
Iowa State University
Digital Repository @ Iowa State University

Computer Science Technical Reports Computer Science

Fall 11-5-2015

Candoia: A Platform and an Ecosystem for
Building and Deploying Versatile Mining Software
Repositories Tools
Nitin M. Tiwari
Iowa State University, nmtiwari@iastate.edu

Dalton D. Mills
Iowa State University, dmills@iastate.edu

Ganesha Upadhyaya
Iowa State University, ganeshau@iastate.edu

Eric Lin
Iowa State University, eylin@iastate.edu

Hridesh Rajan
Iowa State University, hridesh@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Tiwari, Nitin M.; Mills, Dalton D.; Upadhyaya, Ganesha; Lin, Eric; and Rajan, Hridesh, "Candoia: A Platform and an Ecosystem for
Building and Deploying Versatile Mining Software Repositories Tools" (2015). Computer Science Technical Reports. Paper 379.
http://lib.dr.iastate.edu/cs_techreports/379

http://lib.dr.iastate.edu?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/379?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Candoia: A Platform and an Ecosystem for Building and
Deploying Versatile Mining Software Repositories Tools

Software Repository Mining? There is an App for That!

Nitin M Tiwari Dalton D. Mills Ganesha Upadhyaya Eric Lin Hridesh Rajan
Iowa State University

Ames, IA
{nmtiwari,dmills,ganeshau,eylin,hridesh}@iastate.edu

ABSTRACT
Research on mining software repositories (MSR) has shown great
promise during the last decade in solving many challenging soft-
ware engineering problems. There exists, however, a ‘valley of death’
between these significant innovations in the MSR research and their
deployment in practice. The significant cost of converting a proto-
type to software; need to provide support for a wide variety of tools
and technologies e.g. CVS, SVN, Git, Bugzilla, Jira, Issues, etc,
to improve applicability; and the high cost of customizing tools to
practitioner-specific settings are some key hurdles in transition to
practice. We describe Candoia, a platform and an ecosystem that
is aimed at bridging this valley of death between innovations in
MSR research and their deployment in practice. We have imple-
mented Candoia and provide facilities to build and publish MSR
ideas as Candoia apps. Our evaluation demonstrates that Candoia
drastically reduces the cost of converting an idea to an app, thus
reducing the barrier to transitioning research findings into practice.
We also see versatility, in Candoia app’s ability to work with a va-
riety of tools and technologies that the platform supports. Finally,
we find that customizing Candoia app to fit project-specific needs
is often well within the grasp of developers.

Categories and Subject Descriptors
[Software and its engineering]: Software evolution, Application
specific development environments, Software repositories

Keywords
Analysis of software and its evolution, MSR, research to practice

1. INTRODUCTION
Over the last decade, mining and understanding software repos-

itories (MSR) research has shown significant advances in several
critical software engineering (SE) areas. Key successful research
sub-areas in MSR are: defect prediction using a) product metrics [23,
55, 7, 14, 76, 41, 74], b) process metrics such as code changes [59,
34, 43, 62, 36, 72], c) source code dependencies [90, 60], d) socio-
technical network, organization structure, and human factors [11,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’15 Austin, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

17, 58, 61, 66, 54, 86, 84, 5, 12, 45], etc.; fixing effort estimation
and suggesting fixing experts [20, 4, 10, 40, 48, 67, 52, 16, 15, 53,
8, 70]; social network analysis for software development [11, 17,
58, 61, 66, 54, 86, 84, 5, 12]; programming pattern discovery [63,
82, 50, 26, 1, 85, 18, 79, 38, 49, 47, 46, 42, 78, 56, 3, 75, 68]; spec-
ification mining [89, 81, 27, 88, 71, 51, 2, 37, 49, 22, 21, 24, 83],
etc. However, this research has not yet focussed on the question
of widely-distributing MSR tools. There are frameworks and plat-
forms that aim to ease deployment of program analysis tools [80,
73]; however, their focus is not on MSR.

There are at least three major technical challenges in transition-
ing MSR research to practice. First, most researchers, and ade-
quately so, focus on realizing their research as a program suitable
for their own experiments — there is a significant cost to converting
these prototypes into software intended for wide usage. Develop-
ing MSR tools as plugins for platforms like Eclipse can help with
that, however, the level of abstraction that these platforms provide
is still too low for MSR tools. Second, in order to be broadly ap-
plicable a MSR research prototype must integrate with a variety of
tools — version control systems (VCS) such as CVS, SVN, Git,
etc., bug databases such as Bugzilla, Issues, Jira, etc., forges such
as SF.net, GitHub, Bitbucket, etc., programming language such as
Java, Javascript, PhP, etc. Expecting such broad applicability from
every tool meant to evaluate research hypotheses may not be rea-
sonable, and may substantially increase the cost of scientific re-
search in this area. Third, usage scenarios that the researchers may
have used in their experiments may not exactly match the need for
all users of their tool, requiring users to slightly customize the tools
to fit their purpose. If the implementation of the tool is too complex
that may challenge the resolve of users to customize the tool for
their own projects. These three challenges substantially increase
the cost of research-to-practice transition in this area.

To solve these problems, we have designed a platform for realiz-
ing MSR tools that we call Candoia (pronounced can-doy-uh). Can-
doia is to MSR tools as Android and iOS are to mobile applications,
and Atom1 is to text editors. Like these platforms, Candoia pro-
vides suitable abstractions for building MSR tools and handles the
details of integration with VCS, bug databases, language parsers,
visualization, etc. Researchers prototype their research as Candoia
apps and can publish them. Practitioners install Candoia platform
and can browse through available apps, download them, and if nec-
essary customize them for their own needs. We have implemented
Candoia and make it available for download2. We have also created
an exchange for Candoia apps, and populated it with an initial set
of apps. The Candoia platform can interact with the exchange to
fetch published apps.

1Atom, a hackable text editor available at: http://atom.io
2Candoia, an ecosystem for MSR tools: http://candoia.org

1

Figure 1: Candoia Operational Overview

To evaluate Candoia’s design and effectiveness we have created
over two dozen apps inspired from MSR research in four different
areas: (1) bugs and defects, (2) software evolution, (3) teams and
project management, and (4) programming practices. Our results
show that Candoia substantially decreases the efforts required for a
research result prototyped in one experimental setting to be applied
to practice in substantially different project settings. Candoia apps
scale well to such large projects as Hadoop, JQuery, and SLF4j.
Last but not least, we find that customizations of provided apps, to
suit a practioner’s purpose better, are easy to make.

We now describe Candoia and explore its advantages. First we
present the Candoia platform in §3. §4 presents our studies of ap-
plicability, adoptability, customizability, interoperability, and scal-
ability. §5 describes related work and §6 concludes.

2. MOTIVATION
Today we have a ‘valley of death’ between significant innova-

tions in the mining software repositories research and their deploy-
ment in practice If these innovations can be made more accessible
to practioners, they can contribute to overall improvement in soft-
ware development practices and lead to higher software quality. To
illustrate the problem, consider a research team that has a research
idea for recommending file changes based on change history. Typi-
cally the research team would create an experiment setup including
a dataset for testing their idea. Say for instance, they setup an exper-
imental dataset consisting of several open source Java projects from
SourceForge3. The research team would then build an experimental
infrastructure for reading SVN repositories, Java source code, and
organization data from SourceForge for these projects.

3SourceForge is a repository for open source projects (http://sf.net).

Imagine that the research team has successfully verified their hy-
pothesis, published their research results, and is now interested in
broad applicability of their ideas in practice. This process today is
very intimidating. The team would need to enhance their experi-
mental infrastructure to include support for common version con-
trol systems (VCS), e.g. Git, CVS, etc. to allow practioners using
these VCS to use the research result. If the team is interested in
making their research results available to users of other languages,
those languages will need to be supported. Visualization support
would be needed to communicate results. Last but not least, to
reach users of different repositories e.g. GitHub, added support for
these repositories will also be desirable. These needs together sig-
nificantly increase the cost of transitioning research to practice.

There is a similar challenge at the other end — adopting research
in practice. Imagine that a brave research team has invested efforts
in developing their research tools with broad applicability in mind,
and make it available as an open source tool. The resulting MSR
tool’s complexity will invariably match its feature richness. How-
ever, each practioner’s use case can differ slightly from that antici-
pated and implemented by the tool, e.g. data sources may be named
and organized differently (e.g. the name of the master branch in
SVN), threshold values may be different (e.g. searching for top-
2 as opposed to top-5 Javascript developers for a critical project
deliverable), the project might call for a different visualization of
results (e.g. bar vs. line chart), the project might need a different
set of keywords (e.g. fixed vs. similar meaning word in spanish to
search for fixing revisions), etc. To accomodate these needs, a tool
can provide configuration files that the practioner can edit and read
these configuration values into its implementation, but building that
support further increases the complexity and the time investment
needed from research team.

2

Figure 2: An Overview of Candoia Platform’s Architecture

3. CANDOIA PLATFORM & ECOSYSTEM
We have designed and implemented a platform that we call Can-

doia to solve these problems. Candoia is aimed at significantly de-
creasing the cost of transitioning MSR research to practice. The
main features of Candoia are inspired from existing successful plat-
forms and ecosystems, namely the Android and the iOS platform,
but bring similar benefits to fruition for MSR tools. Figure 1 shows
the operational overview of the Candoia platform and ecosystem
and Figure 2 shows the detailed architecture of the platform.

To illustrate Candoia’s properties, let us reconsider our research
team that has a research idea for recommending file changes based
on change history. The research team realizes their ideas as a Can-
doia app. A Candoia app consists of four parts: the MSR logic, the
structure description of the app, the layout description for the vi-
sualization, and glue code. Each of these parts are relatively short
because they are written using languages designed specially for that
purpose (more on that later in this section). The research team can
configure their own Candoia platform to add URLs for SourceForge
projects that they wish to include in their experimental dataset. The
platform then downloads and creates a cached version of selected
projects for the experiments4. The research team can also configure
the preferences of the platform to select their local projects. The re-
search team can then run their experiments and visualize results.
So, if desirable, a research team can perform both their research
experiments within the Candoia platform and use it as a vehicle for
dissemination and increasing broader impacts. Alternatively, they
can also first focus on the MSR logic and defer work on other parts
of a Candoia app until later. The MSR logic code focuses only on

4Downloading and running apps on remotely hosted projects is
available for both SourceForge and GitHub as of this writing.

essential parts of the research idea because support for other com-
monly used functionalities such as iterating over revisions, travers-
ing abstract syntax trees, etc., is provided by the Candoia platform.

After successfully validating their hypothesis, if the research team
is interested in broadly disseminating their research results they can
upload their Candoia app with the prespecified structure in a Git
repository5. Conforming to the prespecified app structure is cur-
rently required by the platform. Since the platform includes sup-
ports for common VCS, languages6, visualization, and remote repos-
itory access these hurdles for research-to-practice transition are re-
moved. The research team can then list the URL of their app’s Git
repository on Candoia’s exchange7 to publish their app and dissem-
inate their research tool. This is as simple as filling out a single-
page short form.

A practioner can download and install the Candoia platform on
their computer system, and configure their platform to point it to
their project’s repository. This is as simple as pasting a local direc-
tory name or remote URL. When the Candoia platform is config-
ured with a new repository, it caches information from the version
control system, bug repository, and other project-related metadata
(if such information is available).

The practioner can also browse and add Candoia apps to their
platform. These apps can then process any project that is available
within the platform. This removes the need to customize each MSR

5Currently works with GitHub (http://github.com), but support for
other repositories is certainly possible.
6Java, Javascript, and PhP at the time of this writing.
7Currently Candoia’s exchange provides a categorized listing of
apps. In future, it can include features such as ratings, comments,
etc, but for now we have focused on functional components.

3

tool to point to project-specific data source, rather it is done once
for all apps. If necessary, a practioner can also view the structure
and parts of the app and edit them8. Since these parts have smaller
number of lines of code (because majority of the concerns are im-
plemented and provided by the platform), practioners may be more
successful in customizing them. Indeed, we provide some prelim-
inary evidence in §4 that shows ease of customizability. Another
important benefit is that a practioner can inspect the code for MSR
logic to ascertain if the app satisfies their intended purpose. These
benefits make the Candoia platform a positive step forward toward
bridging the research-to-practice gap for MSR results.

Technical Challenges.
There were several technical challenges that had to be overcome

to realize the overarching research goals of the Candoia platform.

1. How to make it easier to describe various functionalities of a
Candoia app, especially MSR logic and visualization?

2. How to facilitate ease of customization of Candoia apps by
practioners?

3. How to secure a practioner’s system against third-party Can-
doia apps, and secure one app from other apps?

4. How to enable cross platform deployment of Candoia with
familiar look-and-feel across platforms?

5. How to facilitate integration of a large number of disparate
data sources and sinks within the Candoia platform?

Our key insight to address the first two technical challenges was
to select a reasonably well-known domain-specific language for ex-
pressing each functionality — with significant number of abstrac-
tions for easily expressing that functionality. For instance, for visu-
alization and layout of Candoia apps we selected the well-known
combination of HTML and CSS, for describing the structure of
Candoia apps we selected JSON, for describing the MSR logic we
selected Boa [25], and for writing glue code to manage interaction,
updates, and data exchange in an app we selected Javascript.

Structure description of a Candoia app.
The structure description of a Candoia app is described by its

.json configuration file. An example structure description ap-
pears below:

1 {
2 "name": "example-app",
3 "version": "0.1.0",
4 "author": "MSR Guru <msrATguru.com>",
5 "description": "An example Candoia app",
6 "main": "main.html",
7 "homepage": "https://github.com/user",
8 "repository": {
9 "type": "git",

10 "url": "https://github.com/user/example.git"
11 },
12 "keywords": [
13 "example",
14 "candoia",
15 "application",
16],
17 "icon": ["app.ico", "app.png", "app.gif"]
18 }

Some of these fields are required (for example, the "main"
must point to a valid .html file within the repository). The rest
of the structure can be application-specific. (including organization
8Currently closed-source apps are not supported.

to it’s own resources/files, and a key/value store on the user
machine.) The Candoia website also uses the .json file to auto-fill
fields that describe the app.

The layout and visual appearance of an app is described using
HTML and CSS. Within an app’s HTML code, the app developer
is able to add any Javascript code or link to any Javascript or CSS
files they want (including 3rd party libraries).

Security Architecture of the Candoia platform.
A key concern for Candoia is to allow apps to communicate with

the Candoia platform in a safe way, and to allow access to prac-
tioner’s data on a need-to-know basis. We also need to prevent apps
from corrupting each other.

We have solved this technical challenge (#3) as well as our cross
platform deployment challenge (#4) by building on top of the Chro-
mium platform [77]. Chromium is an open source, cross platform
browser. Candoia builds on the process architecture of Chromium,
where each window runs in an isolated process. In Candoia each
app runs in its isolated process, and it can communicate with a spe-
cial process that we call controller process via inter-process com-
munication (ipc). The controller process mediates interactions with
the file system, window data, etc.

Within the scope of the application, we have exposed a global
variable (window.api) which allows them to communicate in a
safe way with important tools that the Candoia platform provides
via the controller process. An example of such communication ap-
pears below where an app is asking the controller process to run
a Boa program and show its output in the content window. This
would be a typical ‘getting started’ step for a Candoia app, because
a researcher would first focus on their logic.

1 <h2> My First Candoia Application </h2>
2 <div id=’content’></div>
3 <script>
4 var data = api.boa.run(’myprog.boa’);
5 document.getElementbyId(’content’).
6 innerHTML(JSON.stringify(data, null, ’ \ t ’)) ;
7 </ script >

This assumes that app also has a file called ’myprog.boa’, which
is also a valid Boa program.

Libraries available to a Candoia app.
A Candoia app can access several libraries that are exposed to it

through the window.api variable (in a safe way). These include:

• Running MSR queries (api.boa)

• Reading (not writing) files within app (api.fs)

• Saving arbitrary data between instances (api.store)

• Getting its own package info such as current version (api.meta)

• Inter-Process-Communcation handle (api.ipc)

• Using pre-made views/graphs. (api.view)

The api.store is used to save data between multiple runs of
the same app. An example appears below.

1 var now = new Date;
2 api.store.save(’ last−ran’, now);
3 var data = api.store.get(’ last−ran’);
4 console.log(data); // " Fri Aug 28 2015 21:23:05 GMT−0500 (CDT)"

4

Writing a Candoia App’s MSR Logic.
A Candoia app can access the VCS data, AST data, issue data,

team and organization data by way of its MSR logic code. The
Javascript glue code is not permitted to directly access this data, but
it can access results. Candoia’s language for writing an app’s MSR
logic is an extension of the Boa language [25]. Boa is a domain-
specific language specifically introduced for MSR, and its previ-
ously proposed implementation runs within an infrastructure hosted
at the URL http://boa.cs.iastate.edu. As we discuss
later, we build on the Boa language specification and have enhanced
it further. We have also created an entirely new implementation of
the DSL to run on a single node as opposed to a Hadoop cluster,
which was the primary execution target of the previous work [25].

Boa language provides domain-specific types for representing
project’s metadata, revision history, as well as source code. For
completeness, we present an example from the Boa website below.

1 # what are the churn rates for all projects
2 p: Project = input;
3 counts: output mean[string] of int;

5 visit(p, visitor {
6 before node: Revision ->
7 counts[p.id] << len(node.files);
8 });

Line 1 in this program is a comment, line 2 declares that this pro-
gram accepts a project as input, line 3 declares that this program
produces a map of int as output using the mean aggregator. Boa
programs can use domain-specific types like Project. On line 5-
7 is the logic of this program that specifies a traversal of the data
organized as a tree rooted at p. The code on line 6-7 runs when this
traversal encounters a data element of type Revision, and if so
the code on line 7 says to output the number of files revised in that
revision to the aggregator counts along with the id of the project.
The counts aggregator aggregates all received values, computes
the mean of those values, which is the output of this program. As
can be seen from this code, the DSL abstracts away details such
as reading project information, reading revision information, data
traversal code, data aggregation code, etc, and thus these programs
are much shorter, and potentially easier to customize (although cus-
tomizability of Boa programs has not been demonstrated thus far).

We have extended the set of domain-specific types provided by
Boa to also include new types for representing issues. The type for
issues provides several kinds of information e.g. the title of the is-
sue, the kind of issue, its priority, its severity, whether it is assigned,
the person that has opened, closed, created, or updated this issues,
and a list of comments made about the issue.

Candoia Evaluation Engine.
The previous work on the Boa language has created an imple-

mentation of the DSL that runs on a Hadoop cluster to be able to
process thousands of open source projects from a fixed dataset. For
this work on Candoia, we needed another implementation that (1)
could run on a single node, (2) be able to read and process local
and remote projects, and (3) provide the Candoia platform fine-
grained control over its execution, e.g. to start and stop. To satisfy
these three goals, we have created an interpreter-based realization
of Boa, which runs on a single node. This realization supports and
provides all of the logic that is typically abstracted away in Boa pro-
grams such as reading project information, reading revision infor-
mation, data traversal code, data aggregation code, domain-specific
functions, etc. This realization also supports our security goals be-
cause the platform maintains control over the program counter at
all times, and user-defined functions never have control.

This realization was tested using test cases for the original Boa
implementation and their expected results. An additional advantage
of this realization is that it could be used to run Boa programs out-
side the Boa infrastructure, which was not possible previously.

Candoia Data Integration Components.
The Candoia platform provides integration with several data sou-

rces ranging from local and remotely hosted version control sys-
tems, code written in various languages, four different bug reposito-
ries (Bugzilla, Jira, Git Issues, and SourceForge tickets), and team
and user data for a project. Like Boa we use Protocol Buffers to
store data, but compared to Boa in Candoia platform we provide
integration with several more data sources. Protocol buffers are a
data description format developed by Google that are stored as bi-
nary messages. This format is designed to be compact and fast to
parse, compared to other formats such as XML. Messages are de-
fined using a struct-like syntax and a compiler is provided which
generates Java classes to read and write messages in that format.

Candoia Exchange.
Candoia exchange, a web platform for sharing Candoia apps, is

an important aspect of this work. As mentioned previously, our cur-
rent prototype is a web-based categorized listing of apps that pro-
vides information about their Git URL as well as meta-information
about the app itself. A Candoia platform can connect to this ex-
change to gather information about available apps.

4. EVALUATION
Our first study is about applicability of Candoia infrastructure,

where we show how researchers and practitioners can write Can-
doia apps for mining their project management artifacts. Our sec-
ond study is about adoptability of research using Candoia infras-
tructure, where we show that researchers and practitioners can eas-
ily adopt research prototypes proposed by other researchers (ex-
pressed as Candoia apps) without much efforts. Our third study is
about customizability and interoperability of expressing research
prototypes using Candoia. This study shows that customizations
such as enhancing the research prototype, applying the research
prototype to different datasets, etc, can be performed without much
efforts. Finally, we perform a study of scalability that shows Can-
doia platform’s applicability on large projects.

4.1 Applicability
Our claim is that interesting mining research tasks and hypothe-

sis can be expressed and evaluated using Candoia platform’s capa-
bilities. To evaluate the applicability of Candoia, we have created
apps for a set of mining research tasks and hypothesis that were of
interest to software engineering practitioners (includes hypothesis
that were previously proposed by researchers).

Table 1 describes our list of mining research tasks and hypoth-
esis categorized into four categories: I) Bugs, II) Software Evolu-
tion, III) Project Management, and IV) Source code analysis and
Programming practices. The Candoia apps for these tasks are exe-
cuted on a set of widely known open-source projects listed in Fig-
ure 3 (hereon called test projects). The configuration of the machine
used in our experiments consists of an 8-core system (1.6GHz Intel
Core i5 Processor) with 8GB 1600MHz DDR3 RAM, 1536MB In-
tel HD 6000 Graphics card running on OS X Yosemite 10.10.2 and
Java 1.8.0_45 with default max heap size. Table 1 shows the exe-
cution times of running various Candoia apps on test projects. We
haven’t spent any time on optimizing these apps for performance
yet, so further efficiency gains can be expected in future. More de-

5

Table 1: Several Candoia apps with their execution times (in seconds).
Candoia App Execution time (s)

I. Bugs Tomcat Hadoop JUnit SLF4j Bootstrap Nodejs Grunt JQuery PMD JEdit

1 Will-never-be-fixed Bugs Detector
(Reports on unreproducible or wontfix bugs in project) 30.68 110.53 5.99 2.69 40.51 149.02 2.11 10.13 20.67 47.55

2 Null Detector
(Checks the improper use of null) 33.07 152.42 5.86 3.59 4.87 26.3 1.16 3.30 35.86 89.43

3
Check Double-checked
(Checks and warns against the use of
double cheked locking idiom)

17.04 74.03 3.37 1.64 4.23 24.4 3.04 1.19 15.02 55.46

4
Wait-Notify Police
(Checks and warns against improper usage of
wait-notify features)

8.17 28.44 2.37 1.23 2.58 12.28 1.87 0.94 8.98 23.14

5 Null Checks Revisions
(Identifies bug fixing revisions that added null checks) 3.59 8.15 1.46 2.10 4.72 23.49 5.02 1.47 3.83 5.21

II. Software Evolution

6 Hot Files
(Lists files that went through most revisions) 28.73 114.29 5.95 26.23 35.7 124.7 2.26 10.95 19.11 57.24

7 Impactful Commits
(Lists commits that involved a large number of files) 36.10 124.19 7.84 4.03 43.9 108.31 2.92 12.54 23.29 48.93

8
Commit Blame Assignment
(Commit blame assignment based on
increase in repository size)

60.84 163.36 9.82 4.74 61.96 189.39 3.18 19.64 32.42 89.58

9
Revision Watcher
(Provides details about latest revision, which
includes number of files modified, revision date etc.)

32.97 95.11 7.01 3.15 36.90 100.88 2.61 12.20 20.25 48.16

10 Developer Activity Checker
(Provides details about developer’s last commit) 42.71 139.87 11.8 9.13 48.15 119.24 8.25 17.68 28.41 92.68

III. Project Management

11 Top Performers
(List top 5 developers who have made most revisions) 31.7 111.64 5.44 2.63 42.19 137.44 2.54 11.38 22.01 46.42

12
Module-developer Mapper
(Provides the mapping of modules to developers.
Also provides developer and revision information.)

37.29 127.62 7.16 3.94 46.49 171.11 2.56 12.09 24.82 53.00

13 NOA Calculator
(Computes number of attributes (NOA)) 5.01 19.39 1.77 1.08 2.34 9.37 0.69 1.38 5.45 10.29

14 NPM Calculator
(Computes number of public methods (NPM)) 1.05 23.84 2.07 6.52 2.23 9.15 0.75 1.59 6.07 6.15

15
Commit Log Police
(Checks and identifies developers writing empty
or one word commit logs, e.g. fixed)

31.30 110.71 6.41 2.57 35.79 128.77 2.41 10.92 34.90 46.82

IV. Source code analysis & Programming practices

16
Convention Checker
(Checks naming conventions,
e.g. class names should start with an uppercase letter)

10.74 37.92 0.73 1.85 2.50 18.42 1.25 0.39 15.28 22.79

17
Serialization Police
(Checks serialization-related properties,
e.g. serialVersionUID)

7.35 23.31 3.51 1.54 2.58 9.56 0.79 1.65 33.00 16.98

18
Constant Enforcer
(Checks proper declaration of constants,
e.g. static field public but not final)

7.42 28.68 2.86 1.28 2.55 9.91 0.71 1.49 9.43 15.74

19 Deadcode Detector
(Identifies locations of deadcode) 18.22 110.78 4.77 2.20 4.33 31.66 1.11 4.42 21.62 77.06

20 Flawed Logic Detector
(Checks and warn against deeply nested if statements) 11.95 43.57 2.87 1.41 2.65 13.91 0.93 2.07 11.48 33.89

21
Popularity Metrics
(Computes various metrics, such as CK Metrics (NOC
WMC), OO Metrics (NOPM, FanOut, LOC) etc.

30.45 68.54 3.78 2.07 2.37 14.88 0.87 1.83 31.31 44.37

tailed descriptions of these apps along with their source code is
made available via the Candoia website2 for interested readers.

4.1.1 Interesting Results
Our applicability claim is that interesting mining research tasks

can be expressed and evaluated using the Candoia platform. We
evaluate this claim by running the Candoia apps listed in Table 1
on test projects and discuss some of the interesting results that our
apps produced as a result. Note that, analyzing the results to draw
conclusions is not our objective.

Null Checks Revisions. This app identifies bug fixing revisions
that added null checks. We found a large number of such revi-
sions in test projects. Figure 4 shows the relative number of null
checking revisions. For some projects, the frequency of these fixes
is quite significant, and for others e.g. Hadoop its quite surprising
to see very low number of fixes.

Top Performers. Researchers have studied the developer con-
tribution and other organizational metrics to analyze their influence
on software quality. In the same vain, this app lists developers based
on their contributions in terms of commits. Figure 5 shows the de-

6

Projects Size
(KB) #Files PL

#Files #LOC PL
#LOC #AST #Revs #Bugs #Devs

Tomcat 8.0.24 4900 2633 2071 366459 285891 1209368 15493 3023 29
Hadoop 2.7.1 3300 6807 6287 1758594 947891 7490096 11529 10333 49

JUnit 4 68 421 395 29809 26456 164754 2066 148 121
SLF4j 1.7.12 18200 1051 222 151676 137650 67867 1330 332 53

Bootstrap 3.3.5 2500 281 54 61513 28447 197348 11519 213 700
Node.js 0.12.7 542 6006 2209 1533926 201215 1759485 10762 955 30

Grunt 0.4.6 680 39 33 3509 3458 22172 1312 155 20
JQuery 2.1.4 20100 228 155 40626 38429 160602 5882 165 86
PMD 5.3.3 2700 1757 1232 150435 73312 1330824 7947 1394 77
JEdit 5.2.0 3100 1004 573 214126 118492 580194 24025 3926 7

Figure 3: Evaluation projects with details.

Figure 4: Null check revisions found in open-source projects
using Candoia app.

Figure 5: Developer contributions.

veloper contributions for each project in our dataset. Observe that
in Grunt project most of the commits are done by a single devel-
oper, in Bootstrap, SLF4j and Tomcat more than 50% of the overall
commit is done by a single developer. Hadoop project has equal
contributions from many developers.

Table 2: Organizational metrics
NOE Number of developers who contributed to the component
EF Component edit frequency
DMO Group of developers with 70% or more edits to component

Nagappan et al. [61] proposed a set of organizational metrics to
analyze the influence of organizational structure on software qual-
ity. We have created a Candoia app that computes a subset of these
metrics shown in Table 2. Nagappan et al. have shown that soft-
ware quality can be analyzed using the values of these metrics.
For instance, the metric NOE that counts the number of develop-
ers who contributed to the component is used to reason about the
software quality as follows. The more people who touch the code
the lower is the quality. In other words, higher the NOE the lower
is the quality (more bugs). Similarly other metrics have influences
on the software quality. Our Candoia app, which implements this
technique outputs the values of the organizational metrics for the
project. Using the values of these metrics, one can related it to the
bugs in their project. Figure 6 shows the values for NOE, EF and
DMO metrics along with the number of bugs in the projects. For
quite a few projects there is a strong correlation between bugs and
the EF metrics.

Figure 6: Influence of organizational metrics NOE, EF and
DMO on software quality.

Relative Code Churn Metrics. Nagappan and Ball [59] hy-
pothesized that increase in relative code churn measures is accom-
panied by an increase in system defect density. Inspired from this
work, we have built Relative Code Churn Metrics app that com-
putes relative code churn measures and outputs the variation in
these measures over the revisions. Figure 7 shows this output for
our test project SLF4j. Figure 7 shows that all measures were steady
during project revisions. Using the hypothesis of Nagappan and
Ball, we can say that the defect density of SLF4j was consistent
throughout its development. The development of this app is still in
progress, and we have not been able to test it for all of our projects,

7

Figure 7: Plot of relative code churn metrics over project revi-
sions using our Relative code churn metrics app.

which is the main reason for not including it in Table 1.
Popularity Metrics. Researchers have found that measures of a

class often indicates its popularity [19, 5]. These measures include
method count, number of attributes, couplings etc. Researchers have
proposed a number of metrics for indicating the popularity of classes.
For instance, Chidamber and Kemerer [19] proposed CK Metrics.
Inspired from these metrics, we have built Popularity Metrics app
that computes CK Metrics (NOC, WMC), OO Metrics (NOPM,
FanOut) etc. The output of Popularity Metrics indicates popular-
ity of classes. For instance, high NOC (NOC is number of im-
mediate sub-classes of a class) indicates high reusability, requires
more testing and fewer defects due to high reuse. A high WMC
(weighted methods per class) has been found to lead to more faults.
These were evident in the output of Popularity Metrics app for our
test projects. For instance, output for PMD project, indicated that
JavaParser class had higher WMC compared to all other classes (58,
recommended WMC is at max 24). This indicates that the JavaParser
class is expected to have more detects, which was indeed the case
when we cross checked Hot Files app results, where JavaParser was
in the top five revised files.

A number of Candoia apps are written to detect problems in
programming practices (Convention Checker, Serialization Police,
Constant Enforcer), concurrency (Check Double-checked, Wait-notify
Police), logic (Flawed Logic Detector), optimization (Deadcode
Detector), bad assumptions (Null Detector) etc. Using these apps
we found that, our test projects strictly abide to the coding conven-
tions. For instance, Convention Checker, for identifying the prob-
lems in coding convention returned no result for these test projects
(but worked for intentionally introduced convention violations). This
is expected, as well maintained projects use good programming
practices. Candoia apps that checks for bug patterns didn’t find
double-checked locking or bad wait-notify idioms, but found in-
stances of non-null assumptions where the methods do not check
for null arguments (in Tomcat, Hadoop, JUnit projects). Candoia
App Flawed Logic Detector found 300 instances of using if-else
-if nesting with nesting levels more than 10 in Apache Tomcat.

In summary, various interesting research prototypes can be ex-
pressed as Candoia apps, evaluated using the Candoia platform and
shared with researchers and practitioners.

4.2 Adoptability
The goal of this study is to demonstrate that SE practitioners can

adopt a research prototype as-is to their own project environment
using the Candoia platform.

In this study we conduct a set of experiments consisting of run-
ning the Candoia apps of research prototypes listed in Table 1 on
different project environments (or project configurations). Project
environment defines the version control system, programming lan-

Table 3: Different project environments used in our adoptabil-
ity experiments.

Projects VCS PL Bug
Tracking

Tomcat 8.0.24 SVN Java Bugzilla
Hadoop 2.7.1 GIT Java Jira

JUnit 4 GIT Java Git Issues
SLF4j 1.7.12 GIT Java Jira

Bootstrap 3.3.5 GIT JS Git Issues
Node.js 0.12.7 GIT JS Git Issues

Grunt 0.4.6 GIT JS Git Issues
JQuery 2.1.4 GIT JS Git Issues
PMD 5.3.3 GIT Java SF Tickets
JEdit 5.2.0 SVN Java SF Tickets

guage, bug tracking and information about other supporting tools.
Table 3 lists different project environments in our test projects.

Our claim is that, being able to run Candoia apps in different
project environments without requiring to change the research pro-
totype (Candoia app) shows that research prototypes can be eas-
ily adopted. Table 1 shows the execution times of various Can-
doia apps. Running the Candoia apps listed in Table 1 on different
project environments did not require any changes to the app. This
demonstrates that research prototypes (expressed as Candoia apps)
can be easily adopted.

4.3 Customizability and Interoperability
Our claim is that small customizations of a Candoia app to suit

project’s need better are easy. For demonstrating, we performed a
user study as described below.

User study setting. We gathered a group of eight Candoia app
developers with varying expertise. We determine the developer ex-
pertise by asking several questions such as, how many years of ex-
perience do you have with GIT/SVN/CVS/Perforce?, how much ex-
perience do you have configuring, building and installing tools?
etc. We then asked the developers to customize a Candoia app pro-
vided to them. Each developer performs the tasks described in Ta-
ble 4 (in order).

Table 4: Customization task steps
#1 Answers the questionnaire about their background

#2 Selects a Candoia app and a project configuration
from the list of project configurations

#3 Runs the Candoia app on the project configuration

#4 Customizes the Candoia app based on the
customization requirement provided to them

#5 Re-runs the customized Candoia app on the previously
selected project configurations

#6 Also runs the customized Candoia app on a new
project configuration

#7 Answers the questionnaire at the end of the task.

In our customization user study, developers are asked to select
a Candoia app of their interest from the following three Candoia
apps: i) Will-never-be-fixed Bug Detector, ii) Hot Files and iii) NOA
Calculator.

Task #1. Customizing Will-never-be-fixed Bug Detector. This
app reports on unreproducible or wontfix bugs in the project. The
customization task is to include the duplicate bug reports as well in
the result.

8

Task #2. Customizing Hot Files. This app lists files that went
through most revisions. The customization task is to apply year fil-
ter to list hot files in year 2010.

Task #3. Customizing NOA calculator. This Candoia app com-
putes a software metric NOA (number of attributes per type). The
customization task is to compute NOA per revision. This customiza-
tion task will help one to analyze how NOA changed over project
revisions.

The following three project configurations were used in our ex-
periment:

Project VCS PL Bug Tracking
1 Bootstrap 3.3.5 GIT JS Git Issues
2 JUnit 4 GIT Java Git Issues
3 Tomcat 8.0.24 SVN Java BugZilla

These project environments helps us ensure that customized Can-
doia apps are also adoptable. As part of our customization task, step
#6 asks the developers to run their customized Candoia app on a
new project configuration that was not used before.

Observations. We recorded developer responses to background
questionnaire and Candoia experience questionnaire. We also recorded
the time they took to complete the customization task. Figure 7
shows the recorded responses.

B1 Industry experience?
B2 GIT/SVN/CVS/Perforce experience?
B3 BugZilla/Git Issues experience?
B4 Configure, build and install tools experience

0-1years, 1-2 years, 2-4 years, more than 4 years

Table 5: Developer background questionnaire.

E1 How easy or difficult it is to run a Candoia app
on your project?

E2 How easy or difficult it is to customize?

E3 How easy or difficult it is to run your customized
Candoia app on a different project?
0-Very Easy, 1-Easy, 2-Moderate, 3-Difficult, 4-Complex

Table 6: Candoia customization experience questionnaire.

Table 7: Responses recorded from eight developers. The back-
ground questions B1-B4 is described in Table 5 and the Can-
doia experience related questions are described in Table 6.

Developer Background Candoia
Experience

Task
time

B1 B2 B3 B4 E1 E2 E3 (min)
1 4 3 1 1 0 1 1 12
2 0 4 1 4 1 2 1 30
3 2 1 1 1 0 2 0 44
4 2 2 1 1 1 1 0 16
5 1 3 1 2 2 1 1 15
6 1 1 1 1 1 0 1 13
7 1 1 1 1 1 1 1 15
8 1 2 2 4 0 2 0 40

From Table 7 it can be seen that developers with different lev-
els of experiences in terms of industry experience, GIT/SVN/CVS

tools experience and support tool experience, are considered. Ex-
cept one developer all others found it easy to run the Candoia app
on their selected project (E1) and run the customized Candoia app
on a new project (E3). However, three of the eight developers found
it difficult to perform the customization task (developers #2, #3 and
#8), which is reflected in the Candoia experience question E2 and
the time they took to complete the task. These developers men-
tioned the hurdles they had in the comments section of their re-
sponses. Lack of MSR expertise and lack of debugging facilities
were the two main hurdles for these developers. Apart from these
three developers, others could finish the customization task in about
15 minutes. In these 15 minutes, developers were able to run the
Candoia app of their selection on their project, customize the app
and re-run the app on a new project (that has different configuration
than the original). In summary we believe that this study is a good
smoke test of Candoia’s usability, customizability and adoptability.

4.4 Scalability
We evaluate scalability of Candoia using the dataset previously

described in Figure 3. This dataset consists of ten popular projects
with project data sizes varying between 3MB to 600MB.

Figure 8: Scalability of Candoia

Figure 8 shows the scalability of Candoia, where we plot the ex-
ecution times of various Candoia apps for our test projects. The
X-axis shows project sizes in log-scale. From this chart we can ob-
serve that the running time of these apps does increase with larger
project size, however, even for the largest project all apps are able
to complete their tasks in 3 minutes or less. Future work on the
Candoia platform as well as on the apps will focus on improving
scalability as one of our key goals.

5. RELATED IDEAS
Our idea of a platform and an ecosystem for bridging the gap

between MSR research and practice is new; however, we draw in-
spiration from a rich body of work in this area. In terms of its fo-
cus, the Candoia platform is closer to Bevan et al.’s Kenyon [9],
Bajracharya et al.’s Sourcerer [6], Gousios and Spinellis’s Alitheia
Core [32, 31], Howison et al.’s FLOSSMole [39] and different from
Boetticher et al.’s PROMISE Repository [69], González-Barahona
and Robles’s open-access data repositories [29], Black Duck Open-
Hub (aka Ohloh) [13], GHTorrent [30, 33], Ossher et al.’s Sourcer-
erDB [64], the SourceForge Research Data Archive (SRDA) [28],
and Boa [25]. The former set of approaches provide frameworks for
MSR, whereas the latter set of approaches provide a repository of
datasets from open source projects, which eases MSR tasks because
researcher’s do not have to collect and curate datasets [57]. Both
Kenyon and Sourcerer define database schemas for metadata and
source code and provide access to this dataset via SQL. Later on

9

Grechanik et al. [35] have also taken this approach. Their approach
easily supports joins on the data, whereas APIs for writing Candoia
apps do not currently have support for join. Furthermore, Candoia
also provides revision information, access to fine-grained program
elements, support for multiple languages, issue, and personnel data.
Compared to Boa, which also provides revision information and ac-
cess to fine-grained program elements but on a very large, but fixed
dataset from open source repositories, Candoia provides facilities
to analyze a developer or organization’s private projects. Boa also
does not support source data from multiple languages, issue data,
and team data as of this writing.

Alitheia Core’s goal is to provide a highly extensible frame-
work for analyzing software product and process metrics on a large
database of open source projects’ source code, bug records and
mailing lists. Applications using Alitheia Core are written using
Java and use built-in plug-ins and/or create new plug-ins to com-
pute their desired metrics. Alitheia Core also abstracts raw data
into object-relational entities and includes source code revisions as
in our framework. However, the main purpose of GHTorrent and
Alitheia Core is different from Candoia. While Alitheia Core fo-
cuses on software metrics and GHTorrent focuses on event streams,
Candoia provides fine-grained program elements, i.e. AST nodes
and mechanisms for source code traversal. Similarly, FLOSSMole
gathers metadata (e.g., project topics, activity, statistics, licenses,
developer skills etc), whereas Candoia also provides access to source
code and revision history.

Pinto et al.’s Groundhog [65] is an infrastructure for download-
ing projects from SourceForge, analyzing the source code, and col-
lect metrics from these projects. It can facilitate learning the Java
open source projects hosted by SourceForge. It does not cover other
popular programming languages, such as Javascript, does not study
other source code repositories, e.g., Github and Google Code, and
does not have support for issues and team data. Also the Groundhog
infrastructure cannot be used to study the evolution of the projects.

Also, closely related to Candoia is work on Soot, a program
analysis framework [80]; LLVM, a compilation framework [44];
Tricorder, a program analysis ecosystem and its open source im-
plementation SHIPSHAPE [73], and Joern [87], a platform for ro-
bust analysis of C/C++ code. All of these framework, except Tri-
corder and Joern which are recently emerging but showing signif-
icant promise, have had success in bridging the gap between re-
search and practice. While Soot, LLVM, Tricorder, and Joern focus
on program analysis and compilation, Candoia focuses on mining
software repositories, with emphasis on software evolution.

Candoia is related to Android, iOS platform, and Atom1 platform
in terms of its approach, but has different goals.

6. CONCLUSION AND FUTURE WORK
Over the last decade Mining software repositories research has

produced a large number of significant results that can help soft-
ware engineering in practice. There is, however, a valley of death
between these inventions and their deployment in practice. In this
work, we present Candoia, a platform and an ecosystem to ease
transition of MSR research into practice. We have implemented
both the Candoia platform and the Candoia ecosystem, which al-
lows researchers to develop their research as apps and publish them.
We have already developed over two dozen apps in four different
categories. Our evaluation demonstrates that Candoia substantially
reduces the cost of preparing MSR ideas for use in practice. The
need to provide support for a wide variety of tools and technologies
e.g. CVS, SVN, Git, Bugzilla, Jira, Issues, etc, to improve applica-
bility is mitigated. Candoia also makes using same apps for variety
of project configurations easier. Furthermore, small customizations

of a Candoia app to suit project’s need better are easy.
In the future, we plan to integrate additional tools and technolo-

gies with the Candoia platform to further improve its applicability.
We believe that the main challenge to that end would be define ex-
tensible interfaces that can allow us and others to plugin support
for additional tools. We are also very excited about new apps that
us and others can develop for the platform. Last but not least, we
plan to further improve our evaluation engine to decrease app run-
time and improve scalability.

Acknowledgment
This work was supported in part by the US National Science Foun-
dation under grants CCF-15-18897, CNS-15-13263, and CCF-14-
23370. Ramanathan Ramu helped with the Candoia exchange web-
site, and Trey Erenberger helped with the Candoia frontend code.
Robert Dyer helped explain semantics of Boa’s generated code,
and Hoan Nguyen helped explain VCS libraries. The authors would
also like to thank Tien N. Nguyen, Robert Dyer, Hoan A. Nguyen,
and Kathryn Stolee for feedback on these ideas.

7. REFERENCES
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to
specifications. ESEC/FSE ’07, pages 25–34. 2007.

[2] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of
interface specifications for Java classes. POPL ’05, pages
98–109. 2005.

[3] G. Ammons, R. Bodík, and J. R. Larus. Mining
specifications. POPL ’02, pages 4–16. 2002.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? ICSE ’06, pages 361–370, New York, NY, USA, 2006.

[5] A. Bacchelli, M. D’Ambros, and M. Lanza. Are popular
classes more defect prone? FASE, pages 59–73, 2010.

[6] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An
infrastructure for large-scale collection and analysis of
open-source code. Sci. Comput. Program., 79:241–259, Jan.
2014.

[7] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Trans. Softw. Eng., 22(10):751–761, 1996.

[8] O. Baysal, M. Godfrey, and R. Cohen. A bug you like: A
framework for automated assignment of bugs. ICPC ’09,
pages 297–298, May 2009.

[9] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey.
Facilitating software evolution research with kenyon.
ESEC/FSE-13, pages 177–186, New York, NY, USA, 2005.

[10] P. Bhattacharya and I. Neamtiu. Fine-grained incremental
learning and multi-feature tossing graphs to improve bug
triaging. ICSM ’10, pages 1–10, Washington, DC, USA,
2010.

[11] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy.
Does distributed development affect software quality? an
empirical case study of windows vista. ICSE ’09, pages
518–528. 2009.

[12] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu.
Don’t touch my code!: examining the effects of ownership
on software quality. ESEC/FSE ’11, pages 4–14. 2011.

[13] Black Duck Software. Black duck open HUB.
https://www.openhub.net/, 2015.

[14] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis.
Investigating quality factors in object-oriented designs: an

10

industrial case study. ICSE ’99, pages 345–354. 1999.
[15] G. Canfora and L. Cerulo. How software repositories can

help in resolving a new change request. Workshop on
Empirical Studies in Reverse Engineering, 2005.

[16] G. Canfora and L. Cerulo. Supporting change request
assignment in open source development. SAC ’06, pages
1767–1772. 2006.

[17] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb.
Software dependencies, work dependencies, and their impact
on failures. IEEE Transactions on Software Engineering,
99:864–878, 2009.

[18] R.-Y. Chang, A. Podgurski, and J. Yang. Discovering
neglected conditions in software by mining dependence
graphs. IEEE Trans. Softw. Eng., 34(5):579–596, 2008.

[19] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, June 1994.

[20] D. Cubranic and G. Murphy. Automatic bug triage using text
categorization. SEKE 2004, pages 92–97. 2004.

[21] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight Defect
Localization for Java. ECOOP 2005. 2005.

[22] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes from
object behavior anomalies. ASE’09, pages 550–554.
November 2009.

[23] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect
prediction approaches: a benchmark and an extensive
comparison. Empirical Softw. Engg., DOI:
10.1007/s10664-011-9173-9, 2011.

[24] G. Di Fatta, S. Leue, and E. Stegantova. Discriminative
pattern mining in software fault detection. SOQUA ’06,
pages 62–69. 2006.

[25] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale
software repositories. ICSE ’13, pages 422–431. 2013.

[26] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. SOSP ’01, pages 57–72. 2001.

[27] M. Gabel and Z. Su. Javert: fully automatic mining of
general temporal properties from dynamic traces. SIGSOFT
’08/FSE-16, pages 339–349. 2008.

[28] Y. Gao, M. V. Antwerp, S. Christley, and G. Madey. A
research collaboratory for open source software research.
FLOSS ’07, pages 4–, Washington, DC, USA, 2007.

[29] J. M. González-Barahona and G. Robles. On the
reproducibility of empirical software engineering studies
based on data retrieved from development repositories.
Empirical Software Engineering, 17(1-2):75–89, 2012.

[30] G. Gousios. The GHTorrent dataset and tool suite. MSR ’13,
pages 233–236. 2013.

[31] G. Gousios and D. Spinellis. Alitheia core: An extensible
software quality monitoring platform. ICSE ’09, pages
579–582. 2009.

[32] G. Gousios and D. Spinellis. A platform for software
engineering research. MSR’09, pages 31–40, 2009.

[33] G. Gousios and D. Spinellis. GHTorrent: GitHub’s data from
a firehose. MSR ’12, pages 12–21. 2012.

[34] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[35] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi,
S. Crespi, D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi. An

empirical investigation into a large-scale java open source
code repository. ESEM ’10, page 11. 2010.

[36] A. E. Hassan. Predicting faults using the complexity of code
changes. ICSE ’09, pages 78–88. 2009.

[37] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive
interfaces. ESEC/FSE-13, pages 31–40. 2005.

[38] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92–106, 2004.

[39] J. Howison, M. Conklin, and K. Crowston. Flossmole: A
collaborative repository for floss research data and analyses.
IJITWE ’06, 2006.

[40] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. ESEC/FSE ’09, pages 111–120,
New York, NY, USA, 2009.

[41] T. M. Khoshgoftaar and E. B. Allen. Ordering fault-prone
software modules. Software Quality Control, 11(1):19–37,
2003.

[42] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug
fixes. SIGSOFT ’06/FSE-14, pages 35–45. 2006.

[43] S. Kim, T. Zimmermann, J. Whitehead, and A. Zeller.
Predicting faults from cached history. ICSE ’07, pages
489–498. 2007.

[44] C. Lattner and V. Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. CGO ’04, pages
75–86, 2004.

[45] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. ESEC/FSE ’11,
pages 311–321. 2011.

[46] Z. Li, S. Lu, and S. Myagmar. Cp-miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Trans.
Softw. Eng., 32(3):176–192, 2006.

[47] Z. Li and Y. Zhou. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code. ESEC/FSE-13, pages 306–315. 2005.

[48] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. An empirical
study on bug assignment automation using chinese bug data.
ESEM ’09, pages 451–455, Washington, DC, USA, 2009.

[49] C. Liu, E. Ye, and D. J. Richardson. Software library usage
pattern extraction using a software model checker. ASE ’06,
pages 301–304. 2006.

[50] B. Livshits and T. Zimmermann. Dynamine: finding common
error patterns by mining software revision histories.
SIGSOFT Softw. Eng. Notes, 30(5):296–305, 2005.

[51] D. Lo and S. Maoz. Mining hierarchical scenario-based
specifications. ASE’09, pages 359–370. November 2009.

[52] G. d. Lucca. An approach to classify software maintenance
requests. ICSM ’02, page 93. 2002.

[53] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports
using a vocabulary-based expertise model of developers.
MSR ’09, pages 131–140, Washington, DC, USA, 2009.

[54] A. Meneely, L. Williams, W. Snipes, and J. Osborne.
Predicting failures with developer networks and social
network analysis. SIGSOFT ’08/FSE-16, pages 13–23. 2008.

[55] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. Softw.
Eng., 33(1):2–13, 2007.

[56] A. Michail. Data mining library reuse patterns using
generalized association rules. ICSE ’00, pages 167–176.
2000.

[57] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public source

11

code history. MSR ’09, pages 11–20, Washington, DC, USA,
2009.

[58] A. Mockus. Organizational volatility and developer
productivity. STC 2009. 2009.

[59] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. ICSE ’05, pages
284–292. 2005.

[60] N. Nagappan and T. Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case
study. ESEM ’07, pages 364–373. 2007.

[61] N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: an empirical
case study. ICSE ’08, pages 521–530. 2008.

[62] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and
B. Murphy. Change bursts as defect predictors. ISSRE, pages
309–318. 2010.

[63] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based Mining of Multiple Object
Usage Patterns. ESEC/FSE 2009. 2009.

[64] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and
C. Lopes. SourcererDB: An Aggregated Repository of
Statically Analyzed and Cross-linked Open Source Java
Projects. MSR ’09, pages 183–186, Washington, DC, USA,
2009.

[65] G. Pinto, W. Torres, B. Fernandes, F. Castor, and R. S.
Barros. A Large-Scale Study on the Usage of Java’s
Concurrent Programming Constructs. Journal of Systems and
Software, 106:59–81, 2015.

[66] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? SIGSOFT
’08/FSE-16, pages 2–12. 2008.

[67] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying
software failure reports. ICSE ’03, pages 465–475,
Washington, DC, USA, 2003.

[68] M. Pradel and T. R. Gross. Automatic generation of object
usage specifications from large method traces. ASE’09, pages
371–382. November 2009.

[69] Promise 2009. http://promisedata.org/2009/datasets.html.
[70] M. M. Rahman, G. Ruhe, and T. Zimmermann. Optimized

assignment of developers for fixing bugs an initial evaluation
for eclipse projects. ESEM ’09, pages 439–442, Washington,
DC, USA, 2009.

[71] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Path-sensitive inference of function precedence protocols.
ICSE ’07, pages 240–250. 2007.

[72] J. Ratzinger, M. Pinzger, and H. Gall. Eq-mine: Predicting
short-term defects for software evolution. FASE ’07, pages
12–26. 2007.

[73] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and
C. Winter. Tricorder: Building a program analysis

ecosystem. ICSE ’15, 2015.
[74] A. Schroter, T. Zimmermann, and A. Zeller. Predicting

component failures at design time. ESEM ’06, pages 18–27.
2006.

[75] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
specification mining using automata-based abstractions.
ISSTA ’07, pages 174–184. 2007.

[76] R. Subramanyam and M. S. Krishnan. Empirical analysis of
ck metrics for object-oriented design complexity:
Implications for software defects. IEEE Trans. Softw. Eng.,
29:297–310, April 2003.

[77] The Chromium Project. Chromium: Open source web
browser. www.chromium.org, 2008.

[78] S. Thummalapenta and T. Xie. Parseweb: a programmer
assistant for reusing open source code on the Web. ASE ’07,
pages 204–213. 2007.

[79] S. Thummalapenta and T. Xie. Alattin: Mining alternative
patterns for detecting neglected conditions. ASE’09, pages
283–294. November 2009.

[80] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot-a Java bytecode optimization
framework. CASCON ’99, page 13, 1999.

[81] A. Wasylkowski and A. Zeller. Mining temporal
specifications from object usage. ASE’09, pages 295–306.
November 2009.

[82] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
usage anomalies. ESEC-FSE ’07, pages 35–44. 2007.

[83] W. Weimer and G. C. Necula. Mining temporal specifications
for error detection. TACAS ’05, pages 461–476, 2005.

[84] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Using developer
information as a factor for fault prediction. PROMISE ’07,
page 8. 2007.

[85] C. C. Williams and J. K. Hollingsworth. Automatic mining
of source code repositories to improve bug finding
techniques. IEEE Trans. Softw. Eng., 31(6):466–480, 2005.

[86] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting
build failures using social network analysis on developer
communication. ICSE ’09, pages 1–11. 2009.

[87] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling
and discovering vulnerabilities with code property graphs.
SP ’14, pages 590–604. 2014.

[88] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: mining temporal API rules from imperfect traces.
ICSE ’06, pages 282–291. 2006.

[89] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring Resource
Specifications from Natural Language API Documentation.
ASE’09, pages 307–318. November 2009.

[90] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. ICSE ’08, pages
531–540. 2008.

12

	Iowa State University
	Digital Repository @ Iowa State University
	Fall 11-5-2015

	Candoia: A Platform and an Ecosystem for Building and Deploying Versatile Mining Software Repositories Tools
	Nitin M. Tiwari
	Dalton D. Mills
	Ganesha Upadhyaya
	Eric Lin
	Hridesh Rajan
	Recommended Citation

	tmp.1447087785.pdf.FD87R

