
Evaluating Process Quality in GNOME based on Change Request Data

Holger Schackmann, Horst Lichter
Research Group Software Construction, RWTH Aachen University

{schackmann|lichter}@swc.rwth-aachen.de

Abstract

The lifecycle of defects reports and enhancement

requests collected in the Bugzilla database of the
GNOME project provides valuable information on the
evolution of the change request process and for the
assessment of process quality in the GNOME sub
projects. We present a quality model for the analysis of
quality characteristics that is based on evaluating
metrics on the Bugzilla database, and illustrate it with
a comparative evaluation for 25 of the largest
products within GNOME.

1. Introduction

The GNOME project is structured into almost 400
products which include 38 products that have been
deprecated1. GNOME imposes some guidelines for
development, like the workflow for change requests, a
common versioning scheme, a six month release cycle,
and time lines for API freezes. However most of these
guidelines are not considered to be mandatory, they can
be adapted based on the needs of each product.

In order to analyze the quality of the change request
process it is necessary to decide which requirements are
explicitly or implicitly imposed on the change request
process. Some explicit guidelines documented in the
GNOME project are the Bug Writing Guidelines2, the
Bug Triage Guide3, and the documentation of the status
workflow in Bugzilla4. Thus the process involves the
following roles and responsibilities:

General users report new change requests (CR),
either a defect report or an enhancement request, in the
status Unconfirmed.

Bugsquad members (i.e. the GNOME quality
assurance team) triage CRs, either by confirming the CR
(moving it to status New), asking the reporter for more
information (status Needinfo), or marking the bug either
as Duplicate, Invalid, NotGnome, NotABug or Obsolete.

1 http://bugzilla.gnome.org/describecomponents.cgi
2 http://bugzilla.gnome.org/page.cgi?id=bug-writing.html
3 http://live.gnome.org/Bugsquad/TriageGuide
4 http://bugzilla.gnome.org/page.cgi?id=bug-status.html

Developers/Maintainers are allowed to set the target
milestone for a CR, to mark a CR as Fixed after
committing changes to the source code repository, and to
mark CRs with WontFix. They can also report new
change requests directly in status New.

However, these rules have evolved over time, e.g. all
products uniformly applied Unconfirmed as default state
of new CRs not until May 2005. Since December 2005
developers were again allowed to report CRs directly in
status New.

Quality characteristics can also be determined based
on what is generally considered as good practice in open
source projects [1], for example:
• The project should try to acknowledge each issue the

moment it appears
• No conversations should take place in the bug

tracker. Mailing lists are more appropriate.
• The database should be kept sane by finding obsolete

CRs.
• The project should have a transparent development

process, e.g. it must be visible which CRs are
available with a milestone, to give users an incentive
to move to this milestone [2].

In the next section we formulate the questions addressed
in order to analyze the change request process. The
evaluation approach and the applied tools are described
in Section 3. Results are discussed in Section 4.

2. Questions addressed

Quality characteristics of the CR process can be
defined along the roles mentioned in section 1. Each
quality characteristic is described by one or several
questions.
A. Quality of the CRs reported by general users:

• What is the quality of the CRs reported by
general users in terms of completeness and
redundancy freeness?

B. Quality of the CR triage by the Bugsquad:
• How long does it take for CRs to be triaged?
• Are triaged CRs correctly classified?

hschack
Textfeld
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

C. Quality of Processing of CRs by the Developers/
Maintainers:
• How long does it take to resolve a CR?
• How often has a fixed CR to be reopened?
• How transparent is the availability of new

features and bug fixes?
In the following we will analyse how these quality

characteristics differ between GNOME products, and
how they evolved over time.

3. Approach and tools used

Our approach is based on calculating metrics on the

change request data that can be used as indicators for the
quality characteristics of interest. To calculate metrics
we applied the open source tool BugzillaMetrics [3]. It
allows specifying metrics in a declarative language.
Thus metrics can be described precisely on a higher
abstraction level, which simplifies the process of
developing and validating metrics [4].

Based on the questions formulated in section 2 we
derived a number of corresponding metrics that are
listed in table 1 with brief descriptions. Each metric is
normalized such that its results are not biased by factors
like size or age of the product. Furthermore each metric
is specified in a way such that minimal values are
considered to be optimal. The precise and complete
specification of each metric is made available on
www.bugzillametrics.org.

These metrics can then be evaluated for a number of
selected products and a given time interval. The value
distribution of the results for each metric in a time
interval gives an impression on how good the different
products perform in general and how large are the
differences between the products.

Moreover we want to aggregate these raw results to
be able to assess the quality in each of the three
categories given in section 2. Since the GNOME
development process imposes no absolute goals for the
outcome of these metrics, we prefer to use the metrics
results of the GNOME products itself in a selected time
interval as comparison data. This pragmatic approach
enables us to assess a quality characteristic of the
development process of a certain product relative to
other GNOME products. Moreover it can be analysed
how quality characteristics evolved over time.

In order to specify the quality model, we used the
QMetric quality model editor and evaluation tool [5].
The quality model defines how the individual metric
results of a product are aggregated in order to assess a
quality characteristic. The QMetric evaluation tool
performs an automatic evaluation of the quality model
based on results of a metric tool like BugzillaMetrics.

 The evaluation of the quality characteristics is based
on classifying each individual metric value according to
the quartiles of the metric results for comparison
products. Then a linear equation is used to aggregate the
results. In detail this can be defined as follows:

Let
Cm be a set of values for a given metric m
measured for a number of products used as
comparison data,
Qi(Cm) the i-th quartile of Cm, i = 1..3

The quartile classification q of a metric value vm
with respect to the corresponding comparison
data Cm is defined as:

)(
)(
)(

)(
)(
)(

4
3
2
1

),(

1

2

3

1

2

3

m

m

m

m

m

m

m

m

m

m

mm

CQ
CQ
CQ

v
v
v
v

CQ
CQ
CQ

Cvq

≤
≤
≤

<
<
<

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

A quality characteristic QC with underlying
metrics m1, …, mn can then be evaluated as:

Table 1. Metrics used as quality indicators
Id Metric Description
A.1 Duplicated

CRs
Number of CRs marked as Duplicate
relative to the number of all resolved
CRs in a time interval.

A.2 Invalid CRs Number CRs marked as Invalid,
NotABug, NotGnome, or Incomplete
relative to the number of resolved CRs
in a time interval.

A.3 Defect
reports with-
out version

Number of reported defects without a
version number relative to the number of
all reported defects in a time interval.

A.4 Transitions
to NeedInfo

Number of transitions into the NeedInfo
status relative to the number of CRs
created in a time interval.

B.1 Time in Un-
confirmed

Median residence time in days of newly
created CRs in the status Unconfirmed.

B.2 False
negative
triaged CRs

Number of triaged CRs with resolution
Duplicate, Invalid, NotABug, or Not-
Gnome that have been reopened, relative
to the triaged CRs in a time interval.

B.3 False
positive
triaged CRs

Number of CRs that have been
confirmed and later resolved with
Duplicate, Invalid, NotABug, or Not-
Gnome, relative to the number of
triaged CRs in a time interval.

C.1 Time until
fixed

Median age in days of CRs that change
into the status Resolved/Fixed.

C.2 Reopened
Rate of
fixed CRs

Number of fixed CRs that are reopened,
relative to the number of fixed CRs in a
time interval.

C.3 Fixed
without
milestone

Number of fixed CRs with no specified
target milestone relative to the number
of fixed CRs in a time interval.

∑
=

=
n

i
mmn ii

CvqQCe
1

1),()(

Hence the evaluation of a quality characteristic is
normalized to a number between 1 and 4 with the
following interpretation:
• 4 indicates that the considered product performs

better than 75% of the products used as comparison
data for each of the underlying metrics

• 1 indicates that the quality is poorer than in 75% of
the compared products

• 2.5 can be interpreted as average quality.
Of course the quality model editor allows expressing

more refined models, e.g. a weighting of the different
metrics, or finer structuring of quality characteristics as
tree or DAG. The presented quality model was
deliberately kept simple in order to illustrate the
approach.

4. Evaluation results

For the analysis we selected 25 of the largest products

based on the total number of CRs in the status Resolved
with resolution Fixed, since this is usually related to
changes in the source code. Moreover we required that a
product started in 2005 or earlier, and the product is not
deprecated. This ensures that all considered products
have continuous activity in Bugzilla. The 25 selected
projects comprised 56% of all CRs with status
Resolved/Fixed and 66% of all CRs in GNOME Bugzilla.
Analysis was based on a snapshot of the GNOME
Bugzilla database from September 19, 2008.

To reduce effects caused by different phases in the
release cycle of a product we used years as time intervals
for the evaluation. The value distribution for the year 2007
is given in table 2. We will first summarize some
observations on this data.

Regarding the quality of the reported CRs, most
products have a large number of redundant or invalid
requests (A.1 and A.2). Users are rather disciplined in
specifying a valid version number (A.3). Additional
information from the reporter is typically requested for
around 20% of the CRs (A.4). Detailed analysis can
provide further insights, e.g. the search application
deskbar-applet has the maximum values for the metrics
A.1 and A.3 which implicates that its users unreflectingly
report new CRs.

Triage by the Bugsquad works apparently good for
most products. Most CRs are triaged in less than one
day, with a low percentage of false positives and false
negatives.

The values for C.1 indicate that most of the CRs that
require development activity are fixed relatively fast.
Also the reopened rate of fixed CRs is acceptable. Using

the target milestone to create transparency is neglected by
most of the developers. Only in the products GIMP and
Pan more than 50% of the fixed CRs are marked with a
target milestone.

The aggregated results for the quality characteristics in
the years 2002 to 2008 are shown in Figure 1. For the
sake of readability we focus on seven products that have
been selected based on the number of CRs in status
Resolved/Fixed. We have chosen the year 2007 as
comparison data, as it is the last year with complete data.
It is important to note that the comparison data is fixed to
a single time period, otherwise changes over the years
would be difficult to interpret.

The quality of the CRs reported for the considered
products is relatively stable over the years (Figure 1 A).
Products for non-specialized users like the file manager
Nautilus and the mail application Evolution have a lower
quality of the reported CRs. Not surprisingly the CRs for
technology platforms like the widget toolkit gtk+ and the
streaming media framework GStreamer have higher
quality.

The quality of CR triage has improved since 2005 for
most of the products (Figure 1 B). This is probably caused
by many efforts to attract volunteers for the Bugsquad, like
making the triage rules explicit, coordinating meetings of
volunteers (i.e. ‘bug days’), and improving communication
between Bugsquad members and developers [6].

The quality of processing the CRs by the developers has
no general trend (Figure 1 C). The projects nautilus and
gnome-control-center have improved in the last years. A
detailed analysis for gnome-control-center shows that the
product developers succeeded in decreasing the reopened
rate of fixed CRs, and reducing the backlog of pending
CRs, thus shortening the time until a CR is fixed. In
contrast the result for gtk+ has declined due to longer
resolution times, and fewer target milestones being set.

Table 2. Value distribution of the metric results in
the year 2007 for 25 selected GNOME projects

M
etric Id

U
nit

M
inim

um

L
ow

er
Q

uartile

M
edian

U
pper

Q
uartile

M
axim

um

A.1 % 8.00 21.49 41.04 57.61 90.16
A.2 % 4.29 15.91 31.27 38.78 54.62
A.3 % 0.61 2.39 8.60 32.09 97.18
A.4 % 1.63 10.66 20.18 28.79 64.36
B.1 days 0.15 0.46 0.78 2.16 30.70
B.2 % 0.00 0.00 0.02 0.20 1.02
B.3 % 0.07 0.28 0.60 1.17 3.07
C.1 days 2.28 5.32 12.94 48.71 118.96
C.2 % 0.34 1.41 2.31 2.98 7.55
C.3 % 45.28 87.52 93.02 98.88 100.00

 Figure 1. Aggregated results for the quality

characteristics (*data for 2008 until September 19)

5. Threats to Validity

In general the following threats to validity exist for the
described approach:

Data quality: The Bugzilla database can reveal some
inconsistencies e.g. due to maintenance like restructuring of
products, or importing data from other Bugzilla instances.
We found that CRs of some GNOME products had an
incomplete activity history, but this did not affect the 25
selected products. Moreover the database snapshot did not
contain security defect reports (<0.1% of all CRs).

Validity of the underlying metrics: It must be
carefully validated that each metric is a proper numerical
characterization of the qualities of interest, and that the
measurements can be compared between different
products. To ensure this, we applied a systematic
stepwise validation approach [4].

Homogeneity of Bugzilla usage: The interpretation
of different CR attributes can deviate between different
products. We tried to base the metrics on fields with a
commonly accepted interpretation. Results can also be dis-
torted if issues are reported on other channels, like mailing
lists. However according to Villa [6] using GNOME
Bugzilla was widely accepted as standard in 2003.

6. Conclusions

The usage of routinely collected change request data
for the assessment of process quality is non-intrusive,
and takes the past history of the process into account.

 The presented approach is fully tool-supported [5].
Using declarative metric specifications facilitates to
define the underlying metrics with precise semantics.

Aggregation of the results on the level of quality
characteristics facilitates a condensed overview while
preserving an intuitive interpretation due to usage of
comparison data of real projects. Detailed analysis of the
metric results can give valuable advice to the team
members on realistic potential for improvement. It also
allows to evaluate the effect of improvement activities.
Further on such a quality model can be complementary
to approaches for quality evaluation of open source
software [7].

7. References

[1] Fogel, K., Producing Open Source Software, O’Reilly
Media, Sebastopol, CA, 2005.

[2] Gamma, E., “Agile, Open Source, Distributed, and On-
Time – Inside the Eclipse Development Process”, Keynote
Talk, ICSE’05, St. Louis, Missouri, 2005.

[3] Grammel, L., Schackmann, H., and Lichter, H.,
“BugzillaMetrics: an adaptable tool for evaluating metric
specifications on change requests”, in Ninth international
Workshop on Principles of Software Evolution (Dubrovnik,
Croatia, September 03 - 04, 2007). IWPSE '07. ACM, New
York, NY, 2007, 35-38.

[4] Schackmann, H. and Lichter, H., “Comparison of Process
Quality Characteristics Based on Change Request Data”, in
Proceedings of the international Conferences on Software
Process and Product Measurement (Munich, Germany,
November 18 - 19, 2008). R. R. Dumke et al., Eds. LNCS
5338. Springer-Verlag, Berlin, Heidelberg, 2009, 127-140.

[5] Schackmann, H., Jansen, M., Lischkowitz, C. and
Lichter, H., “QMetric - A Metric Tool Suite for the
Evaluation of Software Process Data”, in Companion
Proceedings ICSE’09 (Vancouver, Canada, May 16-22,
2009), ACM, New York, NY, 2009.

[6] Villa, L., “Large free software projects and Bugzilla”, in
Proceedings of the Linux Symposium (Ottawa, Canada, July
23–26), 2003, 447-456.

[7] Samoladas, I., Gousios, G., Spinellis, D. and Stamelos, I.,
“The SQO-OSS Quality Model: Measurement Based Open
Source Software Evaluation”, in Open Source Development,
Communities and Quality (Milano, Italy, September 7-10),
IFIP vol. 275, Springer, Boston, MA, 2008, 237-248.

