
A tool to support the introduction of 
GNU/Linux desktop system in a 

professional environment 

Francesco Di Cerbo^ Daniele Favara^ Marco Scotto ,̂ 

Alberto Sillitti^ Giancarlo Succi^ TuUio Vemazza' 

1 DIST - Universita di Genova 
Via Opera Pia, 131-16145 Genova 

{Francesco.DiCerbo,Tullio.Vemazza}@unige. it, 
Daniele.Favara@gmail.com 

WWW home page: http://www.lips.dist.unige.it 

2 Libera Universita di Bolzano/Bozen 
Piazza Domenicani, 3 

1-39100 Bolzano-Bozen, 
{Marco.Scotto, Alberto.Sillitti, Giancarlo.Succi@unibz.it 

WWW home page: http://www.unibz.it 

Abstract. The introduction of a GNU/Linux-based desktop system in a large 
company is often problematic, in terms of technical issues but especially for 
employees' training costs. Mainly, these obstacles are represented by different 
hardware configurations that might require several ad-hoc activities to adapt a 
standard release to the specific environment, including company's application 
profile. On the other hand, GNU/Linux live distributions provide to the users' 
community new and interesting capabilities, as self-configuration and better 
usability, but loosing compatibility with original distributions, that is 
unaffordable in professionals scenarios. DSS (Debased Scripts Set) is an answer 
to both questions. It is a live distribution that includes an unmodified Debian-
based Linux release and a modular-designed file system. 

Keywords: GNU/Linux, live distributions, meta-distribution, early user-space, 
usability, scalability, large environments application deployment 

1 Introduction 

When dealing with massive installation of desktop computers in a professional 
scenario, usually the choice falls on proprietary solutions for both the operating 
system and deployment tools. This happens thanks to their capability to lower total 
costs in many aspects, first of all simplifying overall complexity and time required for 
deployment operations. 

Please use the following format when citing this chapter: 
Di Cerbo, P., Favara, D., Scotto, M., Sillitti, A., Succi, G., and Vemazza, T., 2006, in 
IFIP International Federation for Information Processing, Volume 203, Open Source 
Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: 
Springer), pp. 253-260 



254 Francesco Di Cerbo, Daniele Favara, Marco Scotto, 
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza 

The introduction of GNU/Linux[l] desktop systems in large companies is often 
problematic for both startup and successive maintenance operations. These obstacles 
are often represented by different hardware configurations that may require several 
ad-hoc activities to adapt a standard release to the a specific environment. On the 
other hand, GNU/Linux live distributions provides to the users' community new and 
interesting capabilities, such as self-configuration and better usability, but the trade
off is represented by some relevant differences with the distributions from which they 
derive. Such differences make them useless in a professional scenario. 

DSS (Debased Scripts Set) is an answer to previous issues. It is a live distribution 
based on an unmodified Debian[2]-based Linux release (Ubuntu[3]), including a pure 
"stock" kernel, i. e. a standard distribution-provided precompiled Linux kemel[4]. 
DSS includes innovative hardware detection and configuration techniques, even if 
based on sound and largely adopted software (such as hotplug daemon), that is loaded 
since the very first boot operations. Combining these aspects with a modular software 
package approach, made it possible by using a specialunification file system 
(Unionfs [5]), DSS is also able to deploy, in a single package, a customized company-
specific release containing both the operating system and all the desired applications. 
To summarize, DSS is a framework that allows an easy customization of a 100% 
Debian-based GNU/Linux live-cd distribution. It provides tools to repackage all the 
modifications into a derived Linux distribution. Morevover, thanks to its smart file 
system design, completely constituted by modular parts loaded at runtime, it may be 
easily repackaged again into a live distribution. 

State of the art - Knoppix live distribution 

Knoppix[6] may be considered the pioneer of GNU/Linux live distributions, both for 
diffusion, also demonstrated by a large number of works based on it, and historical 
reasons. 
However, its approach to make a Debian GNU/Linux distribution bootable from a 
CD / DVD / USB pen-drive, makes its use, in a professional setting, practically 
impossible, except for data recovery or hardware testing. Its severe modifications to 
the standard Debian distribution, cross-combining unstable and testing versions, 
makes new application's distribution and upgrade quite difficult, requiring a great 
effort to bring to stability a new hypothetical desktop installation based on Knoppix. 
Moreover, "exotic" hardware suffers about Knoppix deep-kernel specificity, fit to its 
hardware detection requirements. Uncommon or not completely supported hardware 
often comes with drivers usually not contained in standard kernels, which may be 
provided with commercial license, incompatible with GPL (Generale Public License) 
statements and so undeliverable inside Debian. In this cases, the adoption of Knoppix 
can be a great deal. Last but not least, hardware detection and configuration 



A tool to support the introduction of GNU/Linux desktop system in a professional 255 
environment 

techniques come with special boot applications (knoppix-autoconfig, hwsetup, 
kudzu), that require a constant maintenance process to be able to recognize new or 
uncommon hardware. Moreover, their approach, based on kernel-space routines, 
forces successive setups (e.g. file systems configuration) to be unfit to use user-space 
libraries and applications, to give a user flexibility in data and device access, 
especially in case of plug-and-play USB hardware. Such features use ad-hoc scripts 
running with maximum privileges, which may lead to security problems, particularly 
critic in an industrial environment. 

DSS main features 

DSS adopts a completely new approach to live distributions based on a "early user-
space"[7] mode. It is a set of libraries and programs (that are available even without a 
running Linux kernel) which provide various functionalities required while a Linux 
kernel is coming up . 
The "Early user space" mode allows DSS to use hotplug, a daemon program normally 
used for hardware discovery and configuration in standard non-live GNU/Linux 
distributions, since the first boot. This is a great advantage, as the booting kernel 
relies on already detected hardware, and using its 2.6 series features, may 
automatically load needed kernel modules to use just discovered hardware, quite like 
in a common installed GNU/Linux system. Due to this feature, DSS does not require 
developing and maintaining an ad-hoc kernel, but it may use a stock one, exactly like 
any other Debian release. 
"Early user-space" mode is based on initramfs, a chunk of code that unpacks a 
compressed file system image (in cpio format) midway through the kernel boot 
process. It replaces the old initrd file system format, which contained a set of kernel 
modules stated to be available at boot time, before mounting root file system and so 
before having all kernel resources available. The main advantage of initramfs is its 
capability to be used with ramfs, a file system designed to work on physical RAM, 
scalable in size, instead of usual initrd. This allows DSS, in conjunction with unionfs, 
to save time in the boot phase: instead of setting up a boot environment for hardware 
detection/configurafion operations, DSS directly sets up a final working environment, 
and when the kernel finishes its startup operations, the boot process is over, with a 
simple environment update. This because RAM allocated since boot start for required 
boot operations does not need to be freed/removed, and running klibc environment is 
not used anymore except for boot process. Eventually, it is possible to allocate all 
available RAM on system to improve overall performances, reducing physical 
medium access delays. Moreover, DSS adopts unionfs, a file system designed to 
merge different devices, allows to group physical devices with ramfs devices to set up 
final root filesystem. 



256 Francesco Di Cerbo, Daniele Favara, Marco Scotto, 
Alberto Sillitti, Giancarlo Succi, TuUio Vemazza 

In this way, except for a small set of scripts which effectively coordinates boot 
process, no ad-hoc component is used to bring a Debian GNU/Linux release to be live 
bootable and completely able to fulfill hardware detection/configuration for Linux's 
supported peripherals. 
DSS is also designed to be a meta-distribution framework, allowing creation of 
derivative distribution, both live or in standard package, built up upon a pure Debian 
release, in a very simple way. This feature is provided thanks to a special modular file 
system design, made possible by adoption of Unionfs[8]. 
DSS root filesystem is split into modules, which are added together via Unionfs. 
All modules in DSS are compressed archives, which can be mounted at runtime, as 
filesystem. These modules contains programs and libraries, which are merged 
together into a unique filesystem, thanks to Unionfs; additivity in modules 
management permits to create a final filesystem layout which may be different from 
distribution to distribufion, allowing different installation profiles, e. g. a server one, 
without graphical server, or a customized GNU/Linux desktop distribution, 
containing a specific corporative environment ready-to-use. 
Moreover, as compressed modules are merged in an ordered way, a single installafion 
may be multi-purpouse, including or excluding any of them from boot loader 
parameters. This feature is very important to contain different installation profiles in a 
single location, and it's extremely useful in a network installation, or in a DVD 
release, for example. 
Module creafion process is also very simple, and it may be created in two way: non-
interactive, which relies On "debconf program, just producing a list of desired debian 
packages to include in outcoming module, and a script would download packages and 
compress them into a cpio archive, or in an (interacfive way, booting DSS, using 
"synaptic" program and then executing another script. Resulting archives may be 
redistributed inside a standard DSS release without any further modifications to 
original status. 

Key technology: UnionFS 

Unionfs is a stackable file system that operates on multiple underlying file systems. It 
merges the updated contents of multiple directories but keeps their original physical 
content separated. The Dsslive iriiplementation of UnionFS merges the Dsslive 
RAMdisk with the read-only file systems on the boot CD so it's possible to modify 
any read-only file as if it was writeable. UnionFS is part of FiST, File System 
Translator project. Its goal is to address the problem of file system development, a 
critical area of operating-system engineering. The FiST lab notes that even small 
changes to existing file systems require deep understanding of kernel internals, 
making the barrier to entry for new developers high. Moreover, porting file system 
code from one operating system to another is almost as difficult as the first port. 



A tool to support the introduction of GNU/Linux desktop system in a professional 257 
environment 

FiST, developed by Erez Zadok and Jason Nieh in the computer science department at 
Columbia University, combines two methods to solve the above problems in an 
innovative way: a set of stackable file system templates for each operating system, 
and a high-level language that can describe stackable file systems in a cross-platform 
portable fashion. The key idea is that with FiST, a stackable file system would need to 
be described only once. Then FiST's code-generation tool would compile one system 
description into loadable kernel modules for different operating systems (currently 
Solaris, Linux and FreeBSD are supported). 

DSS inside UnionFS 

Dsslive within the "pre-USS" script mount different compressed file systems in 
different mount points and uses a read-writable directory as last layer, with a outcome 
to have just one final mount point (the root directory). UnionFS allows DSS to 
virtually merge- (or unify-) different directories (recursively) in a way that they 
appear to be one tree; this is done without physically merging the directories content. 
Such namespace unification has a benefit in allowing the files to remain physically 
separate, even if they appear as belonging in one unique location. The collection of 
merged directories is called a union, and each physical directory is called a branch. 
When creating the union, each branch is assigned a precedence and access 
permissions (i.e., read-only or read-writable). Unionfs is a namespace-unificafion file 
system that addresses all of the known complexities of maintaining Unix semantic 
without compromising versatility and the features it offers. It supports two file 
deletion modes that manage even partial failures. It allows efficient insertion and 
deletion of arbitrary read-only or read-writable directories into the union. Unionfs 
includes in-kemel handling of files with identical names; a careful design that 
minimizes data movement across branches; several modes for permission inheritance; 
and support for snapshots and sandboxing. 
Unionfs has an n-way fan-out architecture [5,6]. The benefit of this approach is that 
Unionfs has direct access to all underlying directories or branches, in any order. 
Even if the concept of virtual namespace unification appears simple, there are three 
key problems that arise when using it as root file system of Dsslive. 
The first is that two or more unified directories can contain files with the same name. 
If such directories are unified, duplicate names must not be returned to user-space for 
obvious reasons, Unionfs solves this point defining a priority ordering of the 
individual directories being unified. When several files have the same name, files 
from the directory with higer priority take precedence. 

The second problem relates to file deletion. Files with same name could appear in the 
directories been merged or files to be deleted reside on a read-only branch. Unionfs 
handles this sitruation inserting a without, a special high-priority entry that marks the 
file as deleted. 



258 Francesco Di Cerbo, Daniele Favara, Marco Scotto, 
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza 

When file system code finds a without for a file, it simply behaves as the file doesn't 
exists. 
The third problem is relegated to the previous one and it involves mixing read-only 
and read-write directories in the union. When users want to modify a file that resides 
in a read-only branch, Unionfs performs a "copyup", the file is copied to the higher 
priority directory and modified there. 

Unionfs and The Upstream Salmon Struct (USS) 

The power of Dsslive resides on its design, offering high modularity and allowing the 
customization as easy as possible. This has been achieved by designing the USS and 
using Unionfs as background. 

The unified root file system is made of the content of different modules, each module 
is a squashfs compressed file system: 

l.base: console mode module, it contains a basic bootstrapped debian system; 
2.kernel: it contains the /lib/modules/ directory plus kernel related utilities; 
3.xserver: graphical mode modules, (in case of file names clash, the priority in the 
unified directory is defined by sorting the modules name); 
4.deliver: it contains the runlevel scripts needed to reconfigure "debconf' database 
and the environment reading the user configuration from /proc/cmdline passed to 
kernel at boot from boot loader (e.g.: locales informafion, force screen resolufion); 
5.overall: the read-writable branch, it can reside in ram or even be an external hd; 
Base, kernel and xserver use is self-explaining enough, but the packages inside those 
modules are stored using a "noninteractive" debconf frontend, and so they maintain 
their ovm default configurations, that's why Dsslive can be considered a pure debian 
system hoofing from a cdrom. Anyway to allow the user to use his own locales 
setdngs (i. e. language, keyboard) and video card optimized drivers, some packages 
need to be reconfigured: and this is made using the runlevel scripts in deliver. 

Deliver 

The scripts in "yuch-bottom", the directory within the initramfs, write the 
environment variables in the file /etc/deliver.conf, parsing command line parameters 
from boot loader, as lang(uage), username, hostname etc. Deliver uses those variables 
to reconfigure some packages, upgrading at the same time the debconf database. 



A tool to support the introduction of GNU/Linux desktop system in a professional 259 
environment 

The scripts in deliver are plain text bash scripts, this allows DSS use not only for a 
1386 livecd distribution, but even for powerpc or spare computers, and all the other 
11 architectures that debian supports, making DSS fully architecture-independent. 
Thanks to its scripts, DSS, to be ported from an architecture to another, just needs a 
right initramfs and the deliver module, without caring about kernel customization, as 
it is sufficient a pure debian stock kernel. 
Dsslive, differently from knoppix, uses debconf to configure the system, which 
provides a consistent interface for configuring packages, allowing to choose from 
several user interface frontends. It supports even a special "pre-configuration" of 
software packages before they are actually installed, which allows massive 
installation or upgrade sessions demanding all necessary configuration informations 
up front, without user interactions (frontend "noninteractive"). It allows to skip over 
less important questions and informations while installing a package, giving anyway a 
chance to revise them later. 
It is also interesting to remark that debconf itself is completely a Debian supported 
tool, and its use is not customized at all: another key point into 100% Debian 
compatibility. 

Conclusion 

DSS is a 100% Debian live distribution, and may be proficiently used to install a 
pure Debian system on a desktop pc. Thanks to its features, it's very simple to 
customize starting base version, in a way to meet, for example, large-scale 
installations with specific requirements, such as in large companies networks. Its 
maintenance is not effort-prone, due to adoption of standardized technologies, but 
their use in a live environment, thanks to DSS innovative design, represents a unicum 
in current scenario. Moreover, there are ^o limitations to port DSS into any of Debian 
supported architectures, of to use it in embedded systems. 

References 

[1], Stallman, R. et al.. Free Software, Free Society: Selected Essays of Richard M. 
Stallman,, www.gnu.org 
[2], Ian Murdock, "Overview of the Debian GNU/Linux System", Linux Journal, 
Volume 1994 Issue 6es 
[3], Ubuntu group, Ubuntu philosophy,, http://www.ubuntu.com/ubuntu/philosophy 
[4], D. Rusling, The Linux Kernel,, http://www.tldp.org/LDP/tlk/tlk.html 
[5], E. Zadok and J. Nieh, FiST: A Language for Stackable File Systems, 2000 
[6], Knopper, K. "Building a self-contained auto-configuring Linux system on an 
iso9660 filesystem", Usenix 2000 Conference 



260 Francesco Di Cerbo, Daniele Favara, Marco Scotto, 
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza 

[7] Petullo, M,, "Encrypt your root filesystem", Linux Journal,Volume 2005 , Issue 
129 (January 2005) Page: 4, 2005,ISSN: 1075-3583 
[8], CP Wright, J Dave, P Gupta, H Krishnan, E Zadok, Versatility and Unix 
Semantics in a Fan-Out Unification File System, , 
http://www.fsl.cs.sunysb.edu/docs/unionfs-tr/ 




