
Beyond Low-Hanging Fruit: Seeking the 
Next Generation in FLOSS Data Mining 

Megan S. Conklin 
Elon University, Department of Computing Sciences, Elon, NC 27244 

mconklin@elon. edu, 
WWW home page: http://www.cs.elon.edu 

Abstract. This paper will discuss the motivations and methods for collecting 
quantitative data about free, libre and open source (FLOSS) software projects. 
The paper also describes the current state of the art in collecting this data, and 
some of the problems with this process. Finally, the paper outlines the 
challenges data miners should look forward to when trying to improve the 
usefulness of their quantitative data streams. 

1 Introduction 

It is surprisingly difficult to obtain and compare timely, quantitative data in order to 
answer even simple questions about the free/libre/open source software (FLOSS) 
world: How many open source projects are there? How many developers? How many 
users? How much does each developer contribute? Which projects are dead, which 
are flourishing? Which projects are popular? How are development teams structured, 
and which team structures are the most successful? 

FLOSS project teams are self-organized, widely-distributed geographically, and 
use many different programming languages and software development 
methodologies. Teams are organized in an ad hoc, decentralized fashion. Projects can 
be very hard to track, and changes can be difficult to follow. Because developers 
primarily use the Internet for communication, and because they are organized around 
the idea that anyone can join a team,.it is usually easy to get data about FLOSS 
project teams, but difficult to rely upon or standardize this data. 

This is in direct contrast to the way proprietary projects are most often structured. 
Empirical software engineering researchers have, in the past, typically used metrics 
from a single company or a single proprietary project. This data was collected 
systematically and distributed in a tightly controlled manner, consistent with the 
proprietary nature of the softAvare being developed. 

Whereas data analysis about proprietary software practices was primarily a 
problem of scarcity (getting access and permissions to use the data), collecting and 
analyzing FLOSS data becomes a problem of abundance and reliability (storage, 
sharing, aggregation, and filtering of the data). To this end, this paper discusses the 
motivations and methods for collecting FLOSS data, contrasting these with traditional 
softAvare engineering methods. We then outline some challenges data miners should 
look forward to when trying to improve the usefulness of their quantitative data 
streams. 

Please use the following format when citing this chapter: 
Conklin, M.S., 2006, in IFIP Intemational Federation for Information Processing, 
Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, 
M., Succi, G., (Boston: Springer), pp. 47-56 



48 Megan S. Conklin 

2 Motivations 

2.1 Importance of Metrics in Software Engineering 

The collection and aggregation of real-world and historical data points are critical to 
the task of measurement in software engineering. Interesting measures of the software 
process can vary depending on the goals of the research [1], but they could include 
things like the number of errors in a particular module, the number of developers 
working in a particular language or development environment, or the length of time 
spent fixing a particular code defect [2]. Software engineering metrics can be used to 
avoid costly disasters [3], efficiently allocate human and financial capital [4], and to 
understand and improve'business processes. 

There are hundreds of these examples in the software engineering literature about 
how important metrics are for studying proprietary projects, but where are the metrics 
and measurements for studying FLOSS development practices? We know that FLOSS 
projects are fundamentally different from proprietary projects in several important 
ways: they are primarily user-driven as opposed to driven by a hierarchically-
organized, for-profit corporation [5]. These user-programmers work in loosely 
defined teams, rarely meet face-to-face, and coordinate their efforts via electronic 
media such as mailing lists and message boards [1]. These are all fundamentally 
different arrangements than the way proprietary software is traditionally developed. 

2.2 Importance of Metrics in FLOSS 

Recognizing this unique separation between proprietary and FLOSS software 
engineering traditions, and building on a strong foundation of measurement in 
software engineering literature, there are then several compelling reasons to collect, 
aggregate, and share data about the practice of FLOSS software development. First, 
studying FLOSS development practices can be useftil in its own right, in order to 
educate the larger research and practitioner communities about an important new 
direction in the creation and maintenance of software [6]. FLOSS researchers have 
noticed that many of the practices of FLOSS teams are not well-understood [7, 8] or, 
when they are, they seem to directly oppose traditional wisdom about how to build 
software [9]. At the very least, this situation indicates something interesting is afoot, 
and in the best case will foreshadow an important methodological shift for software 
development. 

Additionally, the lessons learned through studying FLOSS development teams are 
applicable to many other fields. Much research has been conducted on the economic 
[10, 11] and policy aspects of FLOSS development, especially as the reason for 
various licensing choices [12] or about their implications for intellectual property 
[13-16]. Additional research has been conducted on the motivations of FLOSS 
developers [11, 17, 18], which is an interesting question to consider since these 
developers are working without pay. There are also implications for other types of 
distributed teams and computer-mediated group work [19, 20], such as gaining a 



Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 49 

better understanding of the role of face-to-face meetings in highly distributed work 
teams, or analyzing the leadership hierarchies that work best for distributed teams. 

3 Difficulties 

FLOSS data appears to be highly available, and appears easier to access for research 
than proprietary data. While this means that it is possibly more appealing to use than 
proprietary data, FLOSS data has its own very long list of collection difficulties. 

3.1 Questions of Accessibility 

Researchers who wish to test a quick hypothesis about the use of a particular software 
module, or who wish to study adoption rates of various programming languages know 
that, in theory, they should have access to this information via FLOSS project data, 
since the code is free and open to everyone, therefore, it is no longer necessary to 
find a corporation willing to provide researchers access to their development 
databases and source code control systems. Much of the FLOSS project data is stored 
inside large, public source code repositories such as [21-24]. However, the 
difficulties in gathering FLOSS data from these repositories in an automated fashion 
are numerous and on-going [25, 26]. Gaining control over this "free" and "open" data 
is actually a hugely inefficient process for a researcher. If each isolated research team 
is taking on this tedious responsibility of gathering the same data, this will quickly 
result in redundancy in the collection effort, which prolongs and denigrates the data 
analysis effort. 

3.2 Questions of Accuracy and Reproducibility 

Another significant problem with isolated researchers attempting to collect and 
analyze FLOSS data is one of validation and reproducibility of results [27]. There are 
numerous examples in the FLOSS literature that reflect on this general problem with 
collecting, validating, and reproducing data and results. Some studies have addressed 
their difficulties with collecting data by limiting their studies to a single public 
repository, and then to draw on samples that are easy to collect, but which were 
created for entirely different purposes [28, 29]. In addition, the demands of traditional 
publication may mean that the data collecfion methodologies are not fully described. 
This makes them impossible to reproduce, which slows down the compounding 
effects [30] started by good research [31]. The tradition of scientists working together 
to solve a hard problem [32] is an important tradition to continue, but how is this to 
happen if each isolated research team must start from square one? 

3.3 Questions of Quantity 

In software engineering data analysis, this massive project cross-referencing and 
metadata creation is a problem probably unique to FLOSS. Rarely would empirical 



50 Megan S. Conklin 

software engineers studying proprietary systems need to study hundreds of disparate 
project teams stored in dozens of unique data models (repositories) with thousands of 
data attributes. The amount of raw data available for collection in FLOSS software is 
greater than that of proprietary software by orders of magnitude, both in terms of 
project team counts and in developer counts. For each developer and each project 
there are thousands of additional attributes that can also be mined for interesting 
insights. 

However, much of the FLOSS research to date closely emulates the research 
methods used to study proprietary software: the research follows a single project and 
extrapolates some lesson or advancement which can then be applied to other projects. 
Examples include [33-36, 18]. Some other projects have used surveys or other 
instruments to collect information about a small number of FLOSS projects. For 
example, [37] was based on a survey of 684 developers on 287 FLOSS projects. [7] 
was based on ethnographic research principles, and involved a dozen software 
projects in four different research areas. [38] studies four open source projects all 
related to the same coordinating company. [10] studied four different open source 
projects, some of which also appear in other studies [35, 36]. [39] surveys 81 
developers working on an unspecified number of open source projects. The 2000 
Orbiten data [40] includes 12706 (identifiable) developers and 3149 projects. Within 
the corpus of previously published FLOSS literature, the Orbiten project data can be 
considered large. However, we know that these numbers represent less than 3% of the 
total activity in FLOSS development [27]. 

3.4 Questions of Reliability 

Another problem with relying on published-but-proprietary data sources for research 
is that type of data can disappear. For example, the Orbiten project mentioned above 
is no longer in active development. Though the original article [40] links to a web site 
intended to provide both the software and the data, this site is no longer operational. 
A researcher wishing to duplicate or validate the methods of Orbiten would be at a 
loss to do so. Thus, there is really no way to build upon or extend the metrics 
published in the original article (i.e. further this valuable FLOSS research). Using 
FLOSS development methodologies such as project handoff [11,16] would have 
reduced this tendency for information to exist only in one place. 

4 Future Challenges 

As an answer to these goals described above and expressed by the FLOSS research 
community, the FLOSSmole project [41] was designed to be accessible, accurate, 
reproducible, compatible, comprehensive, and reliable [27, 42]. In its current state, 
FLOSSmole serves the greater FLOSS research community by providing a collection 
of software tools (database schemas, code libraries, scripts, source code) that mines 
code repositories and provides the resulting data and summary analyses as open 



Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 51 

source products. The project is hosted on Sourceforge [24], a pubHc, open-source 
code repository. The code, data, and schemas are all open-sourced and free for other 
researchers to use and modify. FLOSSmole has been successful in its role as a basic 
data gathering and reporting tool for research. 

However, FLOSSmole and other quantitative FLOSS data gathering projects could 
be better; in this section we propose improvements to the data-gathering community 
research infrastructure. Though we have FLOSSmole in mind while writing, these 
ideas are based on general ideas, and could therefore be applied to many other 
projects designed to collect and aggregate quantitative FLOSS data. 

4.1 Exploit Low-Hanging Fruit 

The primary activity of our community data repository is to collect and store data. In 
FLOSSmole, we currently pull data from two open source code repositories (also 
called "forges"), and have historical data from a third repository. These forges 
represent the low-hanging fruit of FLOSS data: even though there is relative difficulty 
[26] involved in getting data from the forges, they are still the easiest places to get 
large amounts of data quickly. So, one of the most important things we can provide 
the community is to pull data from a broader range of forges. There are dozens of 
independent open source forges that host important projects, but we do not currently 
collect this significant quantity of data. This also represents a step in the right 
direction for promoting collaboration and sharing between communities and between 
development efforts and research groups. 

Moreover, as FLOSS researchers in the true spirit of collaboration, we should 
expect our data to become the low-hanging fruit for other projects. The SWIK project 
[43], an independent effort by programmers at Sourcelabs, is a wiki-based database of 
open source projects. Each open source project has an entry in the Swik system, and 
Swik users can annotate and tag each project page with keywords or descriptors. This 
entire project was created in one month, using data made public by FLOSSmole. 
Swik is a great example of why it is important to make data easily accessible. 
Developers and researchers should be able to find, interpret and use quantitative data 
quickly and painlessly. However, despite how easy it is to download FLOSSmole 
data, it is not as easy to query the database or interpret results. FLOSSmole data is 
available to the research community in two formats: massive text ("raw") database 
dumps, and summary reports. There is also a nice query tool. But the most important 
thing the research community has asked us for is for more reporting tools (better 
visualizations, more graphs/charts, an online, interactive graphing tool), and for fuller 
descriptions of the data we are making available (more metadata). Both of these items 
would go a long way to improving the usability of the data in our community data 
repository. 

4.2 Seek High-Hanging Fruit 

In the same way that FLOSS development is a collaborative process, FLOSS research 
is also collaborative at its nature. Thus, any FLOSS data repository will need to 



52 Megan S. Conklin 

integrate both donated data sets and historical research data. We occasionally have 
access to data from now-defunct projects, and from previously published FLOSS 
research studies - both of these sources of data are valuable for historical analyses, 
and may be able to be integrated into the existing (and active!) community database. 
Even if this donated or historical data were complete, clean, and well-labeled, 
integrating it could still be problematic: different repositories store different data 
elements, different forges can have projects with the same names, different 
developers can have the same name across multiple forges, the same developer can go 
by multiple names in multiple forges. In addition, forges have different terminology 
for things like developer roles, project topics, and even programming languages. 

What is the best way to extract knowledge from published research? What is the 
best way to express the quantitative knowledge in a domain and integrate multiple 
sources of this knowledge? How will we create sufficient metadata about each data 
source so that the results can be used together? Can any of this be done in an 
automated fashion? What query tools should be used so that the user can fully explore 
both data sets? These are big questions with no easy answers; these are the rare and 
exceptional fruits, located higher up in the tree. 

Assuming we are able to successfully meld multiple data sources and create this 
richer, more interesting multi-repository structure, we must also consider privacy 
issues. There is some vigorous debate in the research community about breaching 
developer privacy in a large system of aggregated data like ours [44]. For example, if 
we aggregate several code repositories and are now able to show in a colorful graph 
that Suzy Developer is ten times more productive than Bob Coder, does this violate 
Bob's privacy? If we can show that Suzy's code changes are five times more likely to 
cause errors than Bob's, does that violate Suzy's privacy? The next generation of 
community repositories like FLOSSmole should have the ability to hash the unique 
keys indicating a developer's identity. This effort will have to be researched, 
implemented, and documented for our community. 

5 Conclusions 

This paper first reviews why quantitative data is useful in software engineering, 
including some ways in which the FLOSS and proprietary software data gathering 
processes are different. Next we point out some common problems with the FLOSS 
data gathering process. Finally, we pass on the benefit of our experience creating 
FLOSSmole by posing questions about what the next steps should be for creating a 
truly valuable and transformative community data repository. 

Reflecting on our initial successes creating data repositories for quantitative 
FLOSS data, it is clear that simply gathering public repository data (the "low-hanging 
fruits" of FLOSS data collection) is interesting and useful, but not sufficient. This 
type of data does not capitalize on some of the most interesting aspects of FLOSS 
movement: its focus on collaboration, its respect for individual privacy issues. In 



Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 53 

order to provide truly meaningful and useful data, we must reach beyond these low-
hanging fruits. 

6 References 

L R.E. Park, W.B. Goethert, and W.A. Florae. (1996) Goal Driven Software 
Measurement-A Guidebook. CMU/SEI-96-BH-002. Carnegie Mellon U. 1996. 

2. E. Yourdon, E. Decline and Fall of the American Programmer (Prentice-Hall: 
Englewood Cliffs, New Jersey, 1993). 

3. J.-M. Jezequel and B. Meyer, Design by contract: The lessons of Ariane, Computer 
30(1),129-130(1997). 

4. F. Brooks, The Mythical Man-Month, rev ed. (Addison-Wesley: Reading, 
Massachusetts, USA, 1995). 

5. E. von Hippel, Innovation by user communities: Learning from open-source 
software. Sloan Management Review (Summer). 82-86 (2001). 

6. J. Feller, Thoughts on Studying Open Source Software Communities. In Realigning 
Research and Practice in Information Systems Development: The Social and 
Organizational Perspective, edited by N.L. Russo, et al. (Kluwer Academic 
Publishers, Dordrecht, 2001). 

7. W. Scacchi, Understanding the requirements for developing Open Source Software 
systems, lEEProc. on Software, 149 (1). 24-39 (2002). 

8. E. von Hippel, Exploring the Open Source Software Phenomenon: Issues for 
Organization Science. Organization Science 14 (2), 209-223 (2003). 

9. J.D. Herbsleb and R.E. Grinter, Splitting the organization and integrating the code: 
Conway's law revisited. In Proc. of the Intl Conf on Soft. Eng. (1999). 

10. J. Lemer, and J. Tirole, (2002). Some simple economics of open source. Journal 
of Industrial Economics L, 197-234 (2002). 

11. E. Raymond, The Cathedral and the Bazaar. (O'Reilly, Sebastopol, CA, 1999). 

12. L. Rosen, Open Source Licensing: Software Freedom and Intellectual Property 
Law (Prentice Hall, Upper Saddle River, New Jersey, 2004). 



54 Megan S. Conklin 

13. C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices from the Open 
Source Revolution (O'Reilly, Sebastopol, CA, 1999). 

14. B. Kogut, and A. Meitu, Open-source software development and distributed 
innovation, Oxford Review of Economic Policy 17, 2. 248-264 (2001). 

15. J. Lemer, and J. Tirole, The open source movement: Key research questions, 
European Economic Review 45, 819-826 (2001). 

16. S. Weber, The Success of Open Source (Harvard U. Press, Cambridge, 2004). 

17. L. Torvalds, FM interview with Linus Torvalds: What motivates free software 
developers? First Monday 3(3) (March, 1998). 

18. Y. Ye and K. Kishida, Toward an understanding of the motivation of open source 
software developers. In Proc. of the 25th Intl. Conf on Soft. Eng. (2003). 

19. K. Crowston, H. Annabi, J. Howison, and C. Masango, Effective work practices 
for Soft. Eng.: Free/1 ibre/open source software development, WISER Workshop on 
Interdisciplinary Soft. Eng. Research (2004). 

20. K. Crowston, H. Annabi, J. Howison, and C. Masango, Effective work practices 
for FLOSS development: A model and propositions, Proc. of the Hawai'I Intl. Conf. 
on System Science (2005). 

21. Bugzilla. Apache Foundation, (March 1, 2006); http://issues.apache.org/bugzilla/ 

22. Freshmeat (March 1, 2006); http://ww^.freshmeat.net 

23. Savannah (March 1, 2006); http://savannah.nongnu.org/ 

24. Sourceforge (March 1, 2006); http://www.sf net 

25. D.M. German, Mining CVS repositories: The Softchange experience. In Proc. of 
the Workshop on Mining Software Repositories (2004). 

26. J. Howison and K. Crowston, K. (2004). The perils and pitfalls of mining 
Sourceforge. In Proc. of the Workshop on Mining Software Repositories (2004). 

27. M. Conklin, J. Howison, and K. Crowston, K. Collaboration Using OSSmole: A 
Repository of FLOSS Data and Analyses, Proc. of the Workshop on Mining Software 
Repositories (2005). 

28. S. Krishnamurthy, Cave or community? An empirical examination of 100 mature 
open source projects, First Monday 7(6), (June, 2004). 



Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 55 

29. L Samoladas, and L Stamelos, Assessing free/open source software quality. TR 
Aristotle University of Thessaloniki, Thessaloniki, Greece. 2003 (unpublished). 

30. K.S. Louis, L.M. Jones and E.G. Campbell, Sharing in science. American 
Scientist 90 (4), 304-307 (2002). 

3L D.R. Krathwohl, Methods of Education and Social Science Research: An 
Integrated Approach (Longman: New York, 1998). 

32. R.K. Merton, Social Theory and Social Structure, (Free Press: New York, 1968). 

33. M.S. Elliott and W. Scacchi, Communicating and Mitigating Conflict in Open 
Source Software Development Projects. Projects and Profits 10(4), 25-41 (2004). 

34. D.M. German, Decentralized open source global software development, the 
GNOME experience. J. of Soft. Process: Imp. and Practice, 8 (4), 201-215 (2004). 

35. S. Koch and G. Schneider, Results from software engineering research into open 
source development projects using public data, Diskussionspapiere zum Tat 
igkeitsfeldlnformationsverarbeitung und Informationswirtschaft, 22, (2000). 

36. A. Mockus, R.T. Fielding, and J. Herbsleb, A case study of open source software 
development: The Apache server. In Proc. of the 22nd Intl. Conf on Soft. Eng., 263-
272 (2000) 

37. K. Lakhani and R.G. Wolf, Why hackers do what they do: Understanding 
motivation effort in free/open source software projects. WP 4425-03. Sloan School of 
Management, MIT, 2003 (unpublished). 

38. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, Evolution 
patterns of open-source software systems and communities. In Proc. of the Intl. 
Workshop on Software Evolution (2002). 

39. A. Hars and S. Ou, Working for free? - Motivations of participating in open 
source projects. In Proc. of the 34th Hawaii Intl. Conf. on System Sciences, (2001). 

40. R.A. Ghosh and P.P. Prakash, The Orbiten free software survey. First Monday 
5(7), (July, 2000). 

41. FLOSSmole Project (March 1, 2006); http://ossmole.sf.net 

42. J. Howison, M. Conklin, and K. Crowston, OSSmole: A Collaborative Repository 
for FLOSS Research Data and Analyses. In,Proc. of the First Intl. Conf on Open 
Source Systems (2005). 



56 Megan S. Conklin 

43. Swik (March 1, 2006); http://swik.sourcelabs.com 

44. G. Robles, Developer identification methods for integrated data from various 
sources. In Proc. of the Intl. Workshop on Mining Software Repositories (2005). 




