
Call for Quality: Open Source Software Quality 
Observation 

Adriaan de Groot^, Sebastian Kiigler-^, Paul J. Adams^, and Giorgos Gousios^ 

^ Quality Team, KDE e,V. {groot,sebas}(9kde.org 
^ University of Lincoln padamsOlincoln.ac.uk 

^ Athens University of Economics and Business gousiosg0aueb.gr 

Abstract . This paper describes how a Software Quality Observatory 
works to evaluate and quantify the quality of an Open Source project. 
Such a quality measurement can be used by organizations intending to 
deploy an Open Source solution to pick one of the available projects for 
use. We offer a case description of how the Software Quality Observatory 
will be applied to the KDE project to document and evaluate its quality 
practices for outsiders. 

Keywords 

Open Source software, software quality evaluation, static code analysis 

1 Introduction 

The software development process is well known as a contributor to software 
product quality, leading to application of software process improvement as a 
key technique for the overall improvement of the software product. This can be 
said for any form of software development. Within the Open Source paradigm, 
the leverage of software quality data can be as useful for the end users as it is 
for the developers. 

From the perspective of a potential user of a piece of Open Source software 
(OSS), it can be very difficult to choose one of a myriad solutions to a given 
problem. There are often dozens of Open Source solutions which "compete" 
for users and development resources. They may differ in quality, features, re­
quirements, etc. By making the quality aspects of a given project explicit, it 
becomes easier for the user to choose a solution based on the quality of the 
software. Here the Software Quality Observatory (SQO) can play a useful role 
in quantifying the quality of processes employed by a given OSS project. 

With ever increasing numbers of projects and developers on SourceForge 
(www. sourcef orge .ne t ) , it is clear that the OSS paradigm is of interest to those 
wishing to contribute to the creation of software. By using scientifically obtained 
software quality data, such as that which the Software Quality Observatory will 
produce, it may be possible to encourage similar growth within the OSS user 
community. 

Please use the following format when citing this chapter: 
de Groot, A., Kiigler, S., Adams, P.J., and Gousios, G., 2006, in IFIP International 
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani, 
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 57-62 



58 Adriaan de Groot, Sebastian Kiigler, Paul J. Adams, and Giorgos Gousios 

2 The Benefits of Software Quality Observation 

As participation has grown in Open Source development over the past decade, 
so too has the user base of the software grown. Increasingly OSS is being 
viewed as a viable alternative to proprietary (closed source) software, not 
just by technically-aware developers, but also by non-developers. European re­
search projects, such as COSPA (www.cospa-project .org/) and CALIBRE 
(www. c a l i b r e . i e ) , have raised awareness of OSS development through specific 
targeting of public administration bodies and industrial organisations, espe­
cially small and medium enterprises (SMEs). 

As the OSS paradigm makes progress within these organisations any poten­
tial software procurer is tasked with some important questions which, currently, 
cannot be answered with any real assurance: 

- Many OSS projects are very similar. How do we choose between them? Which 
is the most appropriate system for the company's IT infrastructure? 

- How can we distinguish the "good" and "bad" projects? 
- How can we reason about the quality of a software product in order to trust 

its future development? 

Unfortunately these organisations often have nothing more than word-of-
mouth on which to base their judgments of OSS products. With 109,707^ 
projects currently hosted on SourceForge it is understandable that products 
of excellent quality may be overlooked. It is possible to supplement the word-
of-mouth tradition with some rudimentary data that is available from hosting 
sites: download numbers, project activity etc. Unfortunately this data is easily 
skewed and can present a product in an inaccurate manner. 

Quality can be a very subjective measure of many aspects of a system in 
combination: suitability for purpose, reliability, aesthetic etc. Software quality 
is formally defined by the ISO/IEC 9126 standard as comprised of six charac­
teristics, but no measurement techniques are defined. It has been suggested that 
the external quality characteristics of a software system are directly related to 
its internal quality characteristics. It is therefore possible to evaluate the qual­
ity of software through its source code and a of project by considering other 
data sources intimately related to the project's code such as bug-fix databases 
or maihng lists. 

In the long run it is crucial to OSS developers and their projects to know 
quantitatively what the quality of their product is. The volunteer nature of OSS 
makes "managing" such a project to include quality control a matter of mo­
tivating volunteers to behave in ways consistent with improving quality[2]. By 
fully understanding their software quality, OSS developers are able to promote 
and improve their products and process. It is also crucial in helping end-users 
making informed decisions about software procurement. 

^ Data from the FLOSSMole Project, 02/12/05. 



Call for Quality: Open Source Software Quality Observation 59 

3 Why SQO of Open Source Software differs from that on 
Closed Software 

There are two aspects that play a role for quality assessment of software, the 
quality of the product itself and the quality of the product team. The main 
differences between quality assessment (QA) of Open Source software and QA of 
closed source software naturally relate to the availability of the source code and 
the transparency of the development process. Third party quality assessment 
is facilitated by the availability of the source code and the openness of the 
development process. 

Quality assessment of OSS software is usually much more transparent than 
that of closed source software, at least to quality observers on the "outside" 
[2]. Most OSS projects use an Open Source tool-chain to create their software. 
Those tools, compilers for example, have considerable influence on the quality 
of the products and therefore need to be taken into account when assessing 
the quality of a piece of software. Furthermore, discussion about quality is­
sues often happens in public, on mailing lists and message boards, which adds 
transparency. Third-party quality assessment of closed source software involves 
guessing in most cases. 

The number of open bugs might give another impression of the quality of a 
product. This number is to be taken with a grain of salt since the number of 
bugs might indicate that there is a lot of testing, or that there are a lot of people 
reporting bugs. The type of bugs, response times and their frequency is impor­
tant. Merely counting the number of bugs reveals more about the community 
behind the product than about the product itself. 

The number of code check-ins gives a good idea of the activity level of 
the development of the product. Products that receive a lot of attention from 
developers are likely to be fixed faster than products that have been abandoned. 
A product can be very actively developed, but that might also indicate that it 
is unstable and many changes are being made which increase the amount of 
effort needed to assess and maintain a certain level of quality. 

Assessing the product team is another aspect where quality assessment of 
OSS products differs from QA on closed source software. The term Product 
Team refers to all participants in the project, engineers, documentation team, 
translators, and of course QA people [3]. In closed software products, the num­
ber and skill level of developers is usually kept secret by the company, the num­
ber of participants in an OSS project can at least be estimated by educated 
guessing, based on commit logs and the source code itself. 

The size of the team is an important issue to examine the longevity of the 
product, and thus the chance to have the product supported in the future. The 
Open Source Maturity Model (OSMM) [2] uses team size explicitly as a numeric 
indicator of quality. 



60 Adriaan de Groot, Sebastian Kugler, Paul J. Adams, and Giorgos Gousios 

4 The Software Quality Observatory 

The automated analysis of source code as a quality measurement is not a new 
concept. In recent years, the growth of OSS development has provided a wealth 
of code in which new techniques can be developed. Previous work in this area 
is often based in metric analysis: statement count, program depth, number of 
executable paths or McCabe's cyclomatic complexity [5] for example. In their 
work using on metric-based analysis Stamelos et al. [7] observed good quality 
code within Open Source. Other techniques, such as neural networks [4] are not 
only capable of evaluating code, but also in predicting future code quality. 

The Software Quality Observatory aims to provide a platform with a plug­
gable architecture as outlined in figure 1 for software development organisations 
that will satisfy four objectives: 

- Promote the use of OSS through scientific evidence of its perceived quality. 
- Enhance software engineers' ability to quantify software quality. 
- Introduce information extraction, data mining and unsupervised learning to 

the software engineering discipline and exploit the possible synergies between 
the two domains using novel techniques and algorithms. 

- Provide the basis for an integrated software quality management product. 

IS 
Bug 

Database 

Code Reposrto^y & 
Vefsioning System 

SQO-OSS 

Fig. 1. A schematic representation of the proposed system 

SQO-OSS is based around three distinct processing subsystems that share 
a common data store. The data acquisition subsystem processes unstructured 



Call for Quality: Open Source Software Quality Observation 61 

project data and feeds the resultant structured data to the analysis stages. The 
user interaction subsystem presents analysis results to the user and accepts 
input to affect the analysis parameters. The components of the data acquisition 
subsystem are responsible for extracting useful data for analysis from the raw 
data that is available from the range of sources within software development 
projects. Metric analysis of source code is well-known and an important aspect 
of this system. Repository analysis will perform examine the commit behaviour 
of developers in response to user requests and security issues. The information 
extraction component will extract structured information from mailing lists and 
other textual source in order to feed higher-level analyses. 

The data mining component will use structured information from project 
sources to predict the behaviour of the project with respect to quahty charac­
teristics and classify projects according to their general quality measurements. 
The statistical analysis component will apply statistical estimation models in 
order to predict events in the development life-cycle that can have an impact 
on the product's quality. 

5 The SQO and KDE 

The KDE project (www. kde. org) is one of the largest desktop-oriented projects 
in the world. Its scope encompasses the entire desktop (i.e. end-user use of a 
computer, including web-surfing, email, office applications, and games). It is a 
confederation of smaller projects all of which use a single platform (the KDE 
libraries) for consistency. The project has some 1200 regular contributors and 
many hundreds more translators. The source code has grown to over 6 milHon 
lines of C+4- in 10 years of "old-school" hacking. 

KDE's quality control system has traditionally been one of "compile early, 
compile often." By having hundreds of contributors poring over the code-base 
on a wide range of operating systems and architectures, bugs were usually found 
quickly. Certainly most glaring deficiencies are quickly found, but more subtle 
bugs may not be. 

In terms of formalized quality control, there is a commit policy which states 
when something may be committed to the KDE repository [1], but this does 
not rise much above the level of "if it compiles, commit it." Only recently has 
a concerted push been made for the adoption of unit tests within the KDE 
libraries. Adoption of the notion of writing unit tests has been enthusiastic, but 
there are questions of coverage and completeness. Automated regression testing 
is slowly being implemented, but here the lack of a standardized platform for 
running the tests hampers the adoption of those automated tests. 

Documentation (user and API) quality has become an issue, and quality 
measurements are now done regularly. User interface guidelines have been for­
mulated, but not enforced. Once again, there is an effort underway to measure 
(deviations from) the interface guidelines. This produces discouraging numbers, 
and has not yet been successfully automated in a large scale manner. 



62 Adriaan de Groot, Sebastian Kiigler, Paul J. Adams, and Giorgos Gousios 

The KDE project expects the Software QuaUty Observatory to extend and 
enhance the quahty measurements which it has begun to implement, in order 
to guide the actions of the KDE developers. Whether the availability of quality 
metrics for the code base has an effect on the "average" volunteer developer 
remains to be seen — experiences with the existing tools suggests that fixing 
bugs found by automatic techniques does not score high on the "fun" chart for 
developers. For the core KDE developers (of which there are perhaps 100) the 
existence of the quality metrics produced by the SQO may guide their efforts 
in bug fixing and yield more productive code freezes prior to release. 

6 Conclusions 

Software quality observation has long been performed as a crucial element in 
software process improvement. However, established methods of quality obser­
vation have mostly focused on source code and overlooked other available data 
sources e.g. mailing lists or bug fix data[6]. 

Many OSS projects, such as KDE, have established processes for the main­
tenance of software quality. However, these can only be of limited use when 
then actual quality of the product is still unknown. By scientifically evaluating 
the quality of a software product and not the process^ software engineers can 
leverage this knowledge in many ways. By providing this quality evaluation the 
SQO-OSS system will allow engineers to make informed choices when address­
ing their development process and allow them to better maintain quality in 
the future. The developers and their supporting organisations can also use this 
evaluation to promote their product. This is especially crucial within the OSS 
world, where there is a wealth of choice. 

Ultimately, the SQO-OSS system will aid OSS developers to write better 
software and enable potential users to make better informed choices. 

References 

1. KDE Developer's Corner. KDE commit policy. On http:/ /developer.kde.org/. 
2. Bernard Golden. Succeeding with Open Source. Addison-Wesley, 2005. 
3. Lewis R. Ireland. Quality Management for Products and Programs. Project Man­

agement Institute, 1991. 
4. R. Kumar, S. Rai, and J. L. Trahan. Neural-network techniques for software-

quality evaluation. In Proceedings of the Annual Reliability and Maintainability 
Symposium, 1998. 

5. T. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 
2(4):308-320, 1976. 

6. Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison-Wesley, 
Boston, MA, 2006. 

7. loannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris. 
Code quality analysis in open source software development. Information Systems 
Journal, 12(l):43-60, January 2002. 




