
“wow, the way I was doing it is stupid for a lot of reasons.”
[MS-80]
Another benefit of code review is the production of more readable
code. To help reviewers understand the code easily, developers use
documentation, comments, and appropriate indentation to make
code more readable.
Code review helps to see if “my code” is read and interpreted
the way it should be. [MS-25]
Readable code also helps long-term maintainability, especially for
large-scale and long-lived projects.
The code is our most valuable asset as well as our biggest
liability. But we rarely have the time to re-invest in features
done, so it is vital that whatever we checkin is of the right
quality. You can test so-and-so much, but you really cannot test
maintainability and how easy a codebase is to debug. So to
avoid bug-farms you really have to review. [MS-312]
Code review also helps enforce a common coding style, which is
one of key characteristics of maintainable code.
Code style is even important because code is written once but
read so many times more. In fact, code can be maintained by
other devs so it’s important it follows guidelines. We have strict
coding guidelines published. [MS-290]

6.1.2 Facilitate Knowledge Sharing

Code review facilitates multiple types of knowledge sharing. Code
review interactions help both authors and reviewers learn how to
solve problems using new approaches. Reviewers often not only
identify issues but also explain why the author’s approach could
lead to potential problems. Reviews also help socialize project
details, e.g. architecture, common APIs, and existing libraries.

. spread information to more people so all knowledge of a
system is not lost if someone is out sick, on vacation, or leaves
the team, assist in sharing knowledge of helpful utilities so that
we do not end up with duplicate systems doing the same things.
[MS-196]

Code reviews increase project awareness among the project mem-
bers by ensuring that at least one or two reviewers are also aware
of code changes.

. it helps to ensure that more than one member of a group
is familiar with any changes, it makes sure that all changes
are (at least somewhat) sane, and it helps to foster feedback
[from people who will be affected by a change before the change
actually happens. [OSS-194]

Code reviews also allow senior project members to mentor new-
comers.

. code reviews are often one of the primary methods of
knowledge transfer and brainstorming about software between
developers. They’re part of the critical path to ramp-up new
developers on both the project and technologies, and they’re
often where experienced developers share tricks-of-the-trade
and knowledge in context. [MS-190]

In addition to newcomers, more experienced project members can
also learn through code reviews.
... allows us to leverage the lessons learned by each person in
the code base that not everyone will encounter. [MS-355]

6.1.3 Eliminate Functional Defects

Reviewers often find logical errors, corner cases, security issues,
or general incompatibility problems that the author may have
overlooked.
Code review dramatically reduces bug count, in my experience.
It is very rare for a change to be accepted without some sug-
gested improvements or notations of deficiencies by reviewers.
[OSS-145]
Experienced security reviewers are often able to identify critical
security flaws during code reviews.
More people see more, you can not let anyone from the commu-
nity to merge anything to your code (security risk). [OSS-105]
Finally, code reviews help to inform a wider audience about agreed
upon changes and thus help avoiding incompatibility issues (i.e.,
a broken build).
. makes sure the feature/bug fixing can integrate into other
parts of project, done by other developers. [MS-241]

6.1.4 Encourage Community Building / Collaboration

By fostering direct collaboration between developers and re-
viewers, code reviews encourage community building and col-
laborations. While community building was mentioned by both
Microsoft respondents and OSS respondents, it was seen as very
important in OSS projects.
.. helps the developer feel part of the F/OSS community. It also
provides a framework for participation, and allows people to
voice opinions on submitted changes and feel involved. [OSS-
39]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

In addition, the inclusion of various stakeholders in the review
process fosters collaboration among the team members.
It enables collaborative contributions to the implementation of
the system. Everyone on the team has a say on every part of the
system.[MS-100]
Finally, code reviews also help developers gain a better perception
of each others’ expertise and build relationships.
Gives a sense of collaboration and camaraderie among en-
gineers who would not typically work together (employees of
competing companies, for instance). [OSS-37]

6.1.5 Identify Minor Errors, Typos

Developers often do not notice their own minor errors and typos.
Without code reviews, identifying those minor issues may be time-
consuming. In addition, developers may forget to keep comments
updated, which is crucial for long term maintainability of the
project. In most cases, the majority of the minor errors or typos
are identified during code reviews.

It helps catch human errors/typos. Two pairs of eyes are always

better than one. [MS-182]

6.2 RQ2: How much time is spent in code reviews?

According to Q8, the median time spent in code review each week
is 5 hours for OSS developers and 4 hours for Microsoft devel-
opers. Considering 40 work-hours per week, this result indicates
that developers spend 10% - 15% of their time in code reviews.
Moreover, OSS developers spend significantly (Mann-Whitney U,
p=0.05) more time in code review than Microsoft developers

Because a less experienced developer would be more likely
to invite an experienced teammate to perform a code review, we
hypothesize that experienced developers would spend more time
performing code reviews. Figure [3]shows development experience
vs. median hours spent in code review. Since the distribution of
review hours per week significantly differs from a normal distri-
bution, we used non-parametric ANOVA (i.e., Kruskal Wallis H),
which indicates that those differences are statistically significant
(0SS: x? = 8.16, p = 0.043, Microsoft: x> = 8.43, p = 0.038).

For the OSS respondents, the paid contributors spend sig-
nificantly more time in code review than volunteer participants,
median of 5 hours vs. 3 hours (Mann-Whitney U, p < .001).
This results makes sense because paid contributors often act as
gatekeepers to maintain the integrity of the software by preventing
buggy, unwanted, or malicious code. As a gatekeeper, the paid
participant will therefore review code from many different peers
and spend more time in code reviews. To support this observations,
the results of Q9 indicate that paid contributors review code from
significantly more peers each week than volunteers do, median of
5 peers vs. 4 peers (Mann-Whitney U, p=.009).

6.3 RQ3: How do developers decide whether to accept
review request?

More than half of the OSS respondents and two-thirds of the
Microsoft respondents indicated that the identity of the author
was important in accepting a code review request (Q11). Figure]
shows the reasons why respondents found the code author’s
identity important (Q7). Although the factors identified were
common between the two surveys, the distribution of responses
was significantly different (x? = 24.09,df = 4,p < .001).
For example, the OSS respondents emphasized the non-technical
factors (i.e., reputation and relationship), while the Microsoft

9
. Less than 2 years 3to5years 6to 10 years. More than 10 years
3 8
o
O~
£86
€7
I} i
FE4
3 g
Lo
=52
%9
3
B 0 T T
0Sss Microsoft
Fig. 3: Hours spent in code reviews vs. Experience
microsoft [Jj oss
; |
Reputation -
Relationship -
; |
Time and effort -
; |
Areas of expertise -
Other-
1 1 1 1
0% 20% 40% 60Y
Percentage

Fig. 4: Why the identity of a code author is relevant

respondents emphasized the technical factors (i.e. time/effort and
expertise). This result reinforces the emphasis that OSS developer
place on reputation and relationships found in other research [32],
[41].

Conversely, the areas of expertise of the contributor and time /
effort required for the review were the priority considerations for
the Microsoft respondents. Discussions with developers shed some
light on the reasons for this result. With respect to expertise, an
experienced Microsoft developer often receives a large number of
review requests. Therefore, to minimize review time, s/he is more
likely to accept reviews for which s/he has expertise. In addition,
since Microsoft developers must manage competing demands for
their time and products have tight timelines, developers must
frequently make decisions based on the time required to complete
a task. Thus, the choice to participate in a code review depends
heavily on the estimated time required. The following subsections
provide details on each factor.

6.3.1 Relationship with the Author

A reviewer’s relationship and history of interaction with the code
author often affects the decision of whether to accept a review
request. Relationship with the code author was very important
particularly for the OSS developers who were almost twice more
likely than the MS developers to consider their relationship with
the code authors when accepting code reviews.
We know each other. We know each others strengths and
weaknesses and we can change the way we review to meet to
needs of the specific developer. It is an optimization that humans
naturally perform. Is it a net positive? I think so. [OSS-60]
Furthermore, to optimize the time spent reviewing code, a reviewer
often chooses to review code from authors who have already
reviewed his/her code.
It feels like a “quid pro quo” - if the contributor has reviewed
my code in the past in a thorough/timely fashion, I like to return
the favor. [OSS-20]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

Next, because code changes from a trustworthy author are more
likely to require less reviewing effort, the level of trust between
the reviewer and the author is important.
If you review code from someone you already know and trust
very well, you can only focus more on detecting careless
mistakes and less on overall design of the code change. [OSS-
276]
Finally, reviewers prioritize requests from their teammates or co-
workers over others.
... there are other programmers at my company that also work
on the project, and if they’ve submitted something that is time-
sensitive, I'm likely to prioritize that review to keep things
moving. First-time contributors tend to get down-prioritized a
bit. [0SS-227]

6.3.2 Reputation of the Author

Depending upon their goals or project roles, some reviewers may
seek out authors with positive reputations, while other may focus
on those with poorer reputations. To leverage the time spent in
code reviews, some reviewers favor review requests from authors
they consider to be capable of producing high-quality code.
Often time to do reviews is limited. I prefer changes from
contributors where I know that they are proposing good changes
(high code quality, good commit message, small scope, focused
on one thing), because I know that I can finish the review
quickly. I also prefer changes from contributors that themselves
give feedback by doing code review on changes of others. [OSS-
106]
Conversely, some reviewers are gatekeepers that focus on code
changes from new or troublesome authors.
I am more likely to review changes by developers new to
the team, as well as developers who have a history of poor
adherence to coding standards or lots of significant comments
on their reviews.[MS-90]
Sometime the experience of the code author also influences the
decision to accept or reject a review request. Developers will often
accept review requests from experienced contributors expecting to
learn about outstanding techniques or designs. Conversely, experts
and/or code owners may be more likely to review code coming
from inexperienced developers in an effort to maintain high code
quality.
Some people do stellar work, and I want to learn from them,
so I review their CR to see what they did, even though I almost
never find problems. [MS-319]

6.3.3 Area of Expertise

Many reviewers prefer reviewing code changes that are closely
related to their areas of work or expertise. The identity of the code
author can often help them to determine whether the change is
relevant. The area of expertise is a very important factor especially
for the Microsoft developers to prioritize incoming reviews.

I get a lot of code review requests from multiple teams. I only

review things that are in my area, and author of change often

helps to determine if changes are relevant to me. [MS-325]
Some reviewers even decline code reviews that are not related to
their areas of expertise.

Area ownership and expertise matters. If I'm unfamiliar with an

area and depending on the complexity, I’ll decline or partially

review it.[MS-12]

10

.Mos(important
Second most important
Third most important

Fourth most important
Fifth most important

o
(7]
%]

Microsoft
Poor readability -

Unnecessary complexity -

Does not maintain application integrity -
Does not follow coding convention -
Duplicated / cloned code -

Lack of modularity -

Poor performance -

Lack of comments -

Inadequate exception handling -

A large parameter list to a function - I
0% 25% 50% 5% 0% 25% 50% 75%

Fig. 5: Characteristics indicating poor code (Sorted based on the
ranks in the OSS survey)

6.3.4 Anticipated Time / Effort to Review

Based on the author’s identity, reviewers can often anticipate the
amount of effort required. To maximize the utility of time spent in
code reviews, some reviewers focus on areas that require the most
attention.
My time is inherently limited, so I choose to prioritize code
review for less experienced developers. For code from people
that I know have a history of quality contributions, I'm less
likely to spend time reviewing. [OSS-176]
Conversely, to reduce their effort, some reviewers prefer to avoid
changes from known poor coders.

Sometimes you want to quickly review code from contributors
whose work you trust greatly. Other times you might choose to
ignore work from a known contributor who typically produces
poor work. [OSS-114]

6.4 RQ4: Which characteristics indicate low quality
code?

From our previous work [10] and common code smells (any
symptom in the source code that usually corresponds to a deeper
problem in the system) [25]], we identified ten characteristics of
low-quality code. We asked the respondents to rank order those
characteristics based on their importance during code reviews.
Due to the limitations of the survey tools, in the Microsoft survey,
respondents rated each characteristic on a 6-point scale rather than
rank ordering them (i.e. they could rate multiple characteristics as
most important instead of only one). As a result, the total for most
important is greater than 100% for the Microsoft survey. However,
we believe that this may not be an issue, since we are interested
only in comparing the ranks of the characteristics between the two
surveys. For the two surveys, we separately calculated the ranks of
the characteristics using the number of top two ratings (i.e. Most
important, and Second most important). Figure [5] summarizes how
the respondents rated the relative importance of each characteristic
(Q17), where the characteristics are sorted based on their ranks in
the OSS survey.

The fact that unnecessary complexity and poor readability
were among the top three characteristics in each survey, suggests
that code which is simple (not complex) and readable is easier to
review. It is interesting to note that lack of comments ranked very
low (OSS: 8th and Microsoft: 9th) in both of the surveys. The
combinations of these results suggest that reviewers expect code
to be straightforward and self-documenting rather than requiring

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

extensive comments to explain it. Because a reviewer has to
understand the code to properly review it, a complex approach,
even if well-commented, will likely take longer to review.

Does not maintain application integrity was also among the
top three characteristics in both surveys. For long-term project
maintaining a consistent design is very important. A feature that
violates project design not only adds burden for future mainte-
nance but also opens bugs or even vulnerabilities. Such code
generally indicates either the author lacks knowledge about the
project design, or the author lacks care / dedication for the project.
Therefore, authors should be careful that submitted code changes
maintain application design constraints.

The ranking of eight of the nine characteristics was similar for
both surveys (with a difference of no more than two ranks). The
exception was the characteristic: does not follow coding conven-
tion of the project (fourth in OSS and eighth in Microsoft). There
are two possible explanations for this result. First, while Microsoft
respondents may consider coding convention issues important,
they may not judge code quality based those problems because
they are easier to fix. Second, because Microsoft developers often
use automated tools to identify and fix coding convention issues,
they may focus less on these issues during code review.

6.5 RQ5: How do developers help improve low quality
code?

Figure [6] lists the approaches the respondents used to help poorly
written code reach the level of quality required for inclusion in
the project (Q15). The distribution of responses was significantly
different between the OSS respondents and the Microsoft respon-
dents (x> = 93.29,df = 6,p < .001). This difference was
largely due to two factors.

First, the Microsoft respondents are more likely to communi-
cate with the author using other channels (i.e., face-to-face, Skype,
instant messenger, or email). They found those communications
helpful in quickly resolving any misunderstandings. Conversely,
face-to-face communication may not be an option in an OSS
project. Interestingly, OSS developers could use some of the tools
(e.g., Skype or other voice/video over internet technologies), but
they do not.

Second, when other methods are unsuccessful, the OSS re-
spondents are more likely to rewrite the code themselves. Because
OSS participants may not be obliged to follow up, they may not
make the changes required to make the code acceptable. If a code
change is important, then the reviewer may choose to just fix the
problem rather than waiting on the original author. Conversely,
the Microsoft respondents rarely rewrite poor code themselves,
for two primary reasons: 1) Microsoft developers are required to
follow up, and 2) reviewers know that they have to mentor authors
of low quality code to help them learn how to write better code.

6.5.1 Provide Comments

More than 80% of the respondents from each survey provide
comments through the code review tool to help authors improve
poorly-written code. The reviewers typically indicate specific
shortcomings of the code and ask the author to fix those issues.
For issues specific to the patch in question, or small coding
style/convention issues, I'll reply to the patch with point-by-
point feedback and suggestions. For major systemic issues,
such as pervasive use of incorrect coding style/conventions, or
fundamental architectural issues, I'll reply to the first instance

11

Microsoft .OSS

Comments -
Rewrite to fix -
Mentor - —
Provide examples - —
Reject - [—
Communicate - ™
Other- ™
0% 25% 50% 75%
Percentage

Fig. 6: How reviewers assist to fix poor code

of such an issue with a summary of the problems and an
indication that many more exist that I didn’t quote or comment
on. [OSS-46]
Many reviewers provide hints or suggestions to refactor the code
to make it more readable.
1 try and give syntax tips or suggest improvements (like rewrit-
ing a function to reduce complexity, pointing out where we have
duplicate code and how it might be shared and suggesting to
split a large function into smaller ones). [MS-403]
A few respondents also mentioned the importance of constructive
criticism to avoid hurting the feelings of the code author.
Critique the code, not the author. Describe better approaches,
don’t just denigrate the chosen one. Ask questions about why
an approach was chosen, don’t attack the choice. Point out
possible edge cases where they are overlooked. Refer directly
to the coding standard where appropriate. [MS-73]

6.5.2 Rewrite/Fix the Code

In projects where authors are not required to respond to reviews,
i.e. some OSS projects, some reviewers find it quicker to just fix
the low-quality code rather than providing comments.
... in some circumstances I massage the code change myself and
explain to the submitter why I have made the follow-up change.
[OSS-276]
The reviewers do acknowledge that this practice may not be the
best approach.
Usually it boils down to rejecting it or fixing it by writing it
myself. I am aware that this is not a good practice, but we’re
all volunteers. [OSS-154]

6.5.3 Provide Mentoring

In cases where the author of low-quality code lacks project or
programming knowledge, mentoring may be the best approach to
improve code quality.
1 try to provide design guidance to the contributor when I think
it will benefit the project. I may also provide some language-
specific mentoring or at least refer the contributor to relevant
documentation I believe to be helpful. [OSS-71]
Another type of mentoring is to ask questions to help the author
understand potential code problems.
Ask questions such as what happens in scenarios to guide him
through this understanding. If this is due to lack of understand-
ing of fundamental technology then give pointers to bring up
the knowledge. [MS-126]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

6.5.4 Provide Examples

Some reviewers prefer providing example code or directing an
author to other well-written code in the project.
I will usually point the original author towards existing
examples of code in the project to look at for reference. [OSS-
58]

6.5.5 Reject Until Good

Some reviewers prefer to reject code changes until they meet the
project quality standards.
I do not sign off until I am convinced that the code change meets
the team criteria for quality. If the author does not understand
or agree with my feedback, I typically will sit down with them
to discuss in detail. [MS-132]

6.5.6 Communicate with the Author

Over a quarter of the Microsoft respondents preferred discussing
code changes via email or instant messenger rather than inside
the code review tool. They found this type of communication
helpful for avoiding long discussions in the code review tool and
embarrassment of the author. This percentage was much higher
than for the OSS respondents.

Sometimes, for more difficult issues, I create an email thread
on the side to have a better back-and-forth discussion about the
change as a whole instead of a discussion about one small part
indicated in the review. If I consider the change very poorly
written, I tend to keep the side-conversation more private to
avoid embarrassing the author. [MS-145]

If feasible, some Microsoft reviewers also prefer to meet the
author face-to-face and discuss the issue to resolve potential
misunderstandings.

Usually the best option is to go to their office and see where
they are coming from and whether they made oversights or were
missing information. [MS-34]

6.6 RQ6: What is the impact of high quality code?

More than 85% of the respondents from each survey indicated
that high quality code or use of an outstanding approach to
solve a problem affects their perception of the code author
(Q17). As shown in Figure [/, the aspects of peer perceptions
that are influenced by high quality code (Q18) differ signifi-
cantly between OSS respondents and the Microsoft respondents
(x? = 25.81,df = 3,p < .001).

For the OSS respondents, the largest impact of high quality
code is increase in positive impressions about the personal charac-
teristics of the code author. Because of the lack of physical inter-
action among OSS participants, socio-technical interactions (e.g.,
via code reviews) become more influential in the formation of
impressions about the personal characteristics of teammates [[10].
The lower importance of this factor for Microsoft respondents
may be because developers in industrial organizations have other
methods of observing and assessing the characteristics of their
peers, e.g. participating in face-to-face meetings, working in close
proximity, communicating frequently, and participating in non-
work social activities like lunch.

Conversely, the Microsoft respondents indicated that the
largest impact of high quality code is stronger relationships and fu-
ture collaborations with the code authors. Because approximately
75% of the code reviews at Microsoft are performed by teammates
of the code author [14], the reviewers are likely already aware of

12
microsoft [Jfj oss
]
Personal characteristics -
N
Relationship -
;]
Collaboration -
Other - u
0% 20% 40% 60%
Percentage

Fig. 7: Impact of high quality code

the personal characteristics of an author. Instead, code reviews
help the reviewers judge the intellect and coding skill of the code
author. High quality code can lead to increased respect, admiration
and trust.

6.6.1 Creates Positive Perceptions about Personal Charac-

teristics

Approximately 60% of the OSS respondents and 36% of the

Microsoft respondents indicated that high quality code or an

outstanding problem solving approach were evidences of the

personal characteristics of the code author. First, high quality code
can indicate that the author is competent, an expert in the area,
high performing, and posses professional skills.
I will assume that the author is experienced or skilled in a
particular area if I see good work in that area. If the author
tends to produce clean, well structured code that complies with
the coding style guide, I will assume that he/she works in well
organized and thorough manner. [MS-68]

Second, high quality code can be a sign of the contributor’s ability.
It’s my opinion that you can infer the quality of a developer by
the quality of their changes. Changes that are not well thought
out indicate sloppy thinking, but changes that are neat and tight
indicate an accuracy of thought that I appreciate. [MS-216]

Third, the quality of code changes can indicate the level of the

dedication of the code author.

High quality code shows that the author cares about the project
and has considered the ramifications of their changes. High
quality code also can elevate the project as new ideas are
injected into the community. [OSS-31]

Finally, high quality code can be a sign that the author has a good

understanding of the project.

This means the author has spent a large amount of time working
hard to understand the problem at hand and has come up with
a great solution. [OSS-220]

6.6.2 Helps Build Relationships

Approximately 37% of the OSS respondents and 47% of the
Microsoft respondents indicated their desire to build relationships
with outstanding code authors. They believed that authors of good
code are trustworthy and should have additional tasks and privi-
leges. Trust is very important in OSS projects, because gaining the
trust of the core members is the only way a contributor can earn
commit privileges.
. “outstanding approaches” are rare, but well written, well-
documented code indicates that the author can be trusted.
He/She may get approver rights or become maintainer of a
module. [OSS-167]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

In addition, respondents reported an increase in respect and
admiration for authors of high quality code.
High quality code speaks about its author. I see software devel-
opment more as an art than an actual engineering discipline.
From this perspective, a person writing high quality code is
someone that deserves respect and recognition, as he combines
his knowledge/experience with his intellect to create unique
solutions. [OSS-180]
Finally, authoring high quality code can also lead the author to
earning a better reputation within the community.
Impressed by ability to solve the problem, this is really just mer-
itocracy at work. People who put in the time and solve problems
with outstanding approaches build a strong reputation. [OSS-
144]

6.6.3 Encourages Future Collaborations

Approximately 36% of the OSS respondents and 48% of the
Microsoft respondents indicated their desire for future collabora-
tions with authors of high quality code because they viewed those
authors as expert contributors from whom they could learn.
If someone writes some code with an “Outstanding approach”
such that it impresses me, I'll probably read all of their code
reviews after that, in order to learn more. [MS-103]
Some developers often volunteer to review code changes submit-
ted by these authors primarily to learn.
1 will be more likely to consult this person in the future as
they are a proven performer in code matters. I may pay more
attention to future work by them by signing up for code reviews,
but more to understand their work than to pick apart code line
by line. [MS-333]
Apart from learning, developers also seek assistance from out-
standing code authors when having difficulty solving a problem.
I know that this is a guy to go to when faced with difficult
problems, and that he can be counted on to give proper reviews
and suggest improvements to my code. [OSS-109]
Consistently submitting high quality code can improve the trust-
worthiness of the author as respondents stated that, if busy, they
would spend less time reviewing code from these authors.
.. if this person sends another code review on a day that I'm
really busy, I won’t worry about looking it because I trust that
they also “did the right thing” in this new code review. [MS-
128]
Finally, authoring high quality code changes resulted in an in-
creased perception of reliability and the assignment of more
complex or critical tasks.
Seeing well written code increases my confidence in the author
and I know I will be able to rely on that author for future tasks
of high complexity or high importance. [MS-341]

6.7 RQ7: What is the impact of low quality code?

More than three-quarters of the respondents from each survey
indicated that poorly written code negatively influences their
perceptions of the code author (Q13). As shown in Figure @ the
aspects of peer perception that are influenced by poorly written
code (Q14) differ significantly between OSS respondents and
Microsoft respondents (x2 = 52.79,df = 3,p < .001). The
OSS respondents were more likely to form negative impressions
about the experience and personal work habits of authors of
poorly written code. The reasons for forming negative impressions
are largely the same as those for forming positive impressions

13

Microsoft .OSS

|
Work habits -
|
- |
Collaborations -
Other - -

Inexperienced -

40% 60%

Percentage

0% 20%

Fig. 8: Impact of a poor quality code

(RQO6). In addition, the Microsoft respondents considered authors
of low quality code to be incompetent. They were less likely to
collaborate with those authors in the future due to the expected
increase in time and effort such collaborations would require.

6.7.1 Creates Negative Perceptions about the Work Habits

Approximately 62% of the OSS respondents and 38% of the
Microsoft respondents indicated that low quality code negatively
affects their perceptions about the work habits of the author. As
before, Microsoft respondents were likely to find this factor less
important than OSS respondents because of the many other ways
that developers interact and are able to assess each other’s char-
acteristics and work habits. More specifically, reviewers consider
the submission of low quality code to be a sign of the author’s
carelessness or lack of respect for his/her peers.
Code that is poorly written, does not follow guidelines etc.
makes a bad impression, it gives a sloppy impression, like the
person writing the code does not take the time to provide the
code with proper quality, yet expect it to be reviewed. Providing
sloppy code is in my opinion a sign of lack of respect. [OSS-
260]
Second, reviewers think that authors of low quality code were lazy
or lacking dedication to the project.
Author either didn’t put enough time to investigate the task
he is solving or does not have understanding of the system
he is building. Either case he should have spent more time to
understand what is he doing. [MS-41]
While low quality code does affect perception, reviewers realize
that people do make mistakes, so they are likely to excuse the first
few mistakes and begin forming a negative impression when the
author is unable or unwilling to learn from previous mistakes.
For occasionally poor code, not much effect - people have
off days, or may just misunderstand the particular area of
code they are modifying. But if the author continues to makes
similar mistakes, then that strongly degrades my opinion of their
competence. [OSS-176]
Furthermore, not all the mistakes have the same impact. Reviewers
are more accepting of mistakes due to lack of knowledge or
understandings than they are to easily avoidable mistakes.
It’s ok if the code contains bugs and I will not think the author is
careless. However if the code contains coding style, readability,
duplicated code and other easily avoidable problems, I will
think the author is careless and is not dedicated to the project.
[OSS-197]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

6.7.2 Suggests Inexperience

Approximately 51% of the OSS respondents and 24% of the Mi-

crosoft respondents indicated that low quality code suggests that

the author is inexperienced in either the project or in programming.
It can mean that they haven’t yet reached understanding of
the how the code they are modifying works, and thus any
contributions from them may need to be reviewed extremely
carefully. [OSS-196]

Reviewers also think that the authors of low quality code may be

incompetent or lacking intelligence.
No matter what level of experience a programmer is at they can
write clear, readable, robust code. Surprisingly people can go
a long ways without learning to do this. It makes me question
their native intelligence and dedication to the project. [OSS-25]

6.7.3

Approximately 62% of the Microsoft respondents and 27% of the

OSS respondents indicated that the impressions formed about the

authors of poorly written code affected their future collaborations.

Many of the respondents doubted a the abilities of the authors of

poor code.
Poorly written code usually indicates to me that the author is
lacking coding experience or technical skill, which (negatively)
affects how I perceive the author’s general performance at
work. [MS-45]

Loss of respect is another factor hampering future collaboration.
Depending on the ‘severity’ of the bad code, I can feel that
I lose respect for the person and their intelligence as a code
author in extreme cases. For example thinking ‘did they even
try to build it/test it’, or ‘Why did they think this is the right
approach. It should be much simpler but they are to clueless to
know’. [OSS-78]

In the extreme case, reviewers can lose trust in the author of

low quality code and carefully examine future changes from that

author.
I trust the developer less, and know that I'll have to code review
future changes in even greater detail. [MS-349]

Finally, because poorly written code takes longer to review, some

reviewers are less likely to accept review requests from these

authors.
Poorly written changes also require more review time, so I feel
that a person who consistently makes poorly written changes
will waste a lot of people’s time in the long run. I also end
up expecting that person’s changes to be poorly written and
do not look forward to the prospect of reviewing the changes.
[MS-166]

Impacts Future collaborations

6.8 RQ8: What is code review’s effect on peer impres-
sions?

Using behavioral scales, we focused on understanding the impact
of code reviews on four aspects of peer impression formation:
trust, reliability, perception of expertise, and friendship. To ease
analysis and presentation of results, we recoded the scale to make
the effect of the scale items on impression formation more evident.
The recoded scale is: -3: describes a non-code review partner, NOT
a code review partner, 0: describes both equally, and 3: describes
a code review partner, NOT a non-code review partner. To avoid
biasing the results with negative scale values, we did not use this
scale during data collection.

14

.expertiseJ .expenisej expertise_3 expertise_4

30% -

20%-
10%-
0%- — = —
30%- I
5 |

20% -
10% -
—é —‘1 Béth i Code
review partner
Fig. 9: Distribution of ratings for the scale items: Perception of
expertise

SSO

40S0IIN

0%- —

Non code
review partner

TABLE 6: Behavioral scale means and effects

Construct Scale Mean Effect Size (Cohen’s d*)
0SS Microsoft 0SS Microsoft

Trust 0.699 0.843 0.76 0.93

Perception 1.526 1.467 1.72 1.53

of Expertise

Reliability 1.023 1.088 1.11 1.04

Friendship 1.473 1.115 1.53 1.33

*Cohen’s d interpretation: d > .8 indicating large effect, d > .5
indicating medium effect, and d > .2 indicating small effect [[17]

As an example, Figure E| shows that for the four perception
of expertise scale items, most of the respondents (approximately
70% to 80%) thought they had a better perception of the expertise
of their code review partners than their non-code review partners.
All four scales exhibited a similar trend.

Table [6] shows the item means for the four behavioral scale
items for the two surveys. The scale means were positive and
significantly higheﬂ than the mid-point of the scale (0 - Both
Equally) in all cases. We did not observe any significant differ-
ences between the results of the two surveys for the behavioral
scale questions. We also estimated effect size using Cohen’s d
(rightmost two columns of Table [6). In seven out of the eight
cases there were large effects. Only the trust scale in OSS survey
showed medium effect size. The results suggest that code review
had overall large positive impact on building four types of peer
impressions (i.e., trust, perception of expertise, friendship, and
reliability) between code review participants in both OSS and MS
projects.

These results provide some insight into the results from RQ6
(impact of high quality code) and RQ7 (impact of poor code),
which show that code reviews can have both positive and negative
impacts on impression formation. This analysis shows that 1) code
reviews have a large positive impact on impressions formation, and
2) the majority of the respondents had better perceptions of their
code review partners than their non-code review partners.

7 DISCUSSION

This section provides further discussion on the detailed analysis of
the survey results described in Section@ In particular, this section
highlights seven themes that emerged from the results.

71

The OSS respondents differ significantly from the Microsoft
respondents in the aspects of code review emphasized as most

Differences Between OSS and Microsoft

13" one sample t-test, p <0.001 in all cases

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

important. The focus for OSS reviewers is on building relation-
ships with core team members. When forming impressions of their
teammates through code reviews, the OSS respondents indicated
that the personal characteristics and work habits of the code
author were most important. This emphasis makes sense because
members of OSS teams may not have the opportunity to form
impressions of their teammates through the more traditional types
of interactions (i.e. face-to-face work and social interactions) that
members of a commercial organization, like Microsoft, would
have. As a result, code reviews become even more important
for forming impressions of teammates. Conversely, the Microsoft
respondents consider the knowledge dissemination aspects more
important. Code reviews work as a medium to mentor new team-
mates about the project design, coding conventions, and available
API or libraries.

Similarly, when deciding whether to accept a code review
request, the most important factors for OSS respondents are their
relationship with the code author and the reputation of the code
author. This focus is driven by the desire to maintain current re-
lationships and to improve relationships with reputed developers.
Conversely, for Microsoft respondents, when deciding whether to
accept a review, the most important factors were the expertise of
the code author (i.e., if a developer writes good code that s/he can
learn) and the effort required to review the change. When deciding
who to invite to review their code, the most important factor was
the expertise of the reviewer (i.e., whether s/he has expertise to
review that code and will be able to provide useful feedback).

Other than the differences mentioned here, the results were
similar for the OSS and Microsoft developers. Sections [7.2
describe results that were similar across the OSS respondents and
the Microsoft respondents.

7.2 Benefits of Code Review

While there is empirical evidence that code review improves
software quality [18]], [57], the benefits of code review are much
broader. Evidence about these other benefits has been mostly
anecdotal. The results of these surveys begin to provide more
evidence for these benefits. Nearly all survey respondents in both
surveys found code reviews important for their projects for reasons
including: knowledge dissemination, relationship building, better
designs, and ensuring maintainable code. For large-scale and long
term projects, those benefits may be very important and hard
to achieve through other means. Therefore, even projects with
highly-skilled developers who rarely commit low-quality changes
can still benefit from the practice of code review.

7.3 Peer Impression Formation

One of the key non-technical benefits of code review for both OSS
and MS participants is its role in impression formation, that is how
developers form opinions of teammates. The results of the surveys
show that the most important social factor of code reviews is in
obtaining an accurate perception of the expertise of teammates.
The quality of the code submitted for review is an important
aspect of the formation of teammate perceptions. For example a
code change that is simple, easy to understand, self documenting
and requires minimum review time is highly appreciated by the
reviewers and may lead to improved social status. Whether a de-
veloper is positive or negative towards a teammate may influence
future code reviews. For example, respondents indicated that they
perform more thorough reviews of code submitted by teammates

15

who are untrustworthy than of code submitted by teammates they
view as experts. In addition, the impressions formed during code
review could also affect future collaborations, relationships, and
work practices. Therefore, code review is a critical practice not
only for ensuring the quality of code changes but also for forming
the social underpinning of successful projects.

7.4 Effects on Future Collaborations

More than three-fourth of the code review participants from the
both surveys had strong positive impressions about their peers,
suggesting that code reviews may influence future collaborations.
When a reviewer finds high quality code from an author it can
increase collaborations in two ways. First, s/he is more likely to
sign up to review the author’s future changes in order to learn
from them. Second, s/he considers the author an expert who is
able to provide suggestions to improve his/her code and add the
author as a reviewer for his/her changes. On the contrary, poorly
written code often takes more effort to review and a reviewer may
not accept future review requests from the author of poor code.
Moreover, uncertainty about their level of expertise may lead a
developer to avoid asking the author of poor code to review his/her
code. Combining these two scenarios, a developer’s code review
partners are more likely those peers who s/he considers as good
authors as well as experts. Conversely, the peers who s/he judged
as poor code authors will become non-code review partners due to
infrequent interactions.

7.5 Effects of Perceived Expertise

A reviewer’s perception of the expertise of the code author not
only influence the acceptance or rejection of code review requests
but also influences the level of scrutiny for the code. First, in terms
of accepting incoming code reviews (See Section [6.3)), perceived
expertise has mixed influence. Some respondents preferred to
review code from experts to learn and to minimize time spent in
reviews. Other respondents prioritized reviews from newcomers
or focused on areas requiring the most attention. Both of these
approaches may be correct, depending upon the expertise of the
reviewer.

Second, in terms of the level of scrutiny given to the code,
if a reviewer is uncertain about a particular design choice, s/he is
more likely to trust the design choice of experts and to question the
rationale of non-experts. In addition, if a reviewer does not have
adequate time to perform a thorough review of code from an expert
author, s/he will approve that code after only a cursory review,
based upon an assumption that the expert author implemented
correctly, as usual. However, an author only receives this expert
status after consistently submitting high-quality code changes.

7.6 Effects of Distributed vs. Collocated Teams

One of the goals of replicating the survey with Microsoft de-
velopers was to investigate how much the distributed nature of
OSS projects factored in to the understanding and practice of
code review. To investigate this effect, we surveyed members
of distributed teams and members of collocated teams within
Microsoft. We anticipated that members of distributed teams
would emphasize the human relationship aspects of code review
due to their limited ability to form these relationships in person (as
members of collocated teams have). Interestingly, when analyzing
the data from the Microsoft survey we found very little difference

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

Approximately half in the same site and half from distributed sites
Most come from a different site than mine
Most in the same site as mine

Maintainability -

Knowledge sharing -

Functional defects - E——
Community building -
Minor Errors, Typos - —
Other - m——
0% 20% 40% 60%

Percentage of respondents

Fig. 10: Importance of code reviews (Grouped by three types of
Microsoft respondents)

between the responses of developers from collocated teams and
the responses of developers from distributed teams. For example,
Figure [I0] shows how the three groups of Microsoft respondents
considered code reviews to be important for their projects. In fact,
there were much larger differences between respondents to the
OSS survey and respondents to the Microsoft survey, in general
(regardless of whether the respondent was on collocated team or a
distributed team), as discussed in Section Therefore, our initial
hypothesis that respondents from distributed teams at Microsoft
would respond similarly to respondents from OSS teams is not
supported.

This surprising result suggests two possible explanations: 1)
some types of impressions that are impacted by code reviews (e.g.
coding ability) may not depend on face-to-face interactions, and
2) the code review process (e.g., review acceptance and future
collaborations) may depend more on project culture (i.e. OSS
projects have a different culture than commercial projects [28]])
than on the physical location of the developers.

7.7 Paid vs. Volunteer OSS developers

The motivation of OSS participants may be affected by whether
or not they receive financial compensation for their contributions.
In addition, paid OSS participants may have different goals than
volunteer OSS participants. Prior research has identified several
differences between paid and volunteer participants in terms of
impressions formation (i.e., paid participants were more likely
to form impressions based on meeting in person) and perceived
experiences (i.e., volunteers were more likely to perceive negative
experiences working with peers) [10]].

In response to RQ2, we found that paid OSS participants
collaborate with significantly more peers and spend significantly
more time in code reviews than volunteer OSS participants. This
observation may indicate that paid OSS participants serve as the
gatekeepers for the OSS projects.

For the remaining research questions, which dealt with the im-
portance of code review, the code review process, and the impact
of code reviews, the results did not show any differences between
the paid OSS participants and the volunteer OSS participants.
Therefore, whether an OSS participant is paid or is a volunteer
does not seem to impact the key aspects of the code review process
or how code reviews impact peer impression formation.

8 THREATS TO VALIDITY

This section discusses the addressed and unaddressed threats to
validity. It is organized around the four common types of validity
threats.

16

8.1

Farticipant selection is the primary threat to internal validity. The
subject population consisted of reviewers who had participated
in at least 30 code reviews (either as the author or reviewer). It
is possible that using a different threshold would have produced
different results, but we have no evidence to suggest this situation.
Because seven of the eight research questions (RQ2-8) are related
to the code review process (i.e., accepting review request, judging
poor code, improving poor code, impact of good/bad codes),
we strongly believe that without having adequate code review
experiences, a developer cannot provide appropriate answers to
these questions.

In addition, there is the threat that only those subjects who
had positive experiences with code review took time to respond
to the survey. There is no evidence to suggest that this self-
selection occurred. But, even if it did, because the goal of the
survey was to gather information about various aspects of code
review, those who had positive experiences could likely provide
the best feedback.

Internal validity

8.2 Construct validity

The survey design process specifically focused on reducing con-
struct validity threats. This process took approximately eight
months and included both expert reviews and multiple pilot tests.
The design process included the following bias-reducing practices:

o placing the questions about the topics of interest after the
other survey questions to prevent hypothesis-guessing,

e presenting the scale questions in random order,

e providing clear definitions of code review partner and non-
code review partner on all relevant pages, and

o carefully wording questions in an unbiased manner.

Third, we conducted multiple reliability and validity tests, with
widely-used and highly recommended measures, to ensure con-
struct validity.

8.3 External validity

Due to the wide diversity within the OSS community, it is possible
that the results may not be representative of all OSS projects.
In fact, as most respondents came from well-known, successful
OSS projects, they may have been among the higher skilled and
more motivated OSS developers. The impacts of code review on
software quality and on the social fabric of the team may differ in
other types of OSS projects.

In terms of the Microsoft developers, they may not be repre-
sentative of all commercial organizations. To reduce this potential
threat, the respondents came from teams that differ in development
process (e.g. waterfall vs. agile), hardware platform (e.g., mobile,
desktop, server, and data center software), deployment method
(boxed products versus web services), operating system (i0S,
Windows, Windows Phone, and Linux), location (U.S., Europe,
and Asia), and workflow (e.g., some teams require two reviews
on all sign-offs, others are more lax; some want review prior
to checkin and test, others do review afterwards; some include
testers and development leads on reviews and some do not).
The software development processes, project management, and
release cycles across different projects in Microsoft are quite
varied. Interestingly, in a prior study of code review, Rigby and
Bird investigated code review practices and metrics in multiple

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

commercial organizations and open source projects [45]. Surpris-
ingly, they found little difference between the different systems
studied in terms of code review, supporting the notion that findings
about code review at one company may be relevant for other
organizations.

In addition, the code review workflow at Microsoft is similar
to that used by other large commercial organizations such as Face-
book [33]], Google [56], VMWare [3]], Cisco [18]], and Oracle [55]
that have adopted mandatory code review practices. In those
organizations, code review has become an important software
quality assurance practice similar to testing, tracking/fixing bugs,
and automated build systems, which all are aspects of mature
software engineering projects.

A common misconception about industrial research at large
companies such as Microsoft is that software projects at Microsoft
are not representative of other software projects. While projects
might be larger in size, most development practices at Microsoft
are adapted from the general software engineering community and
also used outside Microsoft. Another frequent misconception is
that empirical research within one company or one project is not
good enough, provides little value for the academic community,
and does not contribute to scientific development. Historical
evidence shows otherwise. Flyvbjerg provides several examples
of individual cases that contributed to discovery in physics, eco-
nomics, and social science [24]. Again, W.I. Beveridge observed
for social sciences: “More discoveries have arisen from intense
observation than from statistics applied to large groups” [7]]. Even
in SE domain, prior case studies at large commercial companies
such as: Microsoft [9], [39], Google [35]], and Cisco [[18] have
provided useful insights. Please note that this argument should
not be interpreted as a criticism of research that focuses on large
samples or entire populations. For the development of an empirical
body of knowledge as championed by Basili [4]], both types of
research are essential.

8.4 Conclusion validity

The number of responses to each survey was sufficiently large to
mitigate any threats arising from small sample sizes. In addition,
the Chi-square test (used most frequently in this analysis) does
not assume normality in the data. For variables that were not
normally distributed (according to the Shapiro-Wilk test), we used
non-parametric tests.

9 CONCLUSION

This paper describes the results of two surveys to better under-
stand the practice and motivation for performing code reviews.
These results have several implications for researchers and for
practitioners. First, although only one-fourth of the code review
comments are about functional defects, practitioners should not
be discouraged to practice code reviews. Code review offers
several other benefits (i.e., knowledge dissemination, relationship
building, better designs, and ensuring maintainable code) that
are crucial for large scale or long term projects. Interestingly,
most code review research focuses on defect detection. These
other aspects of code review that are considered more important
by the developers have not received much attention. Therefore,
these other aspects of code reviews (i.e., relationship building,
knowledge sharing, achieving better designs) warrant additional
focused research.

17

Second, the results of these surveys indicate that code reviews
have a large impact on relationship building and future collabora-
tions. Carelessness in wording a review comment can lead to nega-
tive feelings from the code author and hinder future collaborations.
For example, an author is more likely to make the required changes
if the reviewer provides constructive criticism and is more likely
to argue with the reviewer if the reviewer comments are viewed as
an attack. Therefore, reviewers should carefully consider how their
review comments will be heard by the code author. This finding
warrants further research in two directions: 1) empirical validation
of how the expression of sentiment (i.e., positive or negative)
in code review comments influences the code review outcomes
and long term collaborations, and 2) how to assist reviewers in
articulating appropriate comments during code reviews.

Finally, effective code reviews require a significant amount
of effort from the reviewers to thoroughly understand the code.
The results of this study suggest that reviewers prefer to review
code changes that are simple, self-documenting and easy to com-
prehend. Authors should keep those code characteristics in mind
when submitting code changes for review. This result could also
be of interest to program comprehension researchers. The large
amount of time devoted to understanding code changes could be
improved with appropriate program comprehension techniques.

ACKNOWLEDGMENTS

This research is partially supported by the US National Science
Foundation Grant No. 1322276, 1156563. Any opinions expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. We would
also like to thank Brook Bowers and Luis Aguiar for assistance in
data analysis.

REFERENCES

[1]1 J. Asundi and R. Jayant, “Patch review processes in open source software
development communities: A comparative case study,” in Proceedings of
the 40th Annual Hawaii International Conference on System Sciences,
2007, pp. 166c—166¢.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 International Confer-
ence on Software Engineering, 2013, pp. 712-721.

[3] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Confernece on Software
Engineering, 2013, pp. 931-940.

[4] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through
families of experiments,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 456473, 1999.

[5S] O.Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The influence
of non-technical factors on code review,” in Proceedings of the 20th
Working Conference on Reverse Engineering, 2013, pp. 122-131.

[6] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code re-
views in open-source projects: which problems do they fix?” in Proceed-
ings of the 11th Working Conference on Mining Software Repositories,
2014, pp. 202-211.

[71 W. L. B. Beveridge et al., “The art of scientific investigation.” The art of
scientific investigation., 1950.

[8] C. Bird, T. Carnahan, and M. Greiler, “Lessons Learned from Building
and Deploying a Code Review Analytics Platform,” in Proceedings of the
12th International Conference on Mining Software Repositories, 2015,
pp. 191-201.

[9] C.Bird and T. Zimmermann, “Assessing the value of branches with what-
if analysis,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, 2012,
p. 45.

[10] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and
L. Hochstein, “Peer impressions in open source organizations: A survey,”
Journal of Systems and Software, vol. 94, pp. 4 — 15, 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. TBD, NO. TBD, TBD

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]

[23]
[24]

[25]
[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

A.Bosu and J. C. Carver, “Impact of peer code review on peer impression
formation: A survey,” in Proceedings of the 2013 ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
2013, pp. 133-142.

——, “How Do Social Interaction Networks Influence Peer Impressions
Formation? A Case Study,” in Open Source Software: Mobile Open
Source Technologies, ser. IFIP Advances in Information and Commu-
nication Technology, L. Corral, A. Sillitti, G. Succi, J. Vlasenko, and
A. Wasserman, Eds. Springer, Berlin, Heidelberg, 2014, vol. 427, pp.
31-40.

——, “Impact of developer reputation on code review outcomes in
oss projects: An empirical investigation,” in Proceedings of the Sth
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2014, pp. 33:1-33:10.

A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews:
An empirical study,” in Proceedings of the 12th Working Conference on
Mining Software Repositories, 2015, pp. 146—156.

L. C. Briand, B. Freimut, and F. Vollei, “Using multiple adaptive regres-
sion splines to support decision making in code inspections,” Journal of
Systems and Software, vol. 73, no. 2, pp. 205-217, 2004.

W. M. Bukowski, B. Hoza, and M. Boivin, “Measuring friendship quality
during pre-and early adolescence: The development and psychometric
properties of the friendship qualities scale,” Journal of Social and
Personal Relationships, vol. 11, no. 3, pp. 471-484, 1994.

J. Cohen, Statistical power analysis for the behavioral sciences.
Lawrence Erlbaum, 1988.

J. Cohen, E. Brown, B. DuRette, and S. Teleki, Best Kept Secrets of Peer
Code Review. SmartBear Software, 2006.

J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find bugs.
how the current code review best practice slows us down,” in Proceedings
of 2015 International Conference on Software Engineering - Companion,
May 2015, pp. 27-28.

R. F. DeVellis, Scale development: Theory and applications.
Publications, 2011, vol. 26.

M. Fagan, “A history of software inspections,” Software Pioneers, pp.
562-573, 2002.

M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

A. Fink, The survey handbook. Sage Publications, 2003, vol. 1.

B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative Inquiry, vol. 12, no. 2, pp. 219-245, 2006.

M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

T. Gilb, D. Graham, and S. Finzi, Software inspection.
Longman Publishing Co., Inc., 1993.

L. Harjumaa, I. Tervonen, and A. Huttunen, “Peer reviews in real
life-motivators and demotivators,” in Fifth International Conference on
Quality Software. 1EEE, 2005, pp. 29-36.

E. v. Hippel and G. v. Krogh, “Open source software and the “private-
collective” innovation model: Issues for organization science,” Organi-
zation science, vol. 14, no. 2, pp. 209-223, 2003.

P. M. Johnson, “Reengineering inspection,” Communications of the ACM,
vol. 41, no. 2, pp. 49-52, 1998.

C. Johnson-George and W. C. Swap, “Measurement of specific interper-
sonal trust: Construction and validation of a scale to assess trust in a
specific other.” Journal of Personality and Social Psychology, vol. 43,
no. 6, p. 1306, 1982.

K. Lakhani, B. Wolf, J. Bates, and C. DiBona, “The boston consulting
group hacker survey,” Boston, The Boston Consulting Group, 2002.

K. Lakhani and R. G. Wolf, “Why hackers do what they do: Understand-
ing motivation and effort in free/open source software projects,” MIT
Sloan working paper, 2003, paper No. 4425-03.

Y. Lee. (2011) How Facebook ships code. [Online]. Available: |https:
//framethink.wordpress.com/2011/01/17/how-facebook-ships-code/

J. Lerner and J. Tirole, “Some simple economics of open source,” The
Journal of Industrial Economics, vol. 50, no. 2, pp. 197-234, 2002.
[Online]. Available: http://www.jstor.org/stable/3569837

C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead,
“Does bug prediction support human developers? Findings from a
Google case study,” in 2013 35th International Conference on Software
Engineering (ICSE). 1EEE, 2013, pp. 372-381.

Sage

Addison-Wesley

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]

[54]1

[55]

[56]

[57]

[58]

A. Wang, Eds.

18

M. S. Litwin, How to measure survey reliability and validity.
Publications, 1995, vol. 7.

D. J. McAllister, “Affect- and cognition-based trust as foundations for in-
terpersonal cooperation in organizations,” The Academy of Management
Journal, vol. 38, no. 1, pp. pp. 24-59, 1995.

S. MclIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 192—
201.

E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
Design Space of Bug Fixes and How Developers Navigate It,” IEEE
Transactions on Software Engineering, 2015.

A. Porter, L. G. Votta Jr, V. R. Basili er al., “Comparing detection
methods for software requirements inspections: A replicated experiment,”
IEEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575,
1995.

E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &
Policy, vol. 12, no. 3, pp. 23-49, 1999.

E. S. Raymond, “Homesteading the noosphere,” 1998.

J. K. Rempel, J. G. Holmes, and M. P. Zanna, “Trust in close relation-
ships.” Journal of Personality and Social Psychology, vol. 49, no. 1, p. 95,
1985.

P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German,
“Contemporary peer review in action: Lessons from open source de-
velopment,” IEEE Software, vol. 29, no. 6, pp. 56-61, 2012.

P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 202-212.

P. C. Rigby and D. M. German, “A preliminary examination of code
review processes in open source projects,” University of Victoria, Tech.
Rep. DCS-305-IR, January 2006.

P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th International Conference on Software Engineering, 2008, pp.
541-550.

P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering. New York, NY,
USA: ACM, 2011, pp. 541-550.

J. Robinson, L. Wrightsman, and F. Andrews, Measures of personality
and social psychological attitudes. Academic Press, 1991, vol. 1.

D. Rombach, M. Ciolkowski, R. Jeffery, O. Laitenberger, F. McGarry,
and F. Shull, “Impact of research on practice in the field of inspections,
reviews and walkthroughs: learning from successful industrial uses,”
ACM SIGSOFT Software Engineering Notes, vol. 33, no. 6, pp. 26-35,
2008.

J. B. Rotter, “A new scale for the measurement of interpersonal trustl,”
Journal of Personality, vol. 35, no. 4, pp. 651-665, 1967.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, pp. 591-611, 1965.

A. Sutherland and G. Venolia, “Can peer code reviews be exploited
for later information needs?” in Proceedings of the 31st International
Conference on Software Engineering-Companion, 2009, pp. 259-262.
L. G. Votta, Jr., “Does every inspection need a meeting?” in Proceedings
of the Ist ACM SIGSOFT Symposium on Foundations of Software
Engineering, 1993, pp. 107-114.

J. Waldo. (2009) Code reviews. [Online]. Available: https://blogs.oracle.
com/scalinggames/entry/code_reviews

M. Welsh. (2012) My love affair with code re-
views. [Online]. Available: http://matt-welsh.blogspot.com/2012/02/
my-love-affair-with-code-reviews.html

K. E. Wiegers, Peer reviews in software: A practical guide.
Wesley Boston, 2002.

C. Wohlin, M. Host, and K. Henningsson, “Empirical research methods
in software engineering,” in Empirical Methods and Studies in Software
Engineering, ser. Lecture Notes in Computer Science, R. Conradi and
Springer Berlin Heidelberg, 2003, vol. 2765, pp. 7-23.

Sage

Addison-

https://framethink.wordpress.com/2011/01/17/how-facebook-ships-code/
https://framethink.wordpress.com/2011/01/17/how-facebook-ships-code/
http://www.jstor.org/stable/3569837
https://blogs.oracle.com/scalinggames/entry/code_reviews
https://blogs.oracle.com/scalinggames/entry/code_reviews
http://matt-welsh.blogspot.com/2012/02/my-love-affair-with-code-reviews.html
http://matt-welsh.blogspot.com/2012/02/my-love-affair-with-code-reviews.html

	Introduction
	Background
	Contemporary Code Review Workflow
	Overview of Contemporary Code Review Research
	Our Previous Survey

	Research Questions
	Importance of Code Review
	Code Review Process
	Impact of Code Review on Peer Impressions

	Research Method
	Survey Design
	Participant Selection
	Pilot Tests
	Data Collection
	OSS Survey
	Microsoft Survey

	Data Processing and Analysis
	Behavioral Scale Questions
	Open-ended Questions

	Demographics
	Projects represented
	Respondent demographics

	Results
	RQ1: Why are code reviews important?
	Improve Maintainability
	Facilitate Knowledge Sharing
	Eliminate Functional Defects
	Encourage Community Building / Collaboration
	Identify Minor Errors, Typos

	RQ2: How much time is spent in code reviews?
	RQ3: How do developers decide whether to accept review request?
	Relationship with the Author
	Reputation of the Author
	Area of Expertise
	Anticipated Time / Effort to Review

	RQ4: Which characteristics indicate low quality code?
	RQ5: How do developers help improve low quality code?
	Provide Comments
	Rewrite/Fix the Code
	Provide Mentoring
	Provide Examples
	Reject Until Good
	Communicate with the Author

	RQ6: What is the impact of high quality code?
	Creates Positive Perceptions about Personal Characteristics
	Helps Build Relationships
	Encourages Future Collaborations

	RQ7: What is the impact of low quality code?
	Creates Negative Perceptions about the Work Habits
	Suggests Inexperience
	Impacts Future collaborations

	RQ8: What is code review's effect on peer impressions?

	Discussion
	Differences Between OSS and Microsoft
	Benefits of Code Review
	Peer Impression Formation
	Effects on Future Collaborations
	Effects of Perceived Expertise
	Effects of Distributed vs. Collocated Teams
	Paid vs. Volunteer OSS developers

	Threats to Validity
	Internal validity
	Construct validity
	External validity
	Conclusion validity

	Conclusion
	References

