
1

PROMOTING THE PENGUIN: WHO IS ADVOCATING

OPEN SOURCE SOFTWARE IN COMMERCIAL SETTINGS?1

OLIVER ALEXY*, JOACHIM HENKEL*,**

* TUM Business School, Arcisstr. 21, 80333 Munich, Germany
Tel: +49-89-28925741, Fax: +49-89-28925742, Email: alexy|henkel@wi.tum.de

** Centre for Economic Policy Research (CEPR), London

Last update: March 11, 2008

ABSTRACT

Most firms that use or develop software today face the questions of whether and how to
engage in open source software (OSS). Yet, little is known about the process of OSS adoption
and diffusion within corporations. Guided by the models of Rogers (innovation diffusion) and
Davis (Technology Acceptance Model), we develop a theoretical framework of how job function
influences individuals’ proclivity to support their employers’ adoption of OSS and OSS
practices. We argue that job function determines an individual’s tasks, and that different tasks are
differentially affected by OSS.

Our study is based on interviews and a large-scale survey in a multinational corporation.
Distinguishing between developers, testers, software architects, project managers, and managers,
we find greater engagement in OSS to be favored most strongly by testers. Excepting project
managers, developers, despite having the most experience with OSS, are the least favorably
disposed to greater corporate OSS engagement. A corporation interested in adopting OSS should
thus take into account the job function-related incentives of each individual. More generally, we
propose that models predicting IT adoption behavior be extended to account for the ways in
which individual adopters interact with the innovation at hand, which will be determined largely
by their job functions.

Keywords: software development, Distributed/Internet based software engineering tools
and techniques, Process implementation and change, Software engineering, open source software

1 We thank three anonymous reviewers, Martin Bichler, Linus Dahlander, Lars Frederiksen, Simone Käs, and

Francesco Rullani as well as conference and seminar participants at Boston University, ETH Zürich, EURAM,
Harvard Business School, and Technische Universität München for helpful comments.

2

PROMOTING THE PENGUIN: WHO IS ADVOCATING

OPEN SOURCE SOFTWARE IN COMMERCIAL SETTINGS?

INTRODUCTION

Commercial use of open source software (OSS) passed through phases of curiosity, hype,

and disillusionment before arriving at pragmatism (Driver et al., 2005). Although the once

dazzling stock market valuations of companies such as Red Hat and VA Linux2 have settled at

more sober levels, OSS has nevertheless gained so strong a foothold in commercial settings that

removing it would occasion the breakdown of many firms’ IT infrastructures, and even, in the

electronics industry, of numerous products (Driver & Weiss, 2005; Goulde, 2006). Many

researchers having consequently addressed the issues of OSS business models (Dahlander, 2005;

Grand, von Krogh, Leonard, & Swap, 2004; Hecker, 1999; West, 2003), collaboration between

firms and the OSS community (Bonaccorsi, Giannangeli, & Rossi, 2006; Dahlander &

Magnusson, 2005; Dahlander & Wallin, 2006; Shah, 2006), and inter-firm OSS-based

collaborative innovation processes (Henkel, 2006; West & Gallagher, 2006), the pros and cons of

commercial OSS engagement are now quite well understood.

Little, however, is known about why and how firms become OSS adopters. Within firms,

who promotes OSS, and do particular job functions and personal characteristics favorably

dispose individuals to lobbying for its adoption? Anecdotal evidence (Henkel, 2004; Moody,

2001, 315; Raymond, 2001a, 23, 2001b, 131-132) of the importance of grassroots initiatives by

developers is supported by survey results that find that software professionals tend to champion

OSS (Henkel, 2008), but systematic evidence is lacking. Because active engagement in OSS

might be vital to firms in terms of efficiency gains, standard setting, defining the rules of

competition, and responding to competitive threats generated by OSS, IT professionals’

disposition towards OSS and willingness to promote its adoption are highly relevant. Yet,

understanding of the process of adoption and diffusion within firms remains largely a black box.

In the interest of making it less so, we dissect the question of who advocates OSS in

commercial settings in a way that distinguishes three levels of engagement. Specifically, we ask

who advocates using existing OSS, who advocates contributing to existing OSS projects, and

who advocates releasing proprietary software as OSS? Note that levels of contributing and

2 VA Linux is called SourceForge, Inc. (NASDAQ: LNUX) nowadays.

3

releasing amount to a process innovation in software development, which would imply that

employees influence organizational structure and processes. As our main research question, we

ask whether particular job functions and personal characteristics favorably incline an employee

towards OSS.

Because we attempt to analyze through these questions the alleged grassroots aspect of

corporate OSS adoption, we exclude OSS initiatives by top management in order to focus

explicitly on the level of IT professionals. Guided by a framework based on the Technology

Acceptance Model (TAM) (Davis, 1989; Davis, Bagozzi, & Warshaw, 1989) and concept of

innovation diffusion (Rogers, 2003), we develop a theoretical framework that links individuals’

attitudes towards commercial OSS adoption to their job functions. We maintain that job function

determines an individual’s tasks (and thus daily routines), and that different tasks are

differentially affected by the introduction of OSS. Software professionals whose daily routines

are more strongly or more negatively affected by its introduction are expected to be less

favorably disposed to the adoption of OSS. Our findings further suggest that the TAM and

similar models be extended in the manner suggested by Venkatesh (2006) to take into account

the adopter’s job function, or, more generally, the way in which the adopter interacts with the

innovation at hand.

We pursued answers to these questions over a period of a year and a half in the

telecommunications department of a multinational corporation that is not among the early and

outspoken corporate proponents of OSS (e.g., IBM). The company so far has no company-wide

OSS policy and is in a relatively early phase of commercial adoption and diffusion of OSS. Thus,

not being prejudiced by existing corporate strategy governing OSS, the company was well-suited

to our study, which explored the role of employees in OSS adoption through interviews with 25

individuals and a survey involving 249 participants.

Our main findings are as follows: while our results regarding the impact of respondents’

job functions are consistent with theoretical considerations, they are still rather surprising.

Among developers, software testers, software architects, project managers, and managers,

software testers are generally most favorably disposed to increasing corporate involvement in

OSS activities, followed by software architects and managers. Excepting the (small) group of

project managers, developers, despite having the most experience with OSS, were the least

favorably disposed to greater corporate engagement, in particular to contributing to existing OSS

projects and releasing proprietary software as OSS.

4

Since developers represent both the basic level of software development and the largest

of the studied groups, our results lead us to question anecdotal evidence that OSS adoption, at

least when it goes beyond the use of existing OSS, is generally driven by a broadly supported

grassroots movement. This finding has consequences for companies’ management of OSS

engagement. Given a 46% probability that a randomly selected developer from our sample is

neutral (26%) or even unfavorably disposed (20%) towards releasing proprietary software as

OSS, developers should ideally be given the opportunity to self-select into OSS-related projects.

We can make the same recommendation for project managers, and, more generally, that in the

context of corporate OSS engagement, the job function-related incentives of each affected

individual need to be considered.

IT professionals are nevertheless, on average, “somewhat” positive about their employer

increasing its OSS activities. Differentiating by type of activity, we find “using existing OSS

more often” to be most strongly supported, followed by “contributing to OSS projects” and

“releasing proprietary software as OSS.” A favorable disposition to all types of OSS activity is

strongly dependent on, apart from an individual’s job function, prior exposure to OSS,

identification with the OSS community, acceptance of reciprocity norms, and age.

The remainder of the paper is organized as follows. We first compare OSS development

with proprietary closed source software (PCSS) development. We then provide the theoretical

background and develop our hypotheses for corporate OSS adoption and development. Our data

and methods are presented next, followed by the results of the study. Finally, implications for

theory and practice are derived and limitations of the findings discussed.

BACKGROUND: PCSS VERSUS OSS DEVELOPMENT

Software Development Process

In programming PCSS, firms build almost exclusively on their employees’ knowledge.

Developers write source code according to use-cases specified by software architects with only

little interaction with the outside (see Figure 1). Before a product is released, product testing

ascertains that it adheres to both initial requirements and company quality standards (Jones,

2003; Lehman, 1980; Royce, 1987; Senyard & Michlmayr, 2004). Outside influence is limited to

the requirements articulated by the customers (which might be internal to the firm) at the

beginning of the development process, licensed-in commercial third-party software, and beta

testing towards the end of the development process. This description is clearly of the waterfall

model of software development, which, although more advanced models are in use by many

5

firms, continues to be widely employed by firms developing software (Cusumano, MacCormack,

Kemerer, & Crandall, 2003; Jones, 2003) . In particular, it was the model of choice in the firm

we studied.

Insert Figure 1 and Figure 2 about here

Boundaries between a firm and its environment become more permeable with OSS

development (see Figure 2). Consider first the case of a firm that releases internally developed

software as OSS in order to launch a public OSS project. The first release, usually done in the

same way as in a PCSS environment, is typically a prototype that is good enough to solve the

initial problem (Senyard & Michlmayr, 2004). But thereafter development changes significantly.

Whereas PCSS would enter the maintenance phase, which frequently consumes more than half

of all development resources (Banker, Datar, & Kemerer, 1991), outsiders are now encouraged

to report bugs, suggest new features, and contribute source code to further improve the software

(see Figure 3). Additional source code that meets a project’s quality standards is made available

to the community and included into subsequent releases. Substituting OSS for PCSS

development has been shown to, at least potentially, reduce maintenance costs considerably

(Lakhani & von Hippel, 2003; Senyard & Michlmayr, 2004; Wheeler, 2002), and significant

changes in the development process are observed, particularly in the daily routines of developers,

project managers, and managers (see Figure 2).

The above describes a particular case of corporate OSS engagement. More generally,

software development can embrace OSS and OSS practices to varying degrees. For purposes of

this paper, we distinguish three levels of corporate OSS activity: using existing OSS,

contributing to existing OSS projects, and releasing proprietary software under an OSS license.3

Insert Figure 3 about here

3 Grand et al. (2004) use a related classification distinguishing four levels: using existing OSS; adapting and

extending OSS; acting as core OSS developers; and providing development and distribution services related to
OSS projects (thus running an OSS compatible business model). The first levels in this and our classification
are identical. The second and third levels in this classification largely correspond to “contributing to existing
OSS” in our classification. The top levels differ because Grand et al. (2004) focus on “pure play” OSS firms,
whereas our focus is on established corporations.

6

Existing OSS is widely used both within and outside the IT industry, and has often

become an integral part of corporate software architectures and even commercial software

offerings. Prominent examples include the Linux operating system, Apache web server, and

Eclipse programming environment (Driver & Weiss, 2005; Goulde, 2006; Grand et al., 2004). In

these cases, OSS is basically treated just as any other third-party software, mostly without or

with only limited modifications.4 Only one-way interaction between the company and the

environment takes place, such that clear boundaries between the two exist.

Yet, there are instances in which corporations fix existing bugs or adapt the software to

their needs, and contribute the modified source code back to the OSS project (e.g., Henkel,

2006). The latter typically happens selectively, that is, modifications are contributed back only

when this is deemed advantageous to the company (Henkel, 2006). Giving back conforms to the

idea of reciprocity promoted by OSS and Free Software proponents (Raymond, 2001a; Shah,

2006), but typically contradicts established corporate policies that dictate that innovation take

place within firms’ boundaries and that intellectual property leave the corporation, if at all, only

under a licensing contract. It is thus a significant step, especially for established firms, to move

from using OSS to contributing to OSS projects. The greater the extent of such activities, the

more blurred boundaries are likely to become between a company and its environment

(Chesbrough, 2003, 40-41, 56-57; West & Gallagher, 2006). Regular, two-sided interaction with

the outside environment is rare apart from high-profile cases such as IBM’s engagement in

Linux. Companies that contribute code to OSS projects are clearly focused on leveraging it

externally with the aim, for example, of improving their reputation or influencing a standard.

Releasing proprietary software under an OSS license, as illustrated at the beginning of

this section, is an even more radical departure from established practice. Doing so to initiate co-

development with the OSS community completes the transition from closed to collective

invention, or open or private-collective innovation (Allen, 1983; Chesbrough, 2003; von Hippel

& von Krogh, 2003). As the term co-development suggests, releasing proprietary software as

OSS implies a process innovation: team organization, project management, and coding must be

organized and executed differently than in the conventional mode of development (Grand et al.,

2004; von Hippel & von Krogh, 2003; West & Gallagher, 2006). Moreover, the full bidirectional

4 Franke and von Hippel (2003) found that only 19% in a sample of 131 Apache webmasters had modified the

web server source code, even though they likely were expert users. In general, this percentage will be even
lower.

7

interaction that follows is likely to blur or even erase boundaries between a corporation and its

environment as relate to a project and the knowledge associated with it.

Advantages and Disadvantages of Corporate OSS Engagement

Potential advantages attendant on using OSS include savings on licensing fees and

development effort, reduced lock-in, shorter time-to-market, and higher quality and performance

(Goldman & Gabriel, 2005; Hecker, 1999; Raymond, 2001a).

Contributing code to existing projects might yield both technical and marketing benefits.

Technology-wise, the company may influence the standard version of the software, thereby

eliminating the need to redo the changes for each update of the OSS and to take into account

possible incompatibilities, new security issues, etc., as this is now done by the maintainer of the

OSS project. Moreover, others might be induced to contribute improvements to the contributed

code. From a marketing point of view, contributed code that is well received can boost the

contributor’s reputation and visibility (Behlendorf, 1999; Hecker, 1999; Henkel, 2004;

Raymond, 2001a, 2001b). Releasing proprietary software as OSS can yield much the same

benefits but to a greater magnitude (Goldman & Gabriel, 2005; Lakhani & von Hippel, 2003;

Shah, 2006). Moreover, new business models such as the sale of complementary goods or

services might become viable, and commoditizing a particular layer of the software architecture

might help to shift competition to an area in which the corporation has competitive strengths

(Raymond, 2001b; West, 2003).

The foregoing benefits must be weighed against a number of potential drawbacks. The

principal disadvantage of using OSS is that if the project that produced the software loses

momentum or goes in an undesired direction, the burden of further development and

maintenance shifts, unexpectedly, back to the corporate user. Contributing to an OSS project and

releasing PCSS as OSS expose the contributor to start-up costs associated with modularizing and

sanitizing the source code as well as to requirements that additional resources be allocated to

support (Hecker, 1999; Henkel, 2004; Raymond, 2001b, 154-155). Having released proprietary

software, the company will then need to bear additional expenses to manage the project, the

community, and its participants (Goldman & Gabriel, 2005). The most obvious risk of opening

proprietary software is, of course, a potential loss of intellectual property and, consequently, of

competitive advantage.5

5 When releasing proprietary software as OSS, the firm does retain copyright to the software. However, OSS

licenses grant any receiver of the software far-reaching rights, namely, to use, modify, and distribute the

8

The net benefit of deliberate and selective participation in OSS activity has been found in

many instances to be positive (Bonaccorsi et al., 2006; Dahlander & Magnusson, 2005;

Dahlander & Wallin, 2006; Henkel, 2008; Shah, 2006), but potential benefits and drawbacks

must nevertheless be weighed and addressed in a preceding business case (West & Gallagher,

2006).

RESEARCH QUESTIONS AND HYPOTHESES

In this section, we develop a theoretical framework for describing the drivers of IT

professionals’ attitudes towards corporate OSS engagement. The framework is built on a model

of organizational adoption that distinguishes three sequential steps: (1) initiation of the

innovation, (2) the organization’s (i.e., management’s) adoption decision, and (3) diffusion

through individual employees’ adoption decisions (Damanpour, 1991; Leonard-Barton &

Deschamps, 1988; Rogers, 2003). We then derive hypotheses regarding the influence of

respondents’ job functions on their attitude towards corporate engagement in OSS, using the

Technology Acceptance Model (TAM) (Davis, 1989; Davis et al., 1989) as a guideline. To

control for effects other than those associated with job function, we additionally employ the

concept of diffusion of innovations (DOI) (Rogers, 2003).

The Process of Organizational Adoption

Organizational innovation is defined as an organization’s adoption of a new idea or

behavior (Daft, 1978; Damanpour, 1991; Damanpour & Evan, 1984). The adoption process can

be segmented into initiation, adoption, and diffusion (Damanpour, 1991; Kwon & Zmud, 1987;

Leonard-Barton & Deschamps, 1988; Rogers, 2003; Zmud, 1982). Usually triggered by an

organizational need or new technology, the process is initiated by scanning the organization for

solutions to problems or opportunities (Cooper & Zmud, 1990). Adoption is the favorable

decision by management to commit the required resources to an identified solution, diffusion the

dissemination and acceptance of that solution (i.e., the innovation) by members of the

organization (Cooper & Zmud, 1990; Rogers, 2003).

Following Daft (1978), organizational innovations can be classified as technical and

administrative. Technical innovations “occur in the technical system of an organization and are

directly related to the primary work activity of the organization. […] Administrative innovations

software. Hence, apart from the right to be credited for the work, most other rights which the legal concept of
“copyright” awards to the original creator of a work are effectively waived when the work is released as OSS. In
particular, the rights to restrict usage, modification, and dissemination are either waived entirely (e.g., in the
case of a BSD-type OSS license) or are waived under the condition that the recipient of the code comply with
some general stipulations of the license (e.g., in the case of the GPL OSS license).

9

are defined as those that occur in the social system of the organization” (Damanpour & Evan,

1984). Although more specific adaptations exist (e.g., Swanson, 1994), this general distinction is

well suited to IT innovations (Zmud, 1982, 1984).

How each type of innovation is introduced to an organization is a central issue in the

present context. As organizational structure is set by management (Burgelman, 1983) and

modified by means of administrative innovations, the latter are likely to be introduced in top-

down fashion (Daft, 1978). Technical innovations, on the other hand, are more likely to be

bottom-up initiatives because individuals disposed to adopting technical innovations often will

do so even without management support (Leonard-Barton & Deschamps, 1988). Such activity

might culminate in a bottom-up adoption process in which management only subsequently

decides that the corporation as a whole should adopt the technology, long after its employees

have decided to do so (Grover, 1997; Swanson, 1994). For both technical and administrative

innovations, however, the most effective path of introduction has been found to be a two-step

process that begins top-down, with management deciding on adopting an innovation overall, and

employees then making their personal adoption decisions individually (Cooper & Zmud, 1990;

Grover, 1997; Swanson, 1994; Zmud, 1982). Thus, whether adoption begins bottom-up or top-

down, successful diffusion of an innovation ultimately relies on the individual adoption decisions

of employees (Agarwal, 2000; Zmud, 1984).

Because anecdotal evidence that associates OSS with grassroots adoption suggests an

inherent potential for bottom-up organizational innovation (Henkel, 2004; Moody, 2001, 315;

Raymond, 2001a, 23), it is important to understand what motivates individual employees to

support such adoption. As we have seen, employees can drive corporate OSS engagement in two

ways, (1) by opting, themselves, for OSS in decisions that are in their own discretion and (2) by

lobbying for broader, organization-wide OSS engagement.

However, individuals with different job functions will, in general, have different attitudes

towards the adoption of new information technology (Agarwal & Prasad, 1999; Baldridge &

Burnham, 1975), and in particular towards engagement in OSS. Specifically, employees’

attitudes will reflect their perception of how adoption will affect the daily routines associated

with their role in the software development process. Two questions thus become vitally

important, (1) who can be expected to lobby for greater corporate engagement in OSS, which is

to say, where is adoption initiated and diffusion supported, and (2) who is likely to oppose

engagement in OSS development and pose a bottleneck to its introduction? Given that OSS

10

practices affect all steps in the software development process, the weakest link in this chain, that

is, the least supportive job function, limits the overall effectiveness of OSS development.

Modeling Individuals’ Adoption Decisions

To ensure that we are, in fact, measuring the effect of individuals’ roles, we control for

other elements that might influence their adoption decision. We conducted our study within one

firm in order to create a constant environment by eliminating such external factors that strongly

influence adoption as firm size, diversity, slack resources, IT application portfolio,

specialization, and professionalism (Damanpour, 1991; Swanson, 1994). We model individuals’

attitude towards corporate OSS engagement, as an antecedent to both their individual adoption

decisions and their lobbying for OSS, using the two most widely accepted concepts in the IS

literature (Gallivan, 2001), namely, TAM and DOI. Our theoretical framework follows the

approach suggested by Kwon and Zmud (1987) in using variables from TAM and DOI to

represent characteristics of the individual, task, and organization.6 The resulting framework is as

depicted in Figure 4.

Insert Figure 4 about here

Our primary interest is in measuring the effect of individuals’ job functions on their

attitudes towards their employers’ further engagement in OSS development. This largely

corresponds to employing as the dependent variable the TAM’s “attitude towards using” (Davis,

1989; Davis et al., 1989). “Using” here refers to all three levels of OSS engagement (not just to

“using existing OSS”), and is not restricted to (but comprises) using by the individual. We

deliberately employ “attitude towards using” and not “intention to use” as the dependent

variable, since (1) the latter can not be extended to use by others and (2) is not really applicable

to the third level of corporate OSS engagement, “releasing proprietary software as OSS.” Also,

6 In an article summarizing past literature on this issue, Kwon and Zmud (1987) provide a list of factors

potentially influencing corporate IS implementation that closely follows Rogers’ DOI. They extend the latter by
integrating task and environmental characteristics. As described above, we have deliberately excluded (external)
environmental characteristics from our study by focusing on one firm. Furthermore, our study differs from
Kwon and Zmud’s by capturing task-related characteristics by individuals’ job functions, by applying our
framework to data, and most importantly by addressing the specific issue of OSS adoption.

11

we aim at analyzing drivers of both individual OSS adoption and lobbying for OSS, and “attitude

towards using” seems more appropriate as a determinant of lobbying than “intention to use.”7

The two main factors that drive an individual’s attitude towards a new a technology,

according to the TAM, are perceived usefulness and perceived ease of use. Attitude towards

using a new technology affects the behavioral intent to use it, which, in turn, determines whether

one becomes a user. Perceived usefulness is highly influential on both attitude towards using and

behavioral intent to use. Perceived ease of use has an indirect effect on both through perceived

usefulness: an individual perceives a new technology as more useful if it previously has been

identified as easy to use (Davis, 1989; Davis et al., 1989).

We employ the TAM in the following section to derive perceived usefulness and

perceived ease of use from job function (and some control variables). In the theoretical

framework as well as the subsequent econometric analysis, perceived usefulness and perceived

ease of use are captured by the job function variables, such that the TAM items themselves do

not appear as explanatory variables. Deviating in this way from the standard TAM approach

allows us to directly juxtapose the analysis of attitudes by job groups with a multivariate analysis

controlling for other characteristics of the respondent.

Following Rogers, we assume the diffusion of an innovation to depend on the innovation

itself, communication and communication channels, time, and social systems (Rogers, 2003).

Rogers’ measures for the first of these dimensions, “innovation,” include relative advantage,

compatibility, complexity, trialability, and observability. The greatest importance attaching to the

first two measures (Rogers, 2003; Tornatzky & Klein, 1982), we decided to drop the other three,

and because relative advantage refers to the adopter’s perception and is thus highly dependent on

job function, relative advantage was not measured as an independent variable. Instead, we argue

that the latter is captured by an individual’s job function.

Following our research framework, we will first take a look at the main independent

variable, namely the individual’s job function, to show why different job functions may lead to

different evaluations of corporate OSS engagements. Control variables, that is, characteristics of

the innovation, the individual, or the organization which might further influence an individual’s

7 As an indicator for this, a respondent’s attitude towards releasing proprietary software as OSS is highly

correlated (p < 0.01, rsp = 0.22) with the number of current software products of the corporation that this
respondent suggested, in an open question, as potential candidates for a release as OSS. The act of suggesting
constitutes lobbying for OSS, even if with a limited effort. Similarly, the attitude towards using OSS is highly
correlated (p < 0.01, rsp = 0.23) with the extent to which the individual was currently trying to use OSS in
corporate software projects.

12

proneness towards corporate OSS engagement, will be discussed jointly with their

operationalization.

Job Functions

For purposes of this paper, we distinguish five job functions in the software development

process. Ordered (roughly) by their sequence in the waterfall model, these are software

architects, developers, software testers, project managers, and (general) managers. Within the

organization that we studied, these job titles are officially and consistently used to denote

specific job roles, or functions. In the following, we describe each of these roles, in particular

with respect to how it would likely be affected by increased corporate engagement in OSS

development.

Software architects translate user needs into a set of (high-level) software requirements

and subdivide these into subsystems that are coded by developers (Bass, Clements, & Kazman,

2003; Royce, 1987). As their title implies, they determine product architecture, that is, the

linkages among different (possibly modular) components of a software system (Baldwin &

Clark, 2000; Henderson & Clark, 1990).

Even in PCSS development, software architects interact with outsiders, receiving

customer input and selecting and integrating third-party modules into the design of software

systems. Perceived ease of use with regard to outside engagement in the OSS process should thus

be high for this job function, which might be expected to view existing OSS as just another

external source of building blocks. Perceived usefulness should also be high given that (1) the

availability of OSS expands design choices, and (2) the suitability of OSS for a particular

purpose can more easily be assessed owing to availability of the source code (Ajila & Wu, 2007;

Madanmohan & De', 2004). Access to the source code also facilitates and reduces the cost of

adaptations, and contributing code to influence the architecture of an OSS project (Goldman &

Gabriel, 2005; Lakhani & von Hippel, 2003) could make the contributor party to the eventual

establishment of an industry standard (Bonaccorsi et al., 2006; Henkel, 2004). We thus expect

software architects’ attitudes towards corporate OSS engagement to be rather positive.

For the developers, whose job it is to code the subsystems that comprise a system design,

the changes entailed by engagement in OSS are perhaps best described by the terms not-

invented-here, OSS development style, and coding for reuse.

First, the Not-Invented-Here (NIH) syndrome (DiBona, 2005, 23; Katz & Allen, 1982)

may loom large when, instead of writing one’s own code, existing OSS is to be reused or

13

external contributions are to be accepted to a corporate OSS project. Furthermore, the potential

for internal development to be scaled down by using existing OSS might be perceived to put

developers’ jobs in jeopardy. At least in the short run, however, the potential for using existing

OSS to simplify and speed up their work should be viewed positively by developers.

Second, the OSS development style, design principle, and meritocratic culture will, of

course, be unfamiliar to developers inexperienced with OSS (Scacchi, 2004). The need to

interact intensely with the outside world and to aggregate as well as write source code and,

possibly, maintain it in a public project will be new territory even for developers who have used

external components in PCSS development, as communication with the originators of the source

code would likely not have been required. Because they occur concurrently, these activities

demand a great deal of coordination. New responsibilities also accrue to developers, who

become to varying degrees moderators and managers of users and contributors (Kogut & Metiu,

2001; Senyard & Michlmayr, 2004). Adapting to these changes takes considerable effort.

Developers who cannot make the transition to this model (due either to a general lack of skills or

to an inability to see how it relates to their existing knowledge) or who feel pressured to do so by

outside forces will be inclined to evaluate negatively, and exhibit a negative attitude towards

their employer’s engagement in, OSS use and development (Ryan & Deci, 2000). On the other

hand, being able to communicate with outside experts might help to resolve problems their

companies might be having difficulty solving on their own (Constant, Sproull, & Kiesler, 1996)

or identify problems that might otherwise have been overlooked.

Finally, coding for reuse and the importance of modularity are far greater in OSS than in

PCSS development (Goldman & Gabriel, 2005, 63, 257; Raymond, 2001a; Senyard &

Michlmayr, 2004),8 and although engaging in OSS might generate positive signaling effects and

enhance peer recognition (Lerner & Tirole, 2002; McLure Wasko & Faraj, 2005), it also exposes

internally generated code to greater scrutiny by external as well as internal experts. Our

interviews revealed that especially less skilled developers fear losing face when mistakes are

now more easily found and attributed. We thus expect that, relative to software architects,

developers will exhibit a less positive attitude towards OSS overall and, in particular, a strongly

8 More modern software development methods such as the spiral model, extreme programming, and agile

methodologies by their nature rely more heavily on modularization and coding for reuse than the classical
waterfall model and V-model and, thus, are more “compatible” with OSS development (see, e.g., Goldman &
Gabriel, 2005; Hang, Hohensohn, Mayr, & Wieland, 2004).

14

negative attitude towards contributing to existing OSS projects and releasing proprietary

software as OSS.

Testing being a highly routinized task executed by technical specialists supported by

dedicated software applications, its nature is not substantively different for OSS and PCSS

development. In their role as end control, software testers test the source code against

specifications trying to find defects, which they report then back to the developers (Royce,

1987).9 Even with PCSS development, external actors are engaged in so-called beta testing,

whereby selected users are provided with a copy of a release candidate of a software program for

testing purposes. That OSS development introduces for testers (as for software architects) no

fundamentally new activities should translate into high perceived ease of use, and that it avails

testers access to a community of developers and users and concomitant significant increase in

frequency of testing and numbers of test designs should translate into high perceived usefulness.

Moreover, incorporating OSS components that likely have been heavily scrutinized by the OSS

community might be expected to reduce the number of bugs (Raymond, 2001a), and no

appreciable degree of employee redundancy is indicated as final quality inspections will still

need to be performed before a product is released. Testers are thus expected to generally exhibit

positive attitudes towards their employers’ engagement in OSS.

Project managers plan, execute, and monitor software projects, coordinate tasks and

personnel, allocate resources, and set milestones (Kirsch, 2000). Both in PCSS and OSS

development, they perform boundary-spanning tasks involving bringing together organization

members with different backgrounds performing different tasks (Tushman, 1977; Tushman &

Scanlan, 1981). That OSS development entails working with an additional, external boundary

increases uncertainty in the coding realm (Goldman & Gabriel, 2005). How is a project manager

who doesn’t even know who is working on it to set milestones for and allocate resources to a

project? The “kindness of strangers” (Constant et al., 1996) might be helpful, but cannot be taken

for granted. The resulting uncertainty introduces risk and a concomitant need for greater

coordination, which increase the project manager’s workload (Kirsch, 2000).

Our interviews further revealed that contributing source code to existing OSS and

releasing proprietary software as OSS upon completion of a project adds work that yields no

immediate and clearly visible benefits for the project manager or the project. Potential benefits

9 We thank one anonymous reviewer for assisting us in this definition.

15

will be extremely difficult to quantify and project managers will scarcely be evaluated on them.

The transformation process for projects not planned as OSS from the outset, moreover, can be

costly (Hecker, 1999; Henkel, 2004). Perceived usefulness and perceived ease of use might thus

be expected to be rather low, and attitude towards corporate engagement in OSS rather negative,

for project managers.

(General) managers define and enact corporate strategy. They decide which projects to

pursue and allocate the requisite resources (Burgelman, 1983). Their attitude towards OSS

development might thus be expected to be much the same (albeit less intense, not being directly

responsible for meeting deadlines) as that of project managers. But the need of managers,

“diversified” by oversight of a plurality of projects, to think beyond individual projects mitigates

the effects of risk-aversion. Long-term benefits such as reuse of OSS adapted to local needs

should thus offset negative short-term effects, and the benefits of releasing proprietary software

as OSS, being generally strategic in nature, might be expected to be recognized by managers

(Dahlander, 2005; Grand et al., 2004; Hecker, 1999; Raymond, 2001a, 2001b; West, 2003). They

must nevertheless weigh such benefits against possible disadvantages such as loss of competitive

advantage consequent to relinquishing intellectual property or the risk of forking. Managers’

attitudes towards corporate engagement in OSS might be expected to be more positive than

project managers’ and less positive than software architects’ and testers’.

We find the effect of job function on attitude to depend to some extent on type of OSS

engagement (i.e., using, contributing, or releasing), but no indication that ranking of job

functions with respect to affinity for OSS should be contingent on the type of engagement. We

thus arrive, for each type of engagement, at the following predictions regarding the impact of job

function on attitude towards OSS: software architects and testers should be most favorably

disposed to OSS, followed by managers and developers.10 Based on our theoretical discussion

we are unable to predict whether and how the attitudes of software architects and testers, and

managers and developers, might differ. Project managers, finally, should be least favorably

disposed to OSS. These findings give rise to the following hypotheses (letters in square brackets

indicate to which groups each hypothesis refers).

10 One could characterize a person’s job function on a more detailed level than what is defined by the job title, and

thus arrive at more detailed predictions regarding OSS attitudes. For example, one could take the variables
“hours per week spent programming”, “hours per week spent programming OSS” and the respondent’s field of
education (major in computer science, electrical engineering, or other fields) into account. However, including
them into our regression analysis (see Section V.B) does not yield any significant effects. We conclude that, for
the purpose of our study, the job title provides a sufficiently detailed characterization of a person’s job function.

16

H1[TM]: Testers’ attitudes towards OSS are more positive than managers’.

H2[TD]: Testers’ attitudes towards OSS are more positive than developers’.

H3[TP]: Testers’ attitudes towards OSS are more positive than project managers’.

H4[AM]: Architects’ attitudes towards OSS are more positive than managers’.

H5[AD]: Architects’ attitudes towards OSS are more positive than developers’.

H6[AP]: Architects’ attitudes towards OSS are more positive than project managers’.

H7[MP]: Managers’ attitudes towards OSS are more positive than project managers’.

H8[DP]: Developers’ attitudes towards OSS are more positive than project managers’.

As indicated in the derivation of our hypotheses, we expect differences between the roles

to become more significant with increased OSS engagement.

DATA AND METHODS

Our study was conducted in the telecommunications department of a multinational

electronics company in which software development plays a key role. Hence, most (if not all)

employees were involved in some way with software development in the course of their

everyday work. At the time of the study, the department had no officially communicated strategy

regarding OSS. Rules and initiatives promoting the optimal use of OSS, despite widespread OSS

adoption within the corporation, were known only to a minority of employees. Nor was there any

general policy governing contributing to existing OSS projects or releasing proprietary software

as OSS, although instances of both had occurred.

Data Collection

Current involvement in and practices related to OSS were assessed in 25 interviews of 45

minutes average duration. These interviews, conducted with employees in different countries and

at different hierarchical levels as well as with experts outside the company, were recorded,

transcribed, and categorized using the text analysis software NVivo 7 (Mayring, 2004).

A large-scale online survey was disseminated to the department’s IT employees in early

2006. Participants were asked to share their general opinion of, and current experience with and

exposure to, OSS as well as their perceptions of their peers with respect to OSS. Additionally, a

measure of personal innovativeness was included.

Survey results were first subjected to factor analysis, before univariate and multivariate

analyses were conducted. All computations were performed using the statistics and econometrics

software package Stata 9.2.

17

Sample

The survey, in both English and German, was distributed at several of the corporation’s

international sites. The validity of the survey and consistency of the translation were confirmed

in pre-tests. Addressees were invited to participate during a three-week time span. Participants

received from their respective superiors invitational e-mails containing text composed by the

survey’s authors and a general user-password combination valid for all employees that protected

the survey from unauthorized participation. The wording of the invitation and the fact that the

questionnaire was hosted by our university ensured that potential participants were sure about the

voluntary and anonymous nature of the survey. A reminder was sent out halfway through the

three-week period to encourage additional participation.

Approximately 800 people in five countries were contacted and 249 valid replies

received, yielding a response rate of 31%.11 Response rates among sites varied from 24% to

80%. By job function, usable replies were received from 37 software testers, 23 software

architects, 27 managers, 153 developers, and 9 project managers (see Table I). This breakdown

was nearly identical to the distribution of job functions in the company as a whole.

Dependent Variables

Attitude towards engaging in OSS. Our assessment of employee attitude distinguished

among three levels of corporate OSS engagement: using existing OSS, contributing to OSS

projects, and releasing proprietary software as OSS.12 Respondents were asked to indicate their

agreement, on a 5-point Likert scale ranging from 1 “strongly disagree” to 5 “strongly agree”, to

the following statements.

I think that [company department] could benefit from...

 …using existing OSS more often

11 We originally received 404 replies from approximately 1,100 people in seven countries (yielding a response rate

of 37%). Legal restrictions, however, prevented the collection of demographic information in some countries
thus reducing the number of usable observations. We analyzed for significant differences between the two
groups (included vs. dropped observations), but found none. Nor were any differences observed with respect to
individuals from different countries in both groups. To avoid single source bias, we also validated the survey
results against the results of the interviews.

12 We argued in the section on theory that attitude towards personal OSS engagement should be closely related to
attitude towards corporate OSS engagement. This is confirmed empirically: agreement with the statement, “I
would like to use more OSS in my job” is highly correlated with agreement with the statement, “[Company]
could benefit from using OSS more often” (Spearman rank correlation: 0.51), and agreement with the statement,
“I would like to develop more OSS in my job” is highly correlated with agreement with the statements,
“[Company] could benefit from contributing modified OSS back to the public” (0.44) and “[Company] could
benefit from making some of its own proprietary software public under an OSS license” (0.52).

18

 …contributing modified OSS back to the public

 …making some of its own proprietary software public under an OSS license

 Note that whether individuals are able to correctly assess how OSS will affect their

employer is irrelevant in our context. It is their perception that determines their attitude towards

corporate engagement in OSS, and consequently whether they adopt and lobby for OSS.

Main Independent Variables

Job functions are coded by dummy variables. We use testers as the reference group (1)

because they are the most positive about OSS according to both our theoretical considerations

and descriptive statistics (see Table IV), and (2) because they are a sufficiently large group,

accounting for 14.9% of respondents (see Table I).

The categorization of job functions was given to us by the company. The tasks carried out

by people with the same job title were close to identical, also across different sites and projects

carried out by the organization, matching the descriptions of job functions given in section 0.

Control Variables

Most control variables are indices made up of items derived from theory and will be

described in the following. Correlations between variables are given in Table A.1 of the

appendix, factor analyses are reported in Tables A.2 and A.3, and further descriptive statistics on

the control variables are given in Table A.4.

Compatibility in the context of innovation diffusion might, but does not necessarily,

imply compatibility in a technical sense. More important is that compatibility encompasses the

degree to which an innovation is coherent with existing norms and premises (Rogers, 2003),

which, in turn, at least in part, determines its perceived ease of use (Davis, 1989; Venkatesh,

2000). In our context, goals of the OSS community (e.g., freedom and reciprocity) constitute

such norms and premises. Identification with these goals probably drives some, but not most,

individuals’ engagement in OSS development (Hars & Ou, 2002; Lakhani & Wolf, 2005). For

these individuals, the community’s norms represent unifying aspects that constitute the

underlying philosophy of the OSS movement (Hertel, Niedner, & Herrmann, 2003; Stewart &

Gosain, 2006); identification with this philosophy might motivate “giving back” to the

community by contributing to an OSS project or releasing proprietary software as OSS

(Venkatesh, 2000). Identification with the OSS community was measured with a single-item

19

construct,13 reciprocity by degree of agreement with three statements that reflect the

community’s give-and-take philosophy (see Table A.2). These items were taken from existing

studies and slightly adjusted (Henkel, 2006; Lakhani & Wolf, 2005). The three items that

measure reciprocity load higher than 0.8 on a single factor, explaining 71% of the total variance.

Cronbach’s α of the index is 0.79.

Organizational characteristics. It having been shown that people who belong to a group

are likely to take actions based on a frame of reference created by the group (Merton & Rossi,

1949), innovation diffusion might be expected to be influenced by embeddedness in social

systems (Granovetter, 1985; Rogers, 2003). Whether individuals are favorably or unfavorably

disposed to OSS engagement tends to be influenced by their immediate environment. Such

influence is also important in the context of interaction and knowledge exchange with others

both within and outside an organization (Granovetter, 1985; Granovetter, 1973; Katz & Allen,

1982, 1985; Rogers, 2003). Network externalities and the related critical mass phenomenon are a

specific instance of such influence (e.g., Fish, Kraut, Root, & Rice, 1993). Our study combines

social systems and communication—as a mediator of social influence, a means to bridge gaps in

compatibility, and a valuable source of innovation in itself (Chakrabarti & O'Keefe, 1977; Ebadi

& Utterback, 1984; Katz & Allen, 1985)—to measure the influence of organizational factors on

individuals’ attitudes towards corporate OSS engagement using seven questions based on

statements collected in our interviews: These items capture how respondents’ peers and

supervisors think about, and the degree to which they are familiar with, OSS. The items were

distributed throughout the questionnaire to minimize social desirability bias. All items load

higher than 0.5 on one factor with eigenvalue larger than one, which explains 44% of the total

variance (see Table A.2). Cronbach’s α of the index (Organizational Factors) is 0.77.

Individual characteristics were split into previous OSS exposure and personal

innovativeness.

We expect individuals who have previously been engaged in OSS to view increased

corporate engagement in OSS more favorably (Davis, 1989; Davis et al., 1989). To account for

the effect of previous exposure to OSS, we included a dummy variable (“Did OSS”) for whether

a participant had worked on OSS code before.

13 The respective survey question asked to what degree the participant agreed with the statement, “I identify with

the OSS community.”

20

Kirton proposed an Adoption-Innovation index (KAI) to measure creative style or

innovativeness, which he maintains is an important determinant of how a person copes with

change (Kirton, 1976, 2003). Using OSS, contributing to existing OSS projects, and releasing

proprietary software as OSS, because they involve considerable change, should be more likely to

be viewed favorably by individuals who score higher on the index.

A number of studies have demonstrated the KAI inventory’s relevance to IT and IT

adoption (Foxall & Hackett, 1992a; Gallivan, 2003). Its items load on three factors. The first

factor, originality, describes how well a person can deal with new ideas, the second, efficiency, a

person’s need for efficient processes and desire to execute tasks in great detail, and the third,

conformity, a person’s adherence to rules and authorities. Because the items loading on the

efficiency and conformity scales must be scored in reverse, the resulting indices correspond to

inefficiency and non-conformity, and higher scores in fact indicate higher innovativeness

(Kirton, 1976, 2003). Because the factor structure of the original 32-item scale has been

disputed, the 13-item version of the KAI was used (Foxall & Hackett, 1992b; Taylor, 1989b,

1989a), each item ranging from 1 (“very adopter-like”) to 5 (“very innovator-like”).

Principal component analysis retains three factors with eigenvalues larger than 1,

explaining 58% of the total variance. After varimax rotation, all items load higher than 0.64 on

the respective factor predicted by the KAI model and lower than 0.21 on any other (see Table

A.3). Cronbach’s α for the factors originality, (in-)efficiency, and (non-)conformity are 0.82,

0.79, and 0.68, respectively.

Further individual characteristics. Participant age was solicited and this variable

included in the regressions. In line with the findings of Agarwal and Prasad (Agarwal & Prasad,

1999), we checked as well for highest level of education attained, country in which the degree

was awarded, and major. We also recorded at which site an individual was working. In no

specification did any of the latter control variables show significance (either individually or

jointly), so we only report specifications without these variables.

RESULTS

Job Functions – Descriptive Analysis

Respondents’ attitudes towards corporate OSS engagement must be viewed in light of

their OSS experience. Table II displays the means of various OSS-related characteristics.14

14 For comparison, variables that describe respondents’ general programming activity are also displayed. Further

details on these variables are provided in Table A.5 of the Appendix

21

Taking into account both use and development, we find that architects and developers qualify as

most experienced in OSS.15 In particular, developers have the highest share of respondents who

have worked on OSS code. These facts are important for the following analysis. As we show

below, developers are significantly less positive than software testers and architects about

corporate OSS engagement. The data on OSS experience reported above allows us to rule out a

simple explanation of this finding based on lack of OSS-related experience.

We now turn to our main question of analyzing employee attitudes towards corporate

OSS engagement. As Table III shows, respondents, on average, exhibit a “somewhat positive”

attitude towards increased corporate engagement in OSS.

When we probe deeper by distinguishing the type of OSS engagement, a richer picture

emerges. Using a scale from 1 (“strongly disagree”) to 5 (“strongly agree”), we obtain a mean

value of 4.25 for using OSS, decreasing to 3.90 for contributing to OSS projects and to 3.53 for

releasing proprietary software as OSS. The share of respondents that ticked “strongly agree” or

“somewhat agree” yields an even clearer picture, declining from 85.1% (using) to 69.9%

(contributing) to 56.2% (releasing).

Note also that the standard deviation monotonically increases from using OSS to

contributing to OSS projects to releasing proprietary software as OSS. This finding holds both

for the pooled sample and for each of the five job functions independently (see Table III and

Table IV). This larger variation in the level of agreement, going hand in hand with the decrease

in its mean, reflects the fact that the higher-involvement forms of corporate OSS engagement are

yet unknown to employees and, hence, attended by higher uncertainty and higher perceived risk.

Regarding the influence of respondents’ job functions, both the descriptive analysis

presented here and the multivariate analysis in the following section matter. On the one hand, we

need to know how testers, architects, developers, project managers, and managers, taken as

groups, behave with respect to, and think about, OSS, which we analyze using univariate

analysis. On the other hand, we want to isolate the effect of the job function net of other

respondent characteristics with which it might be correlated.

As predicted, we find the level of support for OSS engagement to be highest for the

group consisting of testers and architects, followed by the group made up of managers and

15 The most experienced OSS users, in terms of both number of applications used and years working on OSS code,

are software architects. Developers follow. In terms of share of respondents who have worked on OSS code,
developers clearly lead (48%) architects (39%). In terms of hours spent per week writing and testing OSS code
(at work and at home), project managers (5.6h/w) lead testers and developers (each 3.1h/w).

22

developers (see Table IV). Project managers are the least positive about OSS. This finding is

consistent across all three levels of OSS engagement, as is the ranking of attitude towards OSS

by job function: testers, architects, managers, developers, and project managers (the only

exception being that developers are more positive than managers with respect to releasing). The

number of respondents being large (153) only for developers, it should come as no surprise that a

Mann-Whitney test on the equality of medians fails to reject the Null hypothesis in a number of

cases. Table V shows the results of this test.16

Using OSS receives similar (high) levels of agreement from all job functions.

Nonetheless, four out of eight hypotheses are supported (H2[TD], H3[TP], H6[AP], and

H7[MP]). For contributing to public OSS projects, we find significant differences between

testers/architects and developers (H2[TD] and H5[AD]), and between testers/architects and

project managers (H3[TP] and H6[AP]). The largest, most significant differences between job

functions are found in attitude towards releasing proprietary software as OSS, H1[TM], H2[TD],

H3[TP], H4[AM], H6[AP], and H8[DP] being supported. Summarizing, the majority of our

hypotheses (14 out of 24) are supported. In particular, the difference between developers and the

“leading” groups, testers and architects, is significant four times out of six.

Job Functions – Multivariate Analysis

The results presented above are informative about the attitudes of the five groups. But

although understanding their attitudes towards OSS is relevant for managing these groups of IT

professionals, the univariate results might be due not so much to the respondents’ job functions

as to other characteristics that, for whatever reason, are correlated with the task a person

performs. To separate these intertwined effects, we employ multivariate analysis, specifically,

ordered probit regression to account for the ordinal nature of our dependent variables. Table VI

shows the regression results, using level of agreement with the three statements above as

dependent variables.17

16 Given that our dependent variable is ordinal (not interval) scaled, a t-test on the equality of means would be

inappropriate. The Mann-Whitney test has the additional advantage of being non-parametric (i.e., of not
presuming a particular distribution of the data) which also applies to our situation (cf. Table III).

17 To assure that multicollinearity was not an issue, we also ran regressions dropping one of the more strongly
correlated explanatory variables (“Identification with OSS community”) and obtained results largely identical to
those presented. We also controlled for the influence of tenure at the company, but dropped the variable due to
its high correlation (r = 0.84) with age. Using tenure with the corporation instead of age does not have an effect
on the sign or level of significance of the other explanatory variables. Tenure itself is insignificant for the first
two regressions (using, contributing) and significantly negative (p < 0.05) for the third regression (releasing).

23

The first four lines of Table VI show the estimation coefficients of the dummy variables

coding respondents’ job functions, with testers as the reference group (i.e., their coefficient is

implicitly set to zero). Coefficients thus indicate differences between the attitudes of testers and

the respective other group. Post-estimation analyses run to compare the displayed coefficients

with each other yielded the results reported in Table VII. Note that significance levels here refer

to our hypotheses, which are directed (as opposed to the undirected significance levels given in

Table VI). Table VII resembles Table V, with the important difference that (due to the

multivariate regression) the influence of control variables on the respondent’s attitude levels is

taken into account.

The first box of Table VII, regarding attitudes towards using OSS, shows significant

differences between testers and developers (H2[TD]), but no support for other hypotheses,

indicating that the differences found to be significant in Table V are mostly accounted for by

characteristics other than job function. For contributing to public OSS projects, we find

significant differences between the job functions of developer/project manager and

architect/tester, which supports H2[TD] and H5[AD] as well as H3[TP] and H6[AP]. This

finding is consistent with the univariate analysis presented above. In addition, the coefficient

describing the difference to testers is larger for developers than for any other group. Hence,

performing the job function of developer has, ceteris paribus (i.e., after correcting for

characteristics potentially correlated with it), an even more negative effect on attitude towards

contributing than is suggested by the univariate analysis.

For releasing software as OSS, we find significant differences between testers on the one

hand and managers, developers, and project managers on the other, providing support for

H1[TM], H2[TD], and H3[TD]. We also observe a significant difference between architects and

managers (H4[AM]).

We thus find that the differences in attitudes towards corporate OSS engagement between

the five groups defined by job function can be explained only partly by other characteristics of

the respondents. In particular, in four out of six pairwise comparisons the job function of

developer implies, ceteris paribus, significantly lower support for corporate OSS engagement

than the job function of architect or tester.

24

Control Variables

A full discussion of all control variables being beyond the scope of this paper, we

comment briefly on a few salient points. To summarize, all significant coefficients carry the

expected sign.

Especially compatibility, as measured by identification with the OSS community and

opinion on reciprocity, is highly significant in all regressions. Experience with OSS (“Did OSS”)

has a significant positive influence on attitude towards using OSS and a highly significant effect

on attitude towards contributing to existing OSS projects. Age has an inverse effect on attitude

towards contributing to existing OSS projects or releasing proprietary software as OSS. The

finding that younger persons are more likely to perceive such behavior to be beneficial to the

firm is in line with interviewees’ statements that university training in IT used to value writing

one’s own code much higher than re-using code, and that only in the last decade or two were

students trained to draw on existing code where possible. Somewhat surprisingly, the constructs

derived from the KAI index matter little; even joint insignificance cannot be rejected for any of

our three regressions.

DISCUSSION AND IMPLICATIONS

Conclusions: Job Functions and OSS Adoption

We have developed a theoretical framework that links individuals’ attitudes towards

commercial OSS adoption, for various types of OSS engagement, to their job function. On an

aggregate level, we find that corporate OSS engagement is viewed at least “somewhat”

positively by most of the people in the company we studied. With respect to type of OSS

engagement, we find that using existing OSS more often is seen by a majority of respondents

(85% agreed “somewhat” or “strongly”) as potentially beneficial to the company. For more

intense types of engagement, agreement decreases: contributing to OSS projects is seen as

advantageous by 70% of respondents, releasing proprietary software as OSS by only 56%. At

the same time, the variance of the agreement level goes up, reflecting the higher perceived

uncertainty and risk associated with more intense types of OSS engagement.

To understand how OSS fits into corporate software development processes, however, an

even more differentiated view is required that takes into account, in addition to the type of OSS

engagement, an individual’s job function. Attitudes towards OSS are influenced by the fact that

engaging in OSS projects and releasing proprietary software as OSS represent, to varying

degrees for different job functions, a significant deviation from ingrained routine. Guided by the

25

theoretical frameworks of TAM and DOI and based on an analysis of the advantages and

drawbacks of OSS engagement for each job function, our theoretical framework predicts that

testers and architects would be the most favorably disposed to OSS, managers and developers

less so, and project managers the least.

The empirically revealed differences between job functions are in line with our

hypotheses, and turn out to be significant in half of all pairwise comparisons. In particular,

developers were found, in 8 out of 12 cases, both accounting and not accounting for other

individual characteristics, to be significantly less favorably disposed to OSS than either

architects or testers. For developers, OSS seems to approximate what Lyytinen and Rose (2003)

term a “disruptive IT innovation.” The inherent organizational change thus disposes developers,

on average, to react less than enthusiastically to increased corporate commitment to OSS.18

Generally, the more OSS development differs from the current development model and the less

skilled developers consider themselves to be,19 the less supportive they will be. Three quotes

from our interviews illustrate the changes OSS engagement occasions, in particular, for

developers.

“Yes, I think documentation is an important prerequisite [for making software public as

OSS] that we are currently not yet meeting.” (Translated from German by the authors)

“Following the license is somewhat hard […]. That takes a lot of effort and people don’t

really know what to do.”

“[Among developers] there is a not-invented-here syndrome, you know, that people feel

they need to build on [their] own developments.” (Translated from German by the

authors)

Our findings seem at odds with anecdotal evidence of developers’ supposedly positive

attitude towards OSS. Most likely, this evidence relates to individual developers who advocated

18 This finding must be seen in light of the given corporate environment, in which OSS does not play a central

role. Henkel (2008), in contrast, studies firms, many of which are rather small and young, active in or even
dedicated to the development of embedded Linux. In his sample of 197 commercial OSS developers, 49.7% of
respondents stated that they either make suggestions to their supervisor as to what code could be released or
even that this decision is within their own discretion.

19 Our interviewees consistently indicated the share of developers with the necessary skills (programming, social,
and management) to work in a corporate OSS project to be around 25%.

26

or perhaps even launched isolated OSS efforts in their firms. Although such efforts do affect

corporate OSS adoption, serious corporate engagement relies on championing and sponsoring

efforts (Hauschildt & Kirchmann, 2001; Howell & Higgins, 1990). The project managers who

would seem, due to their boundary-spanning role, to be ideally suited to act as champions turn

out to be the least favorably disposed towards OSS. Based on our analysis of the job-specific

pros and cons of OSS, we suggest solutions to this dilemma below.

The idea of individual developers becoming the drivers of corporate OSS adoption is

further confirmed when we conduct an ordered probit regression on the drivers of the agreement

to releasing proprietary software for the subsample of developers. In this subsample, and

different to the entire sample, the KAI originality index has a significant and positive effect,

indicating that more skilled developers (Gallivan, 2003) will be able to better cope with the

organizational change inherent in this new and different mode of software development. Further

positive influence factors are reciprocity, identification with the OSS community, and previous

OSS experience.

Our study shows parallels to findings by Sherif et al. (2006) that similar conflicts arise for

developers in software reuse, for which they suggest as a solution management intervention.

Fichman and Kemerer’s (1993) earlier reported slow adoption of software reuse practices by

developers was later found by Kim and Stohr (1998) to be caused by lack of (mandatory)

organizational support (including required resources, training, and rewards) and difficulty

measuring economic impact. We have shown that similar issues arise with OSS. However, only

“using existing OSS” is closely related to software reuse. Higher levels of corporate OSS

engagement differ qualitatively inasmuch as they imply active co-development beyond firm

boundaries, interaction with a community lacking clear hierarchies and line authority, and

organizational change within the focal firm.

We further suggest that the results of our study are not limited to the context of OSS, that

they have broader implications. The segmentation of roles according to a design-build-test cycle

is not unique to the software development industry (Wheelwright & Clark, 1994). Comparable

open and distributed innovation efforts in other industries (Chesbrough, 2003) are thus likely to

face similar challenges and even resistance from the respective counterparts of developers and

project managers.

Finally, our results suggest an extension of existing theory and avenues for further

research. As Venkatesh (2006) has suggested, models that predict the adoption of IT innovations

27

should take into account an individual’s job function, or, phrased more generally, the way in

which the adopter interacts with the innovation at hand. Job function will strongly influence an

individual’s perception of and attitude towards an innovation, and will be an important, even

decisive, factor in an individual’s adoption decision. Especially in cases in which innovations

significantly affect existing processes, the moderating effect of job function cannot be ignored.

Recent extensions of the TAM and similar models (Venkatesh & Davis, 2000; Venkatesh,

Morris, Davis, & Davis, 2003) include items that measure the job relevance of an innovation;

extending the extensions by explicitly including job function could further increase their

applicability.

Limitations and Suggestions for Future Research

Some limitations of our study need to be mentioned. First, it was conducted within a

single firm. This has the advantage of simplifying comparisons between respondents because

firm-specific effects are kept constant. On the other hand, it raises the question to what extent our

results can be generalized, given that firms differ widely with respect to their engagement in

OSS. It is true that our results bear little relevance to firms which are completely focused on

OSS, such as Red Hat or MySQL, since every employee involved in software development is

already working on OSS. So far, however, such firms are a small minority (Blind, Edler, &

Friedewald, 2005, pp. 52-62). Most firms in the IT industry, and even more so in industries in

which software development is a secondary business (e.g., telecommunications, electronics,

automotive), will rather resemble the firm we studied in terms of their OSS experience. And

even within firms (such as IBM) which are OSS savvy, but not pure-play OSS, many software

professionals will be focused on proprietary software and inexperienced with OSS. For these

individuals, our arguments relating attitudes to OSS to job functions should fully apply: Whereas

the level of support for OSS engagement might be higher or lower depending on corporate

culture, previous exposure to OSS, industry (Klevorick, Levin, Nelson, & Winter, 1995), and

home country, differences in attitudes towards OSS among testers, developers, and others result

from the professional activities of these groups, which should be largely independent of firm or

location. Hence, we are confident that our findings regarding the impact of job function can be

generalized to most other firms.

As our respondents were located in seven countries, we were able to check for national

idiosyncrasies, but found no significant differences between countries. Still, conducting a similar

28

study in different countries, in one or more other firms, possibly in different industries, could

provide valuable insights.

Given the paper’s focus on the differences in attitudes towards corporate OSS

engagement by different groups, a detailed analysis of the effects of control variables is beyond

the scope of the paper. However, probing into the effects of some of the control variables,

personal characteristics of the respondents in particular, should be an interesting avenue for

future research (e.g., Henkel, 2008).

Finally, the firm’s software development method might have influenced our results. At

the time of our survey, the firm studied was still relying heavily on the waterfall model. Agile

software development had been introduced early in 2005, but was not yet being widely used.

Consequently, OSS represents to developers in this firm an entirely new model of software

development. Developers in firms that have experience in extreme programming, agile

methodologies, or the spiral model should thus be more favorably disposed towards OSS

development.

Recommendations for Practice

Introducing OSS and OSS development implies changes, in particular, for developers and

project managers, precisely the groups that turned out to be least favorably disposed to OSS.

Possible steps towards solving this dilemma include training and step-by-step introduction of

corporate OSS engagement. Training programs should be established for new hires and advanced

training programs for developers, managers, and IP and legal staff. One might also consider

brown-bag seminars for developers, incorporating the open source policy in employee

handbooks, and online seminars or training (Fan, Aitken, & Koenig, 2004).

A first step suggested by many of our survey and interview participants might be the

introduction of a “corporate source program” (Dinkelacker, Garg, Miller, & Nelson, 2001).

Corporate source initiatives that mimic the OSS development style within the boundaries of an

organization might be a good way to familiarize staff with the OSS development style while

minimizing risks with respect to loss of intellectual property and sociological issues such as the

not-invented-here syndrome.

Finally, individuals should be given the opportunity to self-select into OSS-related

activities. Even among project managers, the group most skeptical of OSS, one-third of our

respondents considered an OSS engagement on all three levels as “somewhat” beneficial to the

29

corporation. It should thus be possible to staff pilot OSS projects, in all job functions that are

required, with OSS supporters, provided the staffing is done diligently.

No matter what its business, every firm active in software development needs to confront

the questions of whether and how to engage in OSS. It is striking that even Microsoft, a long-

time opponent of OSS, in addition to having released two OSS licenses, supports OSS-like

practices among licensees of Windows CE 6.0, granting them to access the full kernel source

code and permitting them to modify it and share the modified code with other licensees.20 Still,

among our survey participants, OSS failed to find support among a considerable share of

developers and project managers. In their own time, the practices of software reuse and object

oriented programming faced similar obstacles, but became widely adopted once their benefits

came to be realized throughout the IT industry. We believe the question should not be whether

firms should engage in OSS, but rather when, how, and to what extent. Attempts to answer these

questions need to take into account the impact of OSS both on the firm’s software development

processes and on the individuals involved. Our study is an attempt to shed light on these issues in

order to enable broader, more informed use of OSS and the OSS development style.

20 See http://msdn2.microsoft.com/en-us/embedded/aa714518.aspx, retrieved May 23, 2007.

30

FIGURES AND TABLES

Figure 1: Proprietary Closed Source Software (PCSS) Development

Figure 2: Open Source Software (OSS) Development

31

Figure 3: OSS Development Cycle (Senyard & Michlmayr, 2004)

Figure 4: Theoretical Framework

32

TABLE I
SURVEY PARTICIPANTS BY JOB FUNCTION (N = 249)

Job Function Frequency Percent
Architects 23 9.24
Developers 153 61.45
Testers 37 14.86
Project Managers 9 3.61
Managers 27 10.84
Total 249 100.00

TABLE II
MEANS OF OSS- AND PROGRAMMING-RELATED CHARACTERISTICS, BY JOB FUNCTION

Variable Testers Architects Managers Developers Project
Mgrs.

N 37 23 27 153 9
Number of OSS Applications
used (in total)

2.486 3.652 2.741 3.046 2.444

Number of OSS Applications
used (out of 6 suggestions)

2.297 3.478 2.556 2.627 2.444

Years working on OSS source
code

1.541 2.391 1.815 2.373 0.889

Has worked on OSS code
(1: Yes, 0:No)

0.297 0.391 0.259 0.484 0.333

Hours per week spent on
programming at work (incl.
testing, documentation)

16.784 7.043 5.852 27.193 13.389

Hours per week spent on
programming at home

5.270 4.130 3.296 4.412 2.222

Hours per week spent on
programming OSS at work
(incl. testing, documentation)

2.514 0.696 0.593 2.601 5.611

Hours per week spent on
programming OSS at home

0.622 0.783 0.074 0.471 0.000

I would like to use more OSS at
[FIRM]

4.344 3.909 4.043 3.979 3.333

I would like to develop more
OSS at [FIRM]

4.069 3.864 3.632 3.806 2.833

Bold: largest and second largest value in each line.

33

TABLE III
DESCRIPTIVE STATISTICS OF DEPENDENT VARIABLES

Variable N Median Mean Std.
Dev.

Min Max Share
4 & 5

Corporation could benefit from
using existing OSS more often

249 4 4.25 0.85 1 5 85.14%

Corporation could benefit from
contributing to existing OSS projects

249 4 3.90 0.98 1 5 69.88%

Corporation could benefit from
releasing proprietary software as OSS

249 4 3.53 1.14 1 5 56.22%

TABLE IV
MEAN VALUES OF THE DEPENDENT VARIABLES BY JOB FUNCTION

Variable Testers Archi-
tects

Managers Deve-
lopers

Project
Managers

Corporation could benefit from
using existing OSS more often

4.46
(0.73)

4.30
(0.82)

4.30
(0.95)

4.20
(0.88)

4.00
(0.5)

Corporation could benefit from
contributing to existing OSS projects

4.22
(0.75)

4.17
(0.83)

3.89
(1.01)

3.80
(1.05)

3.56
(0.53)

Corporation could benefit from
releasing proprietary software as OSS

4.14
(0.92)

3.74
(0.92)

3.15
(1.29)

3.46
(1.14)

2.89
(1.05)

Bold: largest and second largest value in each line. Standard deviation in parentheses.

34

TABLE V
MANN-WHITNEY TEST ON DIFFERENCES IN MEDIANS (P) BETWEEN RESPONDENTS’

ATTITUDES TOWARDS CORPORATE OSS ENGAGEMENT
Using Testers Architects Managers Developers Project Mgrs

Mean 4.46 4.30 4.30 4.20 4.00
Median 5 4 5 4 4
Testers --
Architects 0.227 --
Managers 0.332 0.403 --
Developers 0.049** 0.313 0.210 --
Project Mgrs 0.014** 0.073* 0.061* 0.102 --

Contributing Testers Architects Managers Developers Project Mgrs
Mean 4.22 4.17 3.89 3.80 3.56
Median 4 4 4 4 4
Testers --
Architects 0.460 --
Managers 0.111 0.169 --
Developers 0.018** 0.060* 0.370 --
Project Mgrs 0.005*** 0.014** 0.125 0.135 --

Releasing Testers Architects Managers Developers Project Mgrs
Mean 4.14 3.74 3.15 3.46 2.89
Median 4 4 3 4 5
Testers --
Architects 0.039** --
Managers 0.001*** 0.049** --
Developers 0.000*** 0.172 0.112 --
Project Mgrs 0.001*** 0.025** 0.306 0.066* --

* significant at 10%; ** significant at 5%; *** significant at 1%.

35

TABLE VI
RESULTS OF THE ORDERED PROBIT REGRESSIONS

Corporation could benefit from…

(1-5 scale, ordered probit)
 … using … contributing … releasing
Job Architect -0.516 -0.015 -0.572*
 (0.348) (0.278) (0.308)
Job Manager -0.194 -0.268 -1.002***
 (0.351) (0.291) (0.329)
Job Developer -0.404 -0.511** -0.752***
 (0.249) (0.208) (0.214)
Job Project Manager -0.307 -0.456 -0.920**
 (0.298) (0.314) (0.395)
Identification with 0.561*** 0.284*** 0.325***
 OSS community (0.085) (0.097) (0.093)
Reciprocity n.a. 0.432*** 0.373***
 n.a. (0.119) (0.119)
Organizational 0.077 -0.011 0.006
 factors (0.124) (0.117) (0.117)
Did OSS 0.439*** 0.401*** 0.094
 (0.154) (0.147) (0.141)
KAI Originality 0.181 0.091 0.171
 (0.142) (0.133) (0.130)
KAI Efficiency -0.101 -0.120 -0.149
 (0.142) (0.126) (0.114)
KAI Conformity -0.165 -0.058 0.095
 (0.152) (0.123) (0.121)

Age -0.003 -0.019** -0.019**
 (0.008) (0.008) (0.008)

Observations 249 249 249
Pseudo R-squared 0.14 0.13 0.13
Pseudo Likelihood -240.862 -285.031 -320.875
Wald's chi-squared 73.694 62.806 88.274
Degrees of freedom 238 237 237

* significant at 10%; ** significant at 5%; *** significant at 1%.
Robust standard errors in parentheses

36

TABLE VII
ORDERED PROBIT POST-ESTIMATION: TEST OF EQUALITY OF COEFFICIENTS

(P-VALUES) IN TABLE VI
Using Testers Architects Managers Developers Project Mgrs

Coefficient 0 -0.516* -0.194 -0.404* -0.307
Testers --
Architects 0.069* --
Managers 0.291 0.175 --
Developers 0.053* 0.345 0.356 --
Project Mgrs 0.151 0.247 0.356 0.321 --

Contributing Testers Architects Managers Developers Project Mgrs
Coefficient 0 -0.015 -0.268 -0.511** -0.456*
Testers --
Architects 0.479 --
Managers 0.179 0.195 --
Developers 0.007*** 0.019** 0.163 --
Project Mgrs 0.073* 0.092* 0.289 0.42 --

Releasing Testers Architects Managers Developers Project Mgrs
Coefficient 0 -0.572** -1.002*** -0.752*** -0.920**
Testers --
Architects 0.032** --
Managers 0.001*** 0.093* --
Developers
Project Mgrs

0.000***
0.010**

0.229
0.198

0.174 --
0.423 0.319

--

* significant at 10%; ** significant at 5%; *** significant at 1%.

37

APPENDIX

 B
en

ef
it

of
 U

si
ng

B
en

ef
it

of

C
on

tri
bu

tin
g

B
en

ef
it

of
 R

el
ea

si
ng

Jo
b

Te
st

er

Jo
b

A
rc

hi
te

ct

Jo
b

M
an

ag
er

Jo
b

D
ev

el
op

er

Jo
b

Pr
oj

ec
t M

an
ag

er

Id
en

tif
ic

at
io

n
w

ith

O
SS

 c
om

m
un

ity

R
ec

ip
ro

ci
ty

O
rg

an
iz

at
io

na
l

Fa
ct

or
s

D
id

 O
SS

K
A

I O
rig

in
al

ity

K
A

I E
ff

ic
ie

nc
y

K
A

I C
on

fo
rm

ity

A
ge

Benefit of Using 1
Benefit of Contributing 0.60 1
Benefit of Releasing 0.50 0.62 1
Job Tester 0.13 0.23 1
Job Architect -0.13 1
Job Manager -0.11 -0.15 -0.11 1
Job Developer -0.11 -0.53 -0.40 -0.44 1
Job Project Manager -0.11 -0.24 1
Id. with OSS community 0.45 0.46 0.43 0.13 -0.17 1
Reciprocity 0.38 0.41 0.37 0.50 1
Organizational Factors 0.17 1
Did OSS 0.20 0.21 0.11 -0.11 0.17 0.18 0.14 1
KAI Originality 0.15 0.13 0.12 0.23 0.10 -0.14 0.14 1
KAI Efficiency -0.34 1
KAI Conformity -0.20 -0.13 0.37 1
Age -0.19 -0.22 -0.16 0.16 0.21 -0.14 -0.17 0.17 -0.11 -0.12 1

Table A.1: Spearman rank correlation (displayed only for p<0.1)

38

Reciprocity Factor Loadings
[FIRM] has an obligation of giving back to the OSS community 0.807
I would release code because I consider it fair to give back to the community, since the
company benefits from it

0.882

I would release code because in the long run, you only get something when you gave
something before

0.823

Popularity of OSS among Co-Workers (Organizational Factors) Factor Loadings
Management promotes the use of existing OSS 0.7
Which of the following factors do you consider supportive of or an impediment to the
wider use of OSS within [FIRM]? My supervisor

0.727

Which of the following factors do you consider supportive of or an impediment to the
wider use of OSS within [FIRM]? My colleagues

0.601

My supervisor is familiar with OSS 0.701
Most programmers at [FIRM] are familiar with OSS 0.638
In case I had questions on OSS, I would know someone at [FIRM] I could turn to 0.577
Management sees the benefit of OSS 0.64

Table A.2: Questions underlying factor constructs (Part One)

KAI Originality
Would you consider yourself someone who… Originality Efficiency Conformity

… has fresh perspectives on old problems 0.689 -0.216 -0.045
… copes with several new ideas at the same time 0.679 -0.116 -0.002
… is stimulating 0.802 -0.093 -0.016
… has original ideas 0.802 -0.1 0.075
… proliferates ideas 0.77 -0.07 -0.09

KAI Efficiency
Would you consider yourself someone who… Originality Efficiency Conformity

… enjoys detailed work -0.085 0.706 0.214
… is thorough -0.117 0.786 0.093
… masters all details painstakingly -0.159 0.766 0.163
… is methodical and systematic -0.119 0.745 0.113

KAI Conformity
Would you consider yourself someone who… Originality Efficiency Conformity

… conforms 0.152 0.184 0.636
… is prudent when dealing with authority -0.092 0.044 0.734
… never acts without proper authority -0.024 0.206 0.662
… fits readily into "the system" -0.025 0.221 0.75

Table A.3: Questions underlying factor constructs (Part Two)

39

Variable Testers Architects Managers Developers Project Mgrs Overall
Mean 3.40 3.68 3.32 3.25 2.44 3.29
S.D. (0.86) (0.82) (0.95) (1.09) (0.73) (1.02)

Id. w. OSS
community

Median 3.00 4.00 3.00 4.00 3.00 3.00
Mean 3.74 3.82 3.78 3.74 3.56 3.74
S.D. (0.54) (0.64) (0.6) (0.85) (0.88) (0.77)

Reciprocity

Median 3.67 3.98 4.00 3.98 3.67 3.87
Mean 3.24 3.68 3.42 3.29 3.29 3.33
S.D. (0.70) (0.56) (0.72) (0.69) (0.70) (0.69)

Organizational
Factors

Median 3.29 3.71 3.43 3.71 3.29 3.43
Mean 0.30 0.39 0.26 0.48 0.33 0.42 Did OSS
Median 0.00 0.00 0.00 0.00 0.00 0.00
Mean 3.75 4.24 4.03 3.77 3.75 3.84
S.D. (0.63) (0.56) (0.6) (0.61) (0.62) (0.62)

KAI
Originality

Median 3.80 4.40 4.00 4.40 3.60 3.80
Mean 2.17 2.20 1.93 1.99 1.94 2.03
S.D. (0.65) (0.76) (0.86) (0.62) (0.54) (0.67)

KAI
Efficiency

Median 2.25 2.00 2.00 2.00 2.00 2.00
Mean 2.34 2.48 2.25 2.35 2.30 2.35
S.D. (0.6) (0.81) (0.64) (0.66) (0.46) (0.66)

KAI
Conformity

Median 2.25 2.50 2.00 2.50 2.50 2.25
Mean 35.76 44.78 45.56 38.62 44.00 39.71
S.D. (8.16) (8.49) (8.47) (10.32) (7.16) (10.02)

Age

Median 34.00 45.00 48.00 45.00 45.00 40.00
Table A.4: Mean values, standard deviations, and medians of independent variables by job function

Variable Me-

dian
Mean Std.

Dev.
Min Max Share >0

(mean)*
Share 4 & 5

(mean)*
Number of OSS Applications used (in total) 2 2.96 2.68 0 15 89.96%

(3.29)

Number of OSS Applications used (out of 6
suggestions)

2 2.64 1.87 0 6 89.96%
(2.94)

Years working on OSS source code 0 2.14 3.65 0 21 29.37%
(5.22)

Has worked on OSS code
(1: Yes, 0:No)

0 0.42 0.49 0 1 29.37%
(1)

Hours per week spent on programming at
work (incl. testing, documentation)

24 20.97 16.03 0 60 78.31%
(26.78)

Hours per week spent on programming at
home

2 4.31 5.87 0 30 60.24%
(7.16)

Hours per week spent on programming OSS
at work (incl. testing, documentation)

0 2.3 7.1 0 45 18.47%
(12.47)

Hours per week spent on programming OSS
at home

0 0.46 1.63 0 10 10.84%
(4.26)

I would like to use more OSS at [FIRM] 4 4.01 0.84 1 5 --- 72.25%
(4.01)

I would like to develop more OSS at [FIRM] 4 3.8 0.94 1 5 --- 62.73%
(3.80)

Table A. 5: Means of OSS- and programming-related characteristics (N=249)
* Mean value of respective group (i.e. value of respective variable >0 or >3, respectively

40

REFERENCES

Agarwal, R. & Prasad, J. 1999. Are Individual Differences Germane to the Acceptance of New
Information Technology? Decision Sciences, 30(2): 361-391.

Agarwal, R. 2000. Individual Acceptance of Information Technologies. In R. W. Zmud (Ed.),
Framing the Domains of IT Management: Project the Future Through the Past: 85-104.
Cincinnati, OH: Pinnaflex.

Ajila, S. A. & Wu, D. 2007. Empirical Study of the Effects of Open Source Adoption on
Software Development Economics. The Journal of Systems and Software, 80(9): 1517-1529.

Allen, R. C. 1983. Collective Invention. Journal of Economic Behavior & Organization, 4(1): 1-
24.

Baldridge, J. V. & Burnham, R. A. 1975. Organizational Innovation: Individual, Organizational,
and Environmental Impacts. Administrative Sciences Quarterly, 20(2): 165-176.

Baldwin, C. Y. & Clark, K. B. 2000. Design Rules: The Power of Modularity. Cambridge, MA:
MIT Press.

Banker, R. D., Datar, S. M., & Kemerer, C. F. 1991. A Model to Evaluate Variables Impacting
the Productivity of Software Maintenance Projects. Management Science, 37(1): 1-18.

Bass, L., Clements, P., & Kazman, R. 2003. Software Architecture in Practice (2nd ed.). Boston,
MA: Addison-Wesley.

Behlendorf, B. 1999. Open Source as a Business Strategy. In C. DiBona & S. Ockman & M.
Stone (Eds.), Open Sources: Voices from the Open Source Revolution: 149-170. Sebastopol
u.a.: O'Reilly.

Blind, K., Edler, J., & Friedewald, M. 2005. Software Patents: Economic Implications and
Policy Implications. Cheltenham, UK: Edward Elgar.

Bonaccorsi, A., Giannangeli, S., & Rossi, C. 2006. Entry Strategies under Competing Standards:
Hybrid Business Models in the Open Source Software Industry. Management Science, 52(7):
1085-1098.

Burgelman, R. A. 1983. A Model of the Interaction of Strategic Behavior, Corporate Context,
and the Concept of Strategy. Academy of Management Review, 8(1): 61-70.

Chakrabarti, A. K. & O'Keefe, R. D. 1977. A Study of Key Communicators in Research and
Development Laboratories. Ground & Organization Studies, 2(3): 336-346.

Chesbrough, H. W. 2003. Open Innovation: The New Imperative for Creating and Profiting from
Technology. Boston: Harvard Business School Press.

41

Constant, D., Sproull, L., & Kiesler, S. 1996. The Kindness of Strangers: The Usefulness of
Electronic Weak Ties for Technical Advance. Organization Science, 7(2): 119-135.

Cooper, R. B. & Zmud, R. W. 1990. Information Technology Implementation Research: A
Technological Diffusion Approach. Management Science, 36(2): 123-139.

Cusumano, M., MacCormack, A., Kemerer, C. F., & Crandall, B. 2003. Software Development
Worldwide: The State of the Practice. IEEE Software, 20(6): 28-34.

Daft, R. L. 1978. A Dual-Core Model of Organizational Innovation. Academy of Management
Journal, 21(2): 193-210.

Dahlander, L. 2005. Appropriation and Appropriability in Open Source Software. International
Journal of Innovation Management, 9(3): 259-285.

Dahlander, L. & Magnusson, M. G. 2005. Relationships between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy, 34(4): 481-
493.

Dahlander, L. & Wallin, M. W. 2006. A Man on the Inside: Unlocking Communities as
Complementary Assets. Research Policy, 35(8): 1243-1259.

Damanpour, F. & Evan, W. M. 1984. Organizational Innovation and Performance: The Problem
of 'Organizational Lag'. Administrative Science Quarterly, 29(3): 392-409.

Damanpour, F. 1991. Organizational Innovation: A Meta-Analysis of Effects of Determinants
and Moderators. Academy of Management Journal, 34(3): 555-590.

Davis, F. D. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly, 13(3): 318-340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. 1989. User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models. Management Science, 35(8): 982-
1003.

DiBona, C. 2005. Open Source and Proprietary Software Development. In C. DiBona & D.
Cooper & M. Stone (Eds.), Open Sources 2.0: The Continuing Evolution: 21-36. Sebastopol,
CA: O'Reilly.

Dinkelacker, J., Garg, P. K., Miller, R., & Nelson, D.; Progressive Open Source;
http://www.hpl.hp.com/techreports/2001/HPL-2001-233.pdf; November 19, 2006.

Driver, M., Drakos, N., Weiss, G. J., Claunch, C., Govekar, M., Feinberg, D., Maio, A. D.,
Hostmann, B., Igou, B., Cantara, M., Phifer, G., Enck, J., Pescatore, J., Latham, L., Gilliland,
M., Silver, M. A., Haight, C., Valdes, R., Girard, J., Perkins, E. L., Lee, M., Hafner, B.,
Natis, Y. V., & Cain, M. W.; Hype Cycle for Open-Source Software, 2005;
http://www.gartner.com/DisplayDocument?id=483919; August 2, 2005.

http://www.hpl.hp.com/techreports/2001/HPL-2001-233.pdf;
http://www.gartner.com/DisplayDocument?id=483919;

42

Driver, M. & Weiss, G. J.; Predicts 2006: The Effects of Open-Source Software on the IT
Software Industry; http://www.gartner.com/DisplayDocument?doc_cd=136381; January 30,
2006.

Ebadi, Y. M. & Utterback, J. M. 1984. The Effects of Communication on Technological
Innovation. Management Science, 30(5): 572-585.

Fan, B., Aitken, A., & Koenig, J.; Open Source Intellectual Property and Licensing Compliance:
A Survey and Analysis of Industry Best Practices;
http://www.osdl.org/docs/olliance___ip_and_licensing_best_practices.pdf; February 28,
2006.

Fichman, R. G. & Kemerer, C. F. 1993. Adoption of Software Engineering Process Innovations:
The Case of Object Orientation. Sloan Management Review, 34(2): 7-22.

Fish, R. S., Kraut, R., E., Root, R., W., & Rice, R., E. 1993. Video as a Technology for Informal
Communication. Communications of the ACM, 36(1): 48-61.

Foxall, G. R. & Hackett, P. M. W. 1992a. The Factor Structure and Construct Validity of the
Kirton Adaption-Innovation Inventory. Personality and Individual Differences, 13(9): 967-
975.

Foxall, G. R. & Hackett, P. M. W. 1992b. Cognitive Style and Extent of Computer Use in
Organizations: Relevance of Sufficiency of Originality, Efficiency and Rule-Conformity.
Perceptual and Motor Skills, 74(2): 491-497.

Franke, N. & von Hippel, E. 2003. Satisfying Heterogeneous User Needs via Innovation
Toolkits: The Case of Apache Security Software. Research Policy, 32(7): 1199-1215.

Gallivan, M. J. 2001. Organizational Adoption and Assimilation of Complex Technological
Innovations: Development and Application of a New Framework. SIGMIS Database, 32(3):
51-85.

Gallivan, M. J. 2003. The Influence of Software Developers' Creative Style on Their Attitudes to
and Assimilation of a Software Process Innovation. Information & Management, 40(5): 443-
465.

Goldman, R. & Gabriel, R. P. 2005. Open Source as Business Strategy: Innovation Happens
Elsewhere. San Francisco, CA: Morgan Kaufmann.

Goulde, M.; Open Source Becoming Mission-Critical In North America And Europe;
http://www.forrester.com/Research/Document/Excerpt/0,7211,38866,00.html; October 2,
2006.

Grand, S., von Krogh, G., Leonard, D., & Swap, W. 2004. Resource Allocation Beyond Firm
Boundaries: A Multi-Level Model for Open Source Innovation. Long Range Planning, 37(6):
591-610.

http://www.gartner.com/DisplayDocument?doc_cd=136381;
http://www.osdl.org/docs/olliance___ip_and_licensing_best_practices.pdf;
http://www.forrester.com/Research/Document/Excerpt/0,7211,38866,00.html;

43

Granovetter, M. 1985. Economic Action and Social Structure: The Problem of Embeddedness.
American Journal of Sociology, 91(3): 481-510.

Granovetter, M. S. 1973. The Strength of Weak Ties. American Journal of Sociology 78(6):
1360-1380.

Grover, V. 1997. An Extension of the Tri-Core Model of Information Systems Innovation:
Strategic and Technological Moderators. European Journal of Information Systems, 6(4):
232-242.

Hang, J., Hohensohn, H., Mayr, K., & Wieland, T. 2004. Benefits and Pitfalls of Open Source in
Commercial Contexts. In S. Koch (Ed.), Free/Open Source Software Development: 222-241.
Hershey, PA: Idea Group.

Hars, A. & Ou, S. 2002. Working for Free? Motivations for Participating in Open-Source
Projects. International Journal of Electronic Commerce, 6(3): 25-39.

Hauschildt, J. & Kirchmann, E. 2001. Teamwork for Innovation - The 'Troika' of Promotors.
R&D Management, 31(1): 41-49.

Hecker, F. 1999. Setting Up Shop: The Business of Open-Source Software. IEEE Software,
16(1): 45-51.

Henderson, R. M. & Clark, K. B. 1990. Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative Science
Quarterly, 35(1): 9-30.

Henkel, J. 2004. Open Source Software from Commercial Firms – Tools, Complements, and
Collective Invention. ZfB-Ergänzungsheft, 74(4).

Henkel, J. 2006. Selective Revealing in Open Innovation Processes: The Case of Embedded
Linux. Research Policy, 35(7): 953-969.

Henkel, J.; Champions of Revealing - The Role of Open Source Developers in Commercial
Firms; http://ssrn.com/abstract=946929; January 1, 2008.

Hertel, G., Niedner, S., & Herrmann, S. 2003. Motivation of software developers in Open Source
projects: an internet-based survey of contributors to the Linux kernel. Research Policy, 32(7):
1159-1177.

Howell, J. M. & Higgins, C. A. 1990. Champions of Technological Innovation. Administrative
Science Quarterly, 35(2): 317-341.

Jones, C. 2003. Variations in Software Development Practices. IEEE Software, 20(6): 22-27.

Katz, R. & Allen, T. J. 1982. Investigating the Not Invented Here (NIH) Syndrome: A Look at
the Performance, Tenure, and Communication Patterns of 50 R&D Project Groups. R&D
Management, 12(1): 7-19.

http://ssrn.com/abstract=946929;

44

Katz, R. & Allen, T. J. 1985. Organizational Issues in the Introduction of New Technologies. In
P. R. Kleindorfer (Ed.), The Management of Productivity and Technology in Manufacturing,
2 ed.: 275-300. New York: Plenum.

Kim, Y. & Stohr, E. A. 1998. Software Reuse: Survey and Research Directions. Journal of
Management Information Systems, 14(4): 113-149.

Kirsch, L. J. 2000. Software Project Management: An Integrated Perspective for an Emerging
Paradigm. In R. W. Zmud (Ed.), Framing the Domains of IT Management: Project the
Future Through the Past: 285-304. Cincinnati, OH: Pinnaflex.

Kirton, M. J. 1976. Adaptors and Innovators: A Description and Measure. Journal of Applied
Psychology, 61(5): 622-629.

Kirton, M. J. 2003. Adaption-Innovation: In the Context of Diversity and Change. London and
New York: Routledge.

Klevorick, A. K., Levin, R. C., Nelson, R. R., & Winter, S. G. 1995. On the Sources and
Significance of Interindustry Differences in Technological Opportunities. Research Policy,
24(2): 185-205.

Kogut, B. & Metiu, A. 2001. Open-Source Software Development and Distributed Innovation.
Oxford Review of Economic Policy, 17(2): 248-264.

Kwon, T. H. & Zmud, R. W. 1987. Unifying the Fragmented Models of Information Systems
Implementation. In R. J. Boland, Jr. & R. A. Hirschheim (Eds.), Critical Issues in
Information Systems Research. New York: John Wiley & Sons.

Lakhani, K. & von Hippel, E. 2003. How Open Source Software Works: 'Free' User-to-User
Assistance. Research Policy, 32(7): 923-943.

Lakhani, K. & Wolf, B. 2005. Why Hackers Do What They Do: Understanding Motivation and
Effort in Free/Open Source Software Projects. In J. Feller & B. Fitzgerald & S. Hissam & K.
Lakhani (Eds.), Perspectives on Free and Open Source Software: MIT Press.

Lehman, M. M. 1980. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of
the IEEE, 68(9): 1060-1076.

Leonard-Barton, D. & Deschamps, I. 1988. Managerial Influence in the Implementation of New
Technology. Management Science, 34(10): 1252-1265.

Lerner, J. & Tirole, J. 2002. Some Simple Economics of Open Source. Journal of Industrial
Economics, 50(2): 197-234.

Lyytinen, K. & Rose, G. M. 2003. The Disruptive Nature of Information Technology
Innovations: The Case of Internet Computing in Systems Development Organizations. MIS
Quarterly, 27(4): 557-595.

45

Madanmohan, T. R. & De', R. 2004. Open Source Reuse in Commercial Firms. IEEE Software,
21(6): 62-69.

Mayring, P. 2004. Qualitative Content Analysis. In U. Flick & E. von Kardoff & I. Steinke
(Eds.), A Companion to Qualitative Research: 266-269. London: Sage.

McLure Wasko, M. & Faraj, S. 2005. Why Should I Share? Examining Social Capital and
Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly, 29(1): 35-57.

Merton, R. K. & Rossi, A. K. 1949. Contributions to the Theory of Reference Group Behavior.
In R. K. Merton (Ed.), Social Theory and Social Structure: 225-275. New York: Free Press.

Moody, G. 2001. Rebel Code - Inside Linux and the Open Source Revolution (1st ed.).
Cambridge, MA: Perseus Publishing.

Raymond, E. S. 2001a. The Cathedral and the Bazaar. In E. S. Raymond (Ed.), The Cathedral
and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, 2nd
ed.: 19-63. Sebastopol: O'Reilly.

Raymond, E. S. 2001b. The Magic Cauldron. In E. S. Raymond (Ed.), The Cathedral and the
Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, 2nd ed.: 113-
191. Sebastopol: O'Reilly.

Rogers, E. M. 2003. Diffusion of Innovations (5 ed.). New York, NY: Free Press.

Royce, W. W. 1987. Managing the Development of Large Software Systems: Concepts and
Techniques, Proceedings of the 9th International Conference on Software Engineering.
Monterey, California, United States: IEEE Computer Society Press.

Ryan, R. M. & Deci, E. L. 2000. Self-Determination Theory and the Facilitation of Intrinsic
Motivation, Social Development, and Well-Being. American Psychologist, 55(1): 68-78.

Scacchi, W. 2004. Free and Open Source Development Practices in the Game Community. IEEE
Software, 21(1): 59-66.

Senyard, A. & Michlmayr, M. 2004. How to Have A Successful Free Software Project. Paper
presented at the 11th Asia-Pacific Software Engineering Conference (APSEC'04).

Shah, S. 2006. Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science, 52(7): 1000-1014.

Sherif, K., Zmud, R. W., & Browne, G. J. 2006. Managing Peer-to-Peer Conflicts in Disruptive
Information Technology Innovations: The Case of Software Reuse. MIS Quarterly, 30(2):
339-356.

Stewart, K. J. & Gosain, S. 2006. The Impact of Ideology on Effectiveness in Open Source
Software Teams. MIS Quarterly, 30(2): 291-314.

46

Swanson, E. B. 1994. Information Systems Innovation Among Organizations. Management
Science, 40(9): 1069-1092.

Taylor, W. G. K. 1989a. The Kirton Adaption-Innovation Inventory: Should the Sub-Scales be
Orthogonal? Personality and Individual Differences, 10(9): 921-929.

Taylor, W. G. K. 1989b. The Kirton Adaption-Innovation Inventory: A Re-Examination of the
Factor Structure. Journal of Organizational Behavior, 10(4): 297-307.

Tornatzky, L. G. & Klein, K. J. 1982. Innovation Characteristics and Innovation Adoption-
Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering
Management, 29(1): 28-45.

Tushman, M. L. 1977. Special Boundary Roles in the Innovation Process. Administrative Science
Quarterly, 22(4): 587-605.

Tushman, M. L. & Scanlan, T. J. 1981. Boundary Spanning Individuals: Their Role in
Information Transfer and Their Antecedents. Academy of Management Journal, 24(2): 289-
305.

Venkatesh, V. 2000. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic
Motivation, and Emotion into the Technology Acceptance Model. Information Systems
Research, 11(4): 342-365.

Venkatesh, V. & Davis, F. D. 2000. A Theoretical Extension of the Technology Acceptance
Model: Four Longitudinal Field Studies. Management Science, 46(2): 186-204.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. 2003. User Acceptance of
Information Technology: Toward a Unified View. MIS Quarterly, 27(3): 425-478.

Venkatesh, V. 2006. Where To Go From Here? Thoughts on Future Directions for Research on
Individual-Level Technology Adoption with a Focus on Decision Making. Decision
Sciences, 37(4): 497-518.

von Hippel, E. & von Krogh, G. 2003. Open Source Software and the 'Private-Collective'
Innovation Model: Issues for Organization Science. Organization Science, 14(2): 209-233.

West, J. 2003. How Open is Open Enough? Melding Proprietary and Open Source Platform
Strategies. Research Policy, 32(7): 1259–1285.

West, J. & Gallagher, S. 2006. Challenges of Open Innovation: The Paradox of Firm Investment
in Open Source Software. R&D Management, 36(3): 319-331.

Wheeler, D. A.; Why Open Source Software / Free Software (OSS/FS)? Look at the Numbers!;
http://www.dwheeler.com/oss_fs_why.html; October 13, 2007.

Wheelwright, S. C. & Clark, K. B. 1994. Accelerating the Design-Build-Test Cycle for Effective
New Product Development. International Marketing Review, 11(1): 32-46.

http://www.dwheeler.com/oss_fs_why.html;

47

Zmud, R. W. 1982. Diffusion of Modern Software Practices: Influence of Centralization and
Formalization. Management Science, 28(12): 1421-1431.

Zmud, R. W. 1984. An Examination of 'Push-Pull' Theory Applied to Process Innovation in
Knowledge Work. Management Science, 30(6): 727-738.

	PROMOTING THE PENGUIN: WHO IS ADVOCATING OPEN SOURCE SOFTWARE IN COMMERCIAL SETTINGS?
	ABSTRACT
	INTRODUCTION
	BACKGROUND: PCSS VERSUS OSS DEVELOPMENT
	Software Development Process
	Advantages and Disadvantages of Corporate OSS Engagement

	RESEARCH QUESTIONS AND HYPOTHESES
	The Process of Organizational Adoption
	Modeling Individuals’ Adoption Decisions
	Job Functions

	DATA AND METHODS
	Data Collection
	Sample
	Dependent Variables
	Main Independent Variables
	Control Variables

	RESULTS
	Job Functions – Descriptive Analysis
	Job Functions – Multivariate Analysis
	Control Variables

	DISCUSSION AND IMPLICATIONS
	Conclusions: Job Functions and OSS Adoption
	Limitations and Suggestions for Future Research
	Recommendations for Practice

	FIGURES AND TABLES
	APPENDIX
	REFERENCES

