
Adopting Open Source for Mission-Critical
Applications: A Case Study on Single Sign-On

Claudio Agostino Ardagna^, Ernesto Damiani^ Pulvio Prati^ and Salvatore
Reale^

^ University of Milan - via Bramante 65, Crema (CR), Italy
ardagna, damicini, f r a t iSd t i . unimi. i t

^ Siemens S.p.A.
Carrier Research & Development Radio Access - Network Management, Via

Monfalcone 1, 20092, Cinisello Balsamo (MI), Italy salvatore.realeQsiemens.com

Abstract . In this paper, we describe a specific selection process for
security-related open source code, based on a methodology aimed at
evaluating open source security frameworks in general and Single-Sign-
On (SSO) systems in particular. Our evaluation criteria for open source
security-related software include the community's timeliness of reaction
against newly discovered vulnerabilities or incidents.

Keywords: Open Source, Security, Single Sign-On, Authentication,
Federation, Trust Model.

1 Introduction

Accessing information on the global Net has become a fundamental requirement
of the modern economy. Recently, focus has shifted from access to data stored
in WWW sites to invoking e-services such as e-Government (e-Gov) services,
remote banking, or airline reservation systems [4]. In the above scenario, the
problem of securing access to network resources is of paramount importance.
More specifically, security requirements include: i) confidentiality, data should
be released to authorized users only; nj integrity, unauthorized data insertion,
modification or deletion must be prevented; Hi) availability users must always
be able to access data whereby they are authorized for, preventing, for instance,
attacks such as Denial of Service (DoS). In order to satisfy these requirements,
some basic security mechanisms are available:

- identification and authentication supporting users identification and verifica­
tion of their identity;

- access control evaluating access requests submitted by users against prede­
fined access control rules in order to grant or deny the access;

- audit monitoring access requests post-evaluation, to find out security infringe­
ments;

Please use the following format when citing this chapter:
Ardagna, C.A., Damiani, E., Frati, F., and Reale, S., 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 209-220

210 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

- cryptography protecting data integrity and confidentiality by ensuring that
data stored or transmitted are kept secret and only authorized users can
decrypt them.

Security issues represent a critical aspect for most software applications. Due
to the criticality of this requirement, proprietary solutions are widespread, be­
cause many companies consider them more secure and reliable. Adoption of
open source solutions, especially at the middleware level, is slowed down by
the fact that most companies do not completely trust the open source commu­
nity and consider open source middleware a potential "backdoor" for attackers,
affecting overall system security. However, proprietary security solutions have
their own drawbacks such as vendor lock-in, interoperability limitations, and
lack of flexibility. Recent research suggests that the open source approach can
overcome these limitations [3, 18]. It is also widely acknowledged that open
source solutions may in the end improve security, as they give both attackers
and defenders greater visibility of software vulnerabilities [9]. In this paper, we
discuss the idea of adopting open source for some key security-related func­
tionalities, including access control and authentication systems, and discuss the
requirements that open source security solutions must follow to be suitable for
large scale deployment. In particular, our work focuses on open source Single
Sign-On (SSO) solutions [2]. SSO gives a mechanism to manage authentication
process and allows users to enter a single username and password to access
systems and resources, to be used in the framework of an open source e-service
scenario.

2 Basic Concepts

The huge amount of services available on the Net has caused unchecked prolifer­
ation of user accounts. Typically, users have to log-on to multiple systems, each
of which may require different usernames and authentication information. All
these account may be managed independently by local administrators within
each individual system [12, 11]. SSO [8] systems are security frameworks aimed
at simplifying log-on process, managing users multiple identities and present­
ing users credentials to network applications for authentication. SSO approach
provides reduction of time spent by the users during log-on operations to in­
dividual domains, failed log-on transactions, time used to log-on to secondary
domains, and costs and time used for users profiles administrations. SSO also
increases services usability and provides simple administration thanks to a sin­
gle, centraHzed administration point. Additional motivations that suggest SSO
adoption are provided by Sarvanes Oxley (SOX) directive and the Health Insur­
ance Portability and Accountability Act (HIPAA) that mandate provisions for
maintaining the integrity of user profile data as an essential component of an
effective security policy. HIPAA, for example, explicitly states that companies
are required to assign a unique profile for tracking user identities. Also, it man­
dates procedures for creating, changing, and safeguarding profiles. Traditional

Adopting Open Source for Mission-Critical Applications 211

authentication policies infrastructures do not even come close to fulfilling these
requirements.

2.1 Requirements of a Single Sign-on solution

We are now ready to list the requirements that a Single Sign-On solution should
satisfy [2]. Our analysis brought us to formulating the following seven functional
requirements: i) Basic Authentication: SSO systems must provide an authen­
tication mechanism. Usually, authentication is performed through the classic
username/password log-in, whereby a user can be unambiguously identified;
a) Strong Authentication: for highly secure environments, the traditional user-
name/password authentication mechanism must be integrated with strong au­
thentication mechanisms based on biometric properties of the user (fingerprints,
retina scan, and so on); Hi) Authorization: after the authentication process,
the system must determine the level of information/services the requestor can
see/use. iv) Secure Exchange of Client Status Information: the SSO system ar­
chitecture implies the exchange of user information in secure manner between
SSO server and remote services during authentication and authorization pro­
cesses v) Multi'domain Management: the SSO system could provide support for
managing authorizations (e.g. role acquisitions and revocations) that apply to
multiple domains; vi) Provisioning: a provision is a pre-condition that must be
met before an action can be executed. It is responsibility of the user to ensure
that requests are sent only to environments satisfying all pre-conditions; vii)
Federation: a user should be able to select the services she wants to federate
and de-federate to protect her privacy and to select the services to which she
will disclose her own authorization assertions.

Several non-functional requirements can also be identified, namely:
i) Autonomy a SSO server should be a stand alone module in order to clearly

separate the authorization point from business implementations, avoiding the
rephcation and the ad-hoc implementation of authorization mechanisms for each
domain; ii) Standard Compliance: it is import9,nt for a SSO to support stan­
dard communication protocols fostering integration in different environments;
Hi) Centralized Management: centralization of authentication and authoriza­
tion mechanisms and, more in general, centralization of identity management
implies a simplification of the user profile management task; iv) Cross-Language
availability: SSO solutions should permit the integration of services implemen­
tation based on different languages, without substantial changes on services
code; v) Password Proliferation Prevention: the system should support parsi­
monious creation of costly resources such as passwords and public-private key
pairs.

3 Open source Single Sign-on systems

Now, we shall briefly introduce some Open Source Single Sign-on systems. Our
description will be made with reference to the above requirements and some

212 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

other evaluation parameters. For more architectural details about these Single
Sign-on systems see [2].

Central Authentication Service. Central Authentication Service (CAS) [5, 20]
is an open source framework developed at Yale University. It implements
a SSO mechanism aimed at providing a Centralized Authentication to a
single server and HTTP redirections. When an unauthenticated user sends
a service request, this request is redirected from the application to the
authentication server (CAS Server), and then back to the application after
the user has been authenticated. The CAS Server is therefore the only
entity that manages passwords to authenticate users and transmits and
certifies their identities. The information is forwarded by the authentication
server to the application during redirections by using session cookies. CAS
is composed of modular Java servlets that can run over any servlet engine
and provides a web-based authentication service.

SourcelD. SourcelD [19], first released in 2001 by Ping Identity Corporation
Company, is an open source multi-protocol project for enabling identity fed­
eration and cross-boundary security. SourcelD focuses on simple integration
and deployment within existing Web applications and provides high-level
developer functionalities and customization. SourcelD also implements Lib­
erty Alliance Single Sign-On specifications [16] and it is a framework that
integrates SSO features into new and existing Web portals. The lower level
implementation of Liberty specifications, as for instance SOAP, SAML, Lib­
erty features, protocols and metadata schemas, are transparent for Web de­
velopers. Prom the architectural point of view, SourcelD system is composed
by three modules plugged into the middle of Web applications to provide
SSO facilities: i) Profile implements the Liberty Single Sign-On features, as
for instance Federation, Single Sign-On and Log-Out, ii) Message provides
features to create specific XML messages (for instance Liberty protocol and
authentication), and Hi) Utility provides, functionality as Exception Han­
dling, Data Format encoding and decoding.

Shibboleth. Shibboleth [17] is an open source implementation of Internet2/MA-
CE, aimed at developing architectures, policy structures, practical tech­
nologies, to support sharing of Web resources subject to access control.
Shibboleth is not only a SSO implementation, but it is a more general
architecture that tries to protect privacy and more in general to manage
user credentials. However, in this paper, we focus on the Shibboleth SSO
implementation that is very close to Liberty Single Sign-on specifications
[16]. The lower level implementation relies on different standards as HTTP,
XML, XML Schema, XML Signature, SOAP and SAML. As in Liberty
Alliance approach. Shibboleth uses Federation concept, named Shibboleth
Club, between identity and service providers.

Java Open Single Sign-On (JOSSO). T Java Open Single Sign-On (JOSSO) is
an open source J2EE-based SSO infrastructure aimed at providing a solu­
tion for centralized platform-neutral user authentication[14]. In the JOSSO

Adopting Open Source for Mission-Critical Applications 213

architecture we can identify three main actors: i) Partner application, a
web application that uses SSO Gateway services to authenticate users;
a) SSO Gateway, represents the SSO server and provides authentication
services to users who need authentication with partner applications; Hi)
SSO Agent, is a SSO Gateway chent installed on managed services. More
specifically, JOSSO supplies: i) components-based framework, since it pro­
vides a component-oriented infrastructure to support multiple authentica­
tion scheme, credential, and session stores, ii) support for integration with
Tomcat web container, without requiring code customization. Hi) cross plat­
form, allowing integration with Java and non-Java applications, using stan­
dard solutions such as J A AS, SOAP, EJB, servlet/JSP and Struts, and
iv) support for strong authentication, through the use of X.509 standard
certificates.

Open Web SSO. The Open Web SSO [15] project provides core identity services
for implementing transparent Single Sign-On as an infrastructure security
component. In this paper, we will do not discuss Open Web SSO in detail
because it is still in a very early stage of development.

4 Evaluation of OSS Single Sign On Systems

Generally speaking, few organizations rely on internal guideUnes for the se­
lection of open source products. In most cases, users select an open source
solution which is readily available and fulfills their functional requirements.
Several researchers [6, 10] have proposed more complex methodologies dealing
with the evaluation of open source products from different perspectives, such
as code quality, development flow and community composition and participa­
tion. In this paper, we put forward the idea of a specific selection process for
security-related open source code. A major challenge is to establish a security-
specific evaluation methodology capable of reducing users mistrust, e.g. due to
the feeHng that security open source appUcations are an "intrinsic backdoor"
for attackers. Our main evaluation criteria highlight the promptness of reacting
against newly discovered vulnerabilities or incidents. Applications success de­
pend on the above principle because a low reaction rate to new vulnerabilities
or incidents implies higher risk for users that adopt the software, potentially
causing loss of information and money.

4.1 Evaluation principles

To select and find out the metrics that haye to be evaluated in order to com­
pare different security-related OSS implementations, let us first spell out the
principles our analysis will be based on. We consider six partially overlapping
macro-areas:

Generic Aspects (GA). An open source application must be categorized in
terms of its generic aspects, i.e. ones not related to its purpose or scope.

214 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

including all the quantitative attributes proposed in the literature [6] that
effectively describe a generic open source implementation. Such aspects in­
clude: the duration and size of the project, the programming language, the
number of downloads and accesses.

Developers Community (DC). A critical success factor for any open source
project is the composition and diversity of the developers community. A
high number of developers allows sharing of diverse backgrounds and skills,
giving vitality and freshness to the community and helping in solving prob­
lems, including bugs definition and fixing. Examples of DC properties are
the number of developers and their roles, the existence of a core group and
its stability over time.

Users Community (UC). The success of an open source application can be mea­
sured in terms of number and profile of the users that adopt it and rely on
it. Obviously, measuring and evaluating the users community is less simple
than doing so for developers because users interacting with an open source
project are often anonymous. The overall quality of the users community,
however, can be estimated by means of the number of downloads, the num­
ber of requests, the number of posts inside the forum, and the number of
users subscribed to the mailing list. A qualitative measure of this macro-
area could be the profile of the users adopting the project: if users belong
to well-known companies or organizations and report positive results, their
importance arises.

Software Quality (SQ). This area include metrics of quaUty built into the soft­
ware by the requirements, design, code and verification processes to ensure
that reliability, maintainability, and other quality factors are met. A sub­
set of this macro area is the evaluation of code quality via coarse-grained
factors such as operating system support, language support, level of modu­
larity, compliance with the standards and so forth.-^

Documentation and Interaction support (DIS). This macro area is composed
of two major sub-areas: traditional documentation that explains the char­
acteristics, functionalities and peculiarities of the software and support in
terms of time allotted by developers to give feedback about the project and
documentation, through forums, mailing lists, whitepapers, and presenta­
tions.

Integration and Adaptability with new and existing technologies (lA). A funda­
mental tenet of open source projects is full integration with existing tech­
nologies at project startup and a high level of adaptability to new technolo­
gies presented during project fife. Another aspect that arise is the ability of
the developers community to solve and fix bugs and react to new vulnera­
bilities.

^ As far as evaluating code quality is concerned, we remark that open source SSO sys­
tems lend themselves to quality assurance and evaluation based on shared testing
and code walkthrough as outlined in [1]. However, comparing reference implemen­
tations based on code walkthrough is outside the scope of this paper.

Adopting Open Source for Mission-Critical Applications 215

4.2 Evaluation parameters

In this section we provide a description of the metrics (see Table 1 and 2) we
used to evaluate critical open source security applications. This set of metrics
will be later used for comparing open source SSO architectures (see Section 5).

Within the above areas, we can now define quantitative metrics. They can
be orthogonally divided in two categories: i) Core Metrics (CM), including
all metrics that can be readily computed from current technologies, statistics,
and information on the projects; ii) Advanced Metrics (AM), including all pa­
rameters that require additional information and some privileged access to the
development group. Advanced metrics may be available only as rough estimates
or not available entirely. A brief definition of the parameters semantics is shown
in Table 1 and 2. For a detailed explanation of advanced metrics, we refer to
Section 4.3.

4.3 Advanced Metrics

Advanced Metrics represent the evaluation parameters that would require priv­
ileged access to the developers community. Otherwise, they can be estimated
based on raw data. In particular, we propose three major metrics: i) Re­
action Rate, estimating the average time the developers community took to
find solutions to newly discovered vulnerabilities. This parameter measures
the community vitality in reacting against vulnerabilities that represent the
main problem in security applications; ii) Incident Frequency, which measures
the robustness of the application with respect to discovered vulnerabilities; Hi)
Group/Developers Stability, which measures the degree of stability of developers
group. Regarding the first two parameters, we remarks that various security-
related Web portal provides databases that contain information about vulnera­
bilities and related incidents summaries. In particular, three main portals stand
out: Secunia (h t t p : / / s e c u n i a . c o m /) that offers monitoring of vulnerabilities
in more than 6000 products. Open Source Vulnerability Database (OSVDB)
(ht tp: / /www.osvdb.org/) an independent database that provides technical
information about vulnerabilities and, finally, CERT that provides a database
containing information about vulnerabilities, incidents and fixes. Further, we
describe how to use the CERT database, the more complete and well supported
repository of security concerns, in order to describe problems related to vulnera­
bilities and incidents prevention. The last metrics. Groups/Developers Stability^
is not easy to estimate from outside the developers community, due to the fact
that does not exist a formal categorization of the information related to the
users and developers that belong to a particular project. It may be however
available to insiders, e.g. to companies that adopted an open source product
and openly contribute to its community.

CERT The Computer Emergency Response Team (CERT) [7] is an organi­
zation focused on ensuring that appropriate technologies and systems man­
agement practices are used to resist to attacks on networked systems, to

216 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

Core Metrics
Name
Age
Project Core
Group

Number of
Core Devel­
opers

Number of
Releases
Bug Fixing
Rate
Update Aver­
age Time

Forum and
Mailing List
Support
Number of
Users

Documentatio
Level
Code Quality

Community
Vitality

Definition
Age of the project
Evaluate the existence of a group of core develop­
ers. Further analysis could evaluate the composi­
tion of the group
Number of core developers contributing the
project. Core developers are defined as the persons
that contributes both to the project management
and code implementation
Number of releases since project start up

Measures the rate of bug fixed. This rate is com-
putea as. ^^fi^^^dUected
Measures the vitality of developers group and in
other word the mean number of days to wait for
a new update (releases or patches). This metrics

10 COmpUtCa a s . ^ofvatches+#ofreleases

Check forum and mailing list availability

Number of users that adopt the application. When
not available, this parameter is approximated as:
^of downloads

i^of releases

Level of documentation of a project, in terms of
API, user manuals, whitepapers
Qualitative measure of code quality. Several stan­
dard source code metrics could be adopted.
Represents the vitality of the community in
terms of number of forum threads and replies:
i^of forumreplies
if^of forumthreads

Values
Days
Boolean

Integer

Integer

[0..100]

days

boolean

Integer

Mbyte

Real

Area
GA
GA,DC

DC

SQ,IA

SQ,IA

SQ,IA

GA,DIS

UC

DIS

SQ,IA

DC,UC

Table 1. Evaluation Metrics Definition: Core Metrics

limit damages and ensure continuity of critical services despite successful at­
tacks, accidents, or failures. The CERT is located at the Software Engineer­
ing Institute (SEI), a Federally Funded Research and Development Center
(FFRDC) operated by Carnegie Mellon University. The CERT Coordination
Center (CERT/CC), a major center for internet security problems, component
of the larger CERT Program, was established in November 1988 after that
the "Morris Worm" brought down much of the internet and demonstrated the
growing network susceptibility to attack. For the purposes of the present paper,
we take into consideration CERT information about vulnerabilities, incidents
and vulnerabilities fixing, which provides the raw data over which our advanced
metrics are computed.

Adopting Open Source for Mission-Critical Applications 217

Advanced Metrics
Name Definition Values Area
Reaction Rate Average time needed by the developers com­

munity to find solutions for newly discovered
vulnerabilities. More specifically, it represents
the project developers ability in reacting to
the set V of vulnerabilities. It is defined as
r 1] _ ^ Update Aver ageTime

y]''_ (Fixing^Date(Vi)-Discovering-Date{Vi))

lA

where Vi EV and n = |V|
Incident
quency

Fre- Measures the number of incidents due to vul­
nerabilities. This parameter is computed as:
i^o f incidents

lA

Group/
velopers
Stability

De- Measures the degree of stability of a develop­
ers group. Each developer is classified as sta­
ble or transient where stable is a developer that
continuously contributes code. The exact num­
ber of contributions to make a developer stable
are project-dependent. This value is computed as:
:^of stabledevelopers -i /-vr»

[0..100%] DC

#of developer s

Table 2. Evaluation Metrics Definition: Advanced Metrics

US-CERT Vulnerability Notes Database A vulnerability [13] is defined as a
set of conditions that leads or may lead to an implicit or explicit failure of
the confidentiality, integrity, or availability of an information system. Exam­
ples of the unauthorized or unexpected eflfects of a vulnerability may include
executing commands as another user, accessing data in excess of specified or
expected permission, posing as another user or service within a system, caus­
ing an abnormal denial of service, inadvertently or intentionally destroying data
without permission and exploiting an encryption implementation weakness that
significantly reduces the time or computation required to recover the plain text
from an encrypted message. Common causes of vulnerabilities are design flaws
in software and hardware, patched administrative processes, lack of awareness
and education in information security, and advancements in the state of the art
or improvements to current practices, any of which may result in real threats
to mission-critical information systems. The accidental introduction of defects
into software is expected to comprise a significant portion of the vulnerabilities
addressed by this framework. CERT alerts users to potential vulnerabilities to
the security of their systems and provide information about how to avoid, min­
imize, or recover from the damage. A vulnerabilities database is maintained by
US-CERT [21] and contains descriptions of vulnerabilities, their impacts, and
solutions. US-CERT publishes information on a wide variety of vulnerabilities.
Descriptions of these vulnerabilities are available from this web page in a search­
able database format, and âre published as "US-CERT Vulnerability Notes".

218 C. A. Ardagna, E. Damiani, F. Prati and S. Reale

The notes are very similar to alerts, but they may have less complete informa­
tion. In particular, solutions may not be available for all the vulnerabilities in
this database. The US-CERT Vulnerability Notes database is cross-referenced
with the Common Vulnerabilities and Exposures (CVE) catalog.

CERT/CC Incident Notes CERT Incident Notes have become a core com­
ponent of US-CERT's Technical Cyber Security Alerts and Current Activity;
this bulletin provides information about the exploiting of the vulnerabilities to
convey an attack to the affected systems. In particular, incident notes provide
information such as the overview and description of the incident and optionally
the solution to the vulnerabiHty that causes the incident.

Vulnerability Fixing US-CERT Vulnerability Notes Database and CERT/CC
Incident Notes provides additional information about the solution applied to
fix the discovered vulnerabilities. It is widely acknowledged that most of the
incident reports of computer break-ins received at the CERT/CC could have
been prevented if system administrators and users kept their computers up-to-
date with patches and security fixes. US-CERT provides only the link to the
available patches and security fixes that are usually hosted on the vendor sites.
In summary, most information necessary to calculate the provided advanced
metrics set is already available on' the Net. Unfortunately, this information is
in raw format and then is difficult to automatize the calculation of the met­
rics. Substantial pre-processing is needed to compute these metrics, that are of
paramount importance in evaluating the risk of open source security applica­
tions adoption. We are currently working on a tool for security metrics (Sect.
6)

5 Open Source Comparison

Table 3 gives a comparison of open source Single Sign-On implementations.
Before discussing it, we remark that while CAS, SourcelD and JOSSO are fully
dedicated SSO systems. Shibboleth is a more comprehensive framework which
contains, among other things, a SSO implementation. Focusing on the compar­
ison, we remark that as shown by the table, all the analyzed systems are quite
stable due to the fact that their startup happens more than a year ago. The
CAS implementation stands out; it has a long time history because it started
about five years ago. A common characteristic of the projects is that they are
managed by a consolidated core group that gives stability to the project and
coordination to open source community. Also the level of documentation is
similar and is included between 6.80 MB of JOSSO and 10.05 MB of CAS. Al­
though CAS seems the more lively project due to the great number of releases,
we argue that the more active and viable implementation is JOSSO, because
it provides a new release every 21 days, while CAS implementation only pro­
vided a release every 79 days. This gap could give to adopters of the JOSSO

Adopting Open Source for Mission-Critical Applications 219

Metrics
Age (GA)
Project Core Group (GA,DC)
Number of Core Developers (DC)
Number of Releases (SQ,IA)
Bug Fixing Rate (SQ,IA)
Update Average Time (SQ,IA)
Forum and Mailing List Support
(GA,DIS)
Number of Users (UC)

Documentation Level (DIS)
Community Vitality (DC,UC)

CAS
1500 days

Yes
5
19

N/A
79 days
Mailing

List Only
45

10.05 MB
N/A

SourcelD
812 days

Yes
N/A

7
N/A

116 days
Mailing

List Only
N/A

8.96 MB
N/A

Shibboleth
926 days

Yes
5
10
0%

92,6 days
Mailing

List Only
N/A

7.04 MB
N/A

JOSSO
489 days

Yes
2
7

67%
21 days

Yes

3161
approx.
6.80 MB

3,12

Table 3. Comparison of proposed implementations at 31 December 2005

framework an higher assurance of the project's reliability, because continuous
releases keep the implementation up to date and resistant to new technologies
and vulnerabilities. However, JOSSO very short update time is also influenced
by the fact that the project is the youngest; probably, in the next year, the up­
date average time will rise although it will probably maintain the lowest update
average time. Regarding other metrics, for the sake of conciseness we avoid a
complete discussion. It is easy to see that JOSSO is the only implementation
that furnishes all the information allowing a complete metrics measurement. To
conclude this overview, our analysis showed that JOSSO is the most suitable
and flexible open source SSO solution if analyzed from security point of view.

6 Conclusions

In this paper, we presented a quantitative approach to the comparative evalua­
tion of security-related software. Then as a case-study, we compared five major
implementations of Single-Sign-On systems. Our evaluation methodology re­
lates on a structured set of metrics specifically designed for security-related
open source systems. Some of these metrics are based on event logs of some
well-known security portals (e.g., the CERT one) and their computation would
be made much easier should CERT support some level of data warehousing. We
are now working on a tool for creating a warehouse of quantitative data about
security events to be used in the framework of our evaluation.

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by
the Italian MIUR within the KIWI and MAPS projects.

220 C. A. Ardagna, E. Damiani, F. Prati and S. Reale

References

1. S. Abiteboul, X. Leroy, B. Vrdoljak, R. Di Cosmo, S. Fermigier, S. Lauriere,
F. Lepied, R. Pop, F. Villard, J .R Smets, C. Bryce, K.R. Dittrich, T. Milo,
A. Sagi, Y. Shtossel, and E. Panto. Edos: Environment for the development
and distribution of open source software. In The First International Conference
on Open Source Systems, pages 66-70, Genova (Italy), July 2005.

2. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, F. Frati, and P. Samarati.
C A S + + : an open source single sign-on solution for secure e-services. Submitted to
21st IFIP International Information Security Conference "Security and Privacy
in Dynamic Environments", May 2006.

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to
secure e-government services. Encyclopedia of Digital Government, 2006.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middle­
ware for securing e-gov applications. In The First International Conference on
Open Source Systems, pages 172-178, Genova (Italy), July 2005.

5. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-
on with cas (central authentication service). In Proceedings of EUNIS04 - IT
Innovation in a Changing World, pages 172-178, Bled (Slovenia), 2005.

6. A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source projects.
In CSMR, page 317, 2003.

7. CERT-CC. Cert coordination center, h t t p : / / w w w . c e r t . o r g / .
8. Jan De Clercq. Single sign-on architectures. In International Conference on

Infrastructure Security, InfraSec, LNCS, 2002.
9. C. Cowan. Software security for open-source systems. lEEE-SEC-PRIV, 1(1):38-

45, January/February 2003.
10. J. Feller and B. Fitzgerald. A framework analysis of the open source software

development paradigm. In WIS, pages 58-69, 2000.
11. B. Galbraith and et al. Professional Web Services Security. Wrox Press, 2002.
12. The Open Group. Single sign-on. h t t p : / / w w w . o p e n g r o u p . o r g / s e c u r i t y / s s o / .
13. John T. Chambers and John W. Thompson. Vulnerability disclosure framework.

Final report and recommendations by the council, National Infrastructure Advi­
sory Council, January 2004.

14. JOSSO. Java open single sign-on. h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / j o s s o .
15. OpenSSO. Open web sso. h t t p s : / / o p e n s s o . d e v . j a v a . n e t / .
16. Liberty Alliance Project, h t t p : / / w w w . p r o j e c t l i b e r t y . o r g / .
17. Shibboleth Project, h t t p : / / s h i b b o l e t h . i n t e r n e t 2 . e d u / .
18. E.S. Raymond. The cathedral and the bazaar, h t tp : / /www.openresources .com/

documen t s / ca thed ra l -bazaa r / , August 1998.
19. SourcelD. Open source federated identity management, h t tp : / /www. source i d .

o rg / .
20. Yale University. Central authentication service, h t t p : / / t p . i t s . y a l e . e d u / t i k i /

t i k i - i ndex .php?page=Cen t r a lAu then t i ca t i onSe rv i ce .
21. US-CERT. Vulnerability notes database, h t t p : //www .kb. c e r t . o r g / v u l s / .

