
An Open Integrated Environment for
Transparent Fuzzy Agents Design

Department of Mathematics and Computer Science, University of Salerno
via Ponte don Melillo, 84084 Fisciano, Salerno, Italy

{gacampora,loia}@unisa.it

Abstract. Recently, computational agents received significant attention in
computer science research community. In fact, intelligent agents is a powerful
artificial intelligence technology showing considerable promise as a new
paradigm for mainstream software development and able to offer new ways of
abstraction, decomposition, and organization that fit well with our natural view
of the world. However, despite their promise, intelligent agents are still scarce
in the market place. A key reason for this is that developing intelligent agent
software requires significant training and skill. Artificial Intelligence
methodologies and computer networking tools represent the necessary basic
knowledge to design and implement advanced agents oriented systems. This
papers introduces an integrated development environment supporting the
agents developers to design fuzzy-based agents in a simple and fast way.
Proposed framework has been realized by integration of theoretical
methodologies as fuzzy logic and labeled tree, together with OSS tools as
JaxMe2.

1 Introduction

Multi-Agent systems (MASs) consist of a large number of computational agents,
interconnected by communication devices, that seamlessly work together in order to
achieve prefixed common goals. Different methodologies and techniques have to be
exploited in order to design advanced multi-agent systems, ranging from social
science, business models, network architectures, up to human interaction design.
This methodologies integration allows to design and implement agents-based
environment characterized by many features [1]. However, in spite of hard
exploitation of computational agents in several domains of computer applications,
MAS developers need of significant training, skills and experiences to design and
develop advanced MAS-based frameworks. In fact, as previously depicted, MAS can
be considered as a composition of different computer science backgrounds, mainly,
Artificial Intelligence and Computer Networking. This paper introduces a novel
design framework (FuzzyIDE), based on transparent fuzzy agents[2], which allows
the system designers to express their ideas in fast and simple way achieving the
properties of MAS without additional effort. In particular, this paper introduces a
novel tree-based representation for fuzzy controllers allowing the designer to draw
their ideas in a natural way and, at the same time, to split the whole controller in

Please use the following format when citing this chapter:

Acampora, G. and Loia, V., 2008, in IFIP International Federation for Information Processing, Volume 275; Open Source
Development, Communities and Quality; Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi;
(Boston: Springer), pp. 249–255.

Giovanni Acampora and Vincenzo Loia

250

several subcontrollers by exploiting the subtree concept. Proposed framework has
been realized by integration of theoretical and applicative methodologies as labeled
tree and fuzzy control theory.

2 Transparent Fuzzy Control

Fuzzy control theory [3] can be considered as the most widely used application of
fuzzy logic [4] [5] From a high level point of view, a Fuzzy Logic Controller (FLC)
is an adequate methodology for designing and developing controllers capable of
supplying high quality performance in environments characterized by high level of
uncertainty and imprecision. However, in spite of these unquestionable advantages,
the real design of FLCs is strongly depends upon hardware architecture which will
implements the running version of designed controller.

2.1 FLC Labeled Tree

In this section we discuss the labeled tree structure[6] which will be exploited to
define the FLC Labeled Tree, the tree-oriented data structure modeling FLCs and
representing the core element of Transparent Fuzzy Control. A labeled tree is a tree
where each node is associated with a label. More formally: Let be finite
alphabets of vertex labels and edge labels, respectively. Let V be a finite nonempty
set of vertices, l a total function , E a set of unordered distinct vertices
called edges, and a a total function . Then G = (V, l, E, a) is a labeled
graph. A labeled tree is a connected, acyclic labeled graph. Labeled tree labels may
be constants, node variables (corresponding to any node value), or path variables
(corresponding to any path). Constants corresponds to element, attribute and text
values populating XML models. In details, nodes labeled with text values are called
text nodes and they are always leaf nodes. Attribute nodes can have only one child
node, a text node. Also, any two attributes of a given element cannot have the same
label. Element nodes can have zero or more child nodes that can be elements,
attributes, or text nodes. Usually, the labels related to element nodes, attribute nodes
and text nodes are denoted, respectively, with ni, ai and pcdata. Then, in the case of
XML document modeling: . In order to
represent an FLC through labeled tree structures, it is necessary to individuate the
different components of a FLC, to map them on appropriate values for the labels ni,
ai and pcdata and, at the same time, to establish the opportune father-child
relationships among different tree nodes. This analysis will result in an acyclic
labeled graph, i.e, in a labeled tree. From a bottom-up point of view, a FLC can be
view as a collection of fuzzy concepts and fuzzy rules composing, respectively, the
fuzzy knowledge base and fuzzy rule base. Classic samples of fuzzy concepts are:
temperature, pressure, speed, etc.. Each concept is defined, mainly, by means of: a
name, a universe of discourse and a collection of fuzzy terms. Each fuzzy term can

 and

Giovanni Acampora and Vincenzo Loia

An Open Integrated Environment for Transparent Fuzzy Agents Design 251

be represented through a pair (Fuzzy Set, Linguistic Expression). By considering the
a typical temperature fuzzy concept the following labels can be found:

...

with:

and

Fig. 1. Fuzzy Variable labeled tree

The pcdata information identifies the leaves of XML tree (white tree nodes), i.e.,
they are strongly depending upon real controller and, for this reason, they are not
considered in previous analysis. Figure 1 shows the complete labeled tree derived
from previous definitions. Finally, a fuzzy knowledge base can be modeled through a
labeled tree whose labels are: with the following father-child
relationships: where is the
label collection modeling ith fuzzy concept and nKB is a dummy root label joining
together the different fuzzy concepts sub trees. At same way, focusing on fuzzy rule
base, a fuzzy rule is a composition of fuzzy antecedent and consequent parts and,

252

recursively, the antecedents and consequents can be characterized by a sequence of
fuzzy clauses, where, each fuzzy clause, is represented through a pair (FuzzyV
ariable, FuzzyTerm) (in Mamdani case). In short, the labeled tree modeling the fuzzy
rule base is: with the following
father-child relationships: where

 is the label collection modeling ith fuzzy rule and nRB is a dummy root label
joining together the different fuzzy rule sub trees. At the end each fuzzy controller
can be modeled by means of a labeled tree populating by following
labels: and

, where nFLC is a dummy node joining
the fuzzy rule base and knowledge base.

Design

The XML representation of FLC allows to model the controller in a human-readable
and hardware independent way, i.e., through XML is possible to implement the same
FLC on different hardware without additional design and implementation steps. The
XML-based language modeling FLCs is named Fuzzy Markup Language(FML) and
its fundamentals items, the tags and attributes, are the labels belonging to set.

3.1 Fuzzy Markup Language Definition

The FLC labeled tree is an theoretical representation of a fuzzy logic controller. In
order to move FLC tree model to a computer application context, it is necessary to
define an opportune computer language grammar mapping the set of labels and
relationships defined into the FLC labeled tree. Document Type Definition and XML
Schema are used to define the FML grammar[7][8].

3.2 FLC Labeled Tree and FML in Multi-Agent Systems

The distribution of tasks and resources is both one of the major domains of multi-
agent systems. In the FLC design could be very interesting and useful to distribute
the fuzzy inference on different computing resources in order to speed up fuzzy
computation and to localize rule subset ’near’ their data sources. In order to allow
this fuzzy distribution, FLC has to be considered as a set of distributed disjoint rule
set evaluated in parallel fashion by software agents, hosted on different computing
devices, and able to compute appropriate fuzzy operators. In order to fix our
transparent FLC view in a multi-agent environment it is necessary to show how FLC
tree can be broken in different subtasks, each one representing a portion of initial
fuzzy rule base. Let be the rule base

Giovanni Acampora and Vincenzo Loia

3 A Novel Abstract Representation for Transparent Fuzzy Agent

An Open Integrated Environment for Transparent Fuzzy Agents Design 253

of our fuzzy controller and n the number of rules. For instance, this rule set can be
simply splitted into two different rule base as follows:

This splitting produces two different controllers each one dealing with half of rules
contained into . The proposed schema allows to create a fuzzy agency
characterized by following agents categories: Splitter agents and Fuzzy agents. The
Splitter agent is devoted to create a collection of disjoint rule set by following the
previous schema; the Fuzzy agent is a software entity able to compute the fuzzy
inference operator on a rule partition coming from Splitter agent. More in details, if n
is the cardinality of initial rule base and m is the number of fuzzy agents populating

agents.

3.3

representation of a fuzzy controller, i.e., the FML programs cannot be computed in a
direct way. JaxMe2 represents a direct way to compile and compute the FML
services. In fact, the JaxMe2 allows to translate the XML tree structure (in our case,
the FOM) into a Java classes hierarchy in direct and simple way through the JaxMe2
compiler. Specifically, JaxMe2 can generate Java classes from XML schemas by
means of a JaxMe2 binding compiler. The JaxMe2 binding compiler takes XML
schemas as input, and then generates a package of Java classes and interfaces, which
reflect the rules defined in the source schema. The JaxMe2 binding framework
provides methods for unmarshalling XML instance documents into Java content
trees, a hierarchy of Java data objects that represent the source XML data, and for
marshalling Java content trees back into XML instance documents. The

the agency then the splitter agent move at most �n/m� rules on each of fuzzy

The FML codes represent only an human-oriented and hardware-independent

Implementing the FML Fuzzy Agents

Fig. 3. JaxMe2/FML/Java binding

254

representation of FML fuzzy controllers, a fuzzy wrapper class, named FML-
Controller has been coded. In particular, FMLController class exhibits a set of
methods able to apply the appropriate fuzzy operators to the information derived
from JaxMe2 objects. In particular, FMLController constructors allow to create a
new fuzzy controller by using the unmarshall method of JaxMe2-API independently
from FML file location (file system or network).

4 Integrated Development Environment for Transparent Fuzzy
Agent Design

The tree representation of a FLC and, consequently, its mapping in FML language
offers an additional important benefit: it allows to design and implement a fuzzy
controller by means of simple visual steps. In other words, the FLC tree nature allow
the designer to draw a controller through drag and drop actions, i.e., at the same way
of visual programming languages allow to write computer programs only making use
of the mouse device. By exploiting this benefit an advanced integrated development
environment for FLC design and implementation has been realized Its main features
are: 1) Fuzzy controller drawing; 2) FML modeling, 3) FML controller synthesis.
Fuzzy controller drawing and FML modeling have been discussed previously. FML
controller synthesis is a further benefit coming from XML nature of Fuzzy Markup
Language. In fact, proposed application exploits the JaxMe2 tools in order to
translate the FML abstract controller view in a real implementation based on Java

(FuzzyIDE). Through proposed approach, the MAS developer can define the agent
intelligence simply drawing a fuzzy tree and, successively, they can ‘compile’ this
tree obtaining an computable object.

5 Conclusion

In this paper, several principles for structuring systems support for smart multi-agent
environments have been presented. Precisely, a novel model for fuzzy controller has
been realized; this new representation, based on labeled tree structure, allows to
design transparent fuzzy controller, i.e., control systems able to be reprogrammed on
different hardware without repeating the design and implementation steps. Moreover,
the recursive nature of labeled tree allows to embed the transparent fuzzy controllers

labeled tree and multi-agent environment has allowed the implementation of an
advanced graphical environment allowing the fuzzy designers to draw their ideas by
means of distributed fuzzy controllers achieving a drastic decrease of control systems
development time.

in a distributed environment (multi-agent system) in a direct way. The joint use of

Giovanni Acampora and Vincenzo Loia

JaxMe2/FML/Java binding is depicted in figure 3. In order to complete the Java

computer languages. Figure 5 shows a screenshot of realized IDE application

An Open Integrated Environment for Transparent Fuzzy Agents Design 255

References

1. Ferber J (1999), Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, Addison Wesley.

2. Acampora G, Loia V (2005) Fuzzy control interoperability and scalability for
adaptive domotic framework, IEEE Transactions on Industrial Informatics, Vol. 1,
No. 2, pp. 97–111.

3. Mamdani EH (1974) Applications of fuzzy algorithms for simple dynamic plants,
in Proc. IEE, vol. 121, pp. 1585–1588.

4. Zadeh LA (1965) Fuzzy set, Inform. Control vol. 8, pp. 338–353, 1965.

5. Hagras H (2007) Type-2 FLCs: A New Generation of Fuzzy Controllers, IEEE
Computational Intelligence Magazine, Vol. 2, pp. 30–44.

6. Wang YL, Chen HC, Liu WK (1996) A Parallel Algorithm for Constructing a
Labeled Tree, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, pp.
1236–1240.

7. Acampora G, Loia V (2004) Fuzzy control interoperability for adaptive domotic
framework, IEEE International Conference on Industrial Informatics, pp. 184–189

8. Acampora G, Loia V (2006) Ubiquitous Fuzzy Computing in Open Ambient
Intelligence Environments, IEEE International Conference on Fuzzy Systems,
Vancouver, Canada, pp. 465–470

Fig. 4. FML IDE Screenshot

