Adopting Open-Source Software Engineering in Computer Science Education

Chang Liu
School of Electrical Engineering and Computer Science
Ohio University, Athens, OH 45701
liuc@ohio.edu

Abstract

Open Source Software Development (OSSD)
approaches are a fresh addition to the field of Sofiware
Engineering. While it is not yet clear how OSSD fits into
traditional Sofiware Engineering theories and
frameworks, it is already certain that OSSD as an
engineering approach is effective and is here to stay. It is,
therefore, important to expose Computer Science students
to this new and vibrant software development approach
so that they are prepared for the real world.

In this paper, how a class of Ohio University
Computer Science students uses an open source project
site SourceForge.net to complete their class projects in
teams is presented. These projects, which were designed
to encourage students to use OSSD to it maximum
potential, are described, along with the rational behind
their design. Lessons learned from this class are also
discussed.

Keywords
Software Engineering, Open Source
Development, Computer Science Education

Software

1. Introduction

While open source software development (OSSD)
approaches were not created and fostered primarily by
traditional software engineering (SE) researchers, OSSD
did achieve some of the goals sought by SE [14]. In the
past few years, OSSD has gained popularity and has
reached the corporate world, traditionally not a domain of
the usually-grassroots open source projects [6].
Therefore, OSSD is significant enough in the real world
that it is important to expose undergraduate computer
science students to OSSD as part of their SE education, as
Port and Kaiser did in their SE courses [12].

I was the instructor of a dual-listed course “CS442/542
Operating Systems and Computer Architecture I offered
by the School of Electrical Engineering and Computer
Science, Ohio University in winter 2003 [10]. Students of
this course were either senior undergraduate students or
graduate students. Traditionally, this course has a
significant project component. Typically, instructors of
this course spent about one third of lecture time in dealing

85

with issues related to the projects, such as introduction of
tools like Make, Yacc, Lex, and coverage of topics like X
Window programming and debugging techniques with
gdb, etc. Students were organized in teams once they
become comfortable with smaller personal projects and
were ready for larger projects. The success of those larger
projects typically depended heavily on not only students’
technical skills but also their teamwork and coordination
capabilities. For those students who had taken a SE
course, this was where they could use their SE knowledge
in practice. For others who had yet to take a SE course,
this was an excellent exercise to prepare them for the SE
course.'

This winter quarter, I decided to require all CS442/542
students to adopt open-source software engineering
approaches in their projects so that they are exposed to
OSSD, which I consider is an important aspect of modern
SE. I chose the most popular host of open-source project
— SourceForge.net and directed all students to a project
site at SourceForge.net that is intended exclusively for
Ohio University CS442/542 students [1].

The goals of this class are: 1) to help students learn the
principles of modern operating systems through creating
their own mimic, incomplete OS-like experimental
software systems; 2) to expose students to OSSD so that
they learn the basics of OSSD as a software engineering
approach, and popular OSSD tools such as CVS; and 3)
to facilitate students to do more in one quarter by
leveraging on the advantages of OSSD approaches, tools
provided by open source project hosting sites, and closer
collaboration enabled by those tools.

In the rest of this paper, detailed descriptions of the
projects are presented, along with a discussion of how
these projects were designed to encourage students to
apply OSSD principles such as “release early, release
often” [13] and to foster asynchronous collaborations
between students. What actually happened in the class, as
well as lessons learned from this class, are also presented.

! The school of EECS at Ohio University does not specify
which course students should take first. As a result, some

students take CS442/542 first; others take CS456/556 SE

first.

2. The Projects

In CS442/542, students are required to build a
simplified, pluggable distributed process management
system that allows different resource allocation
algorithms to be plugged in. The overall system is divided
into five individual projects, some of which are in turn
divided in stages. These individual projects are chosen in
such a way that students who can better understand and
leverage on the strength of OSSD are rewarded.

2.1. The distributed process management system

The distributed process management system that
students are required to build in this class is a simulated
system. There are three major components in this system:
a monitor, a global process manager, and local process
managers, as shown in Figure 1.

Local PM

0 e)

Local PM Local P

Global PM honitor

Figure 1. The distributed process management
systems.

One instance of the local process manager runs on
each host computer in the distributed environment, where
process management is to take place. The monitor and the
global process manager can run on any host in the
network. There can be only one instance of the global
process manager in the entire distributed system. There
could be, however, more than one instances of the
monitor running of different hosts so that current status of
the system can be viewed at different locations.

Resources, added to each local process managers via a
simple command language, and processes, defined in
another simple definition language, are the primary
subjects-under-management in this system. Processes
typically request and release various amounts of different
types of resources throughout their lifetime. The
challenge is to find an optimal allocation of limited
resources among these processes so that 1) there is no
deadlock in the system; 2) when there is a deadlock, it can
be detected and the system can recover from the
deadlock; and 3) the overheads for deadlock avoidance
and recovery from deadlocks are minimal.

86

Students are free to use any algorithm that they see as
fit. For example, they can use the Banker’s Algorithm [5]
or any other algorithms presented in [15]. They can also
come up with their own algorithm.

The global process manager works hand-in-hand with
local process mangers and may move portable processes
or resources from one host to another host. This opens an
entirely new dimension of possibilities for global
optimizations and enlarges the playground for students.

2.1.1. The monitor. The monitor is a graphical program
that visually displays all actions and events associated
with local process managers. The monitor passively
accepts data from local process managers and graphically
displays the status of all connected local process
managers. More specifically, the monitor displays usage
and allocations of resources, as well as creation, progress,
and termination of processes. Figure 2 shows a partial
screenshot of one monitor that was developed by a
student.

b4 Monitor

Figure 2. A sample screenshot of a monitor.

AddResource pml "memory" 15
StartProcess pml process2 301
ResourceRequest pml 301 "memory" 15
AllocateResource pml 301 "memory" 15
ResourceRequest pml 301 "memory" 5
AllocateResource pml 301 "memory" 5
RetrieveResource pml 301 “memory” 20
StartProcess pm2 processl 301
ProcessEnded pml 301 0O

Figure 3. Sample messages sent from local PMs to the
monitor.

The monitor listens to a TCP port and waits for
messages from local process managers. Via these
messages, local PMs inform the monitor about any status
changes, such as creation and termination of processes,
addition or removal of resources, request of resources
from processes, allocation of resources to processes or
retrieval of resources from processes. The format of these

messages is rather simple. Each message contains an
event or action name followed by a few parameters.
Several sample messages are listed in Figure 3.

2.1.2. Local process managers. A local process manager
is a program that manages all resources and processes on
a particular host computer.

Processes are defined in a simple process definition
language. This language only offers means to define how
a process uses resources. All activities not related to
resources are represented by just one command
“Compute”. An example process definition file is shown
in Figure 4.

/* process2.def */
ProcessName process2
SetAttribute Portable
RequestResource “memory” 15
Compute 100

ReleaseResource “memory” 5
Compute 100

ReleaseResource “memory”

Figure 4. An example process definition file.

Local process managers receive commands either from
a file or from the console. These commands typically
instruct local process managers how many resources they
may use and when to start which process. It is up to the
local process managers to decide how to fulfill resource
requests from active processes. A few sample commands
are shown in Figure 5.

SetName pml

Connect2Monitor panther.cs.ohiou.edu 1542
SetResourceAttribute “bandwidth” Portable
SetResourceAttribute “memory” NotPortable
AddResource “memory” 5

AddResource “bandwidth” 100

StartProcess processl.def

StartProcess process2.def

Pause 20

StartProcess process3.def

Figure 5. Sample commands to local PMs.

2.1.3. The global process manager. The global process
manager watches whatever happens on all host computers
that connect to it. Unlike local process managers, which
only have knowledge of resources and processes on their
own computers, the global PM has global knowledge of
all resources and processes. Therefore, sometimes, the
global process manager may be able to offer more optimal
ways to allocate resources.

There are two types of actions that a global pm can
perform to optimize global resource allocation: 1)
relocation of resources from one host to another host; and
2) relocation of processes from one host to another host.

87

Not all resources can be relocated. Whether or not a
resource is portable is defined when the resource is first
introduced, as shown in lines 3 and 4 of Figure 5.

In theory, all processes are relocateable across
computers of the same architecture, because all computer
systems have at least one CPU and some main memory. It
may not be beneficial, however, to relocate many
processes, because in addition to CPU and main memory,
processes typically require accesses to other local
resources that are not portable, such as hard drives,
displays, and other I/O devices. The cost of accessing
these local resources remotely after a process is relocated
typically is far higher than the benefits of using remote
CPU and memory after the relocation. For certain special
types of processes, for example, CPU-bound processes, it
may sometimes make sense to relocate them [8].

In this simulated process management system, a
definition “SetAttribute Portable” (Figure 4, line 3) is
used in a process definition file to indicate that a
particular process can be relocated without significant
penalty.

Once the global PM decides that it can optimize
current resource allocation, it can send commands to local
process managers and make adjustments to either
resources or processes.

2.2. The design of individual projects

As described in the previous section, the distributed
process management system has three major components
that interact with each other over the network. There are
many different ways of dividing the system into
individual projects. In this class, some principles of
OSSD [13] were applied in the design of individual
projects so that the instructor can: 1) guide students step
by step through the development of the whole system, 2)
closely follow students’ progresses, 3) provide them with
prompt feedbacks, 4) facilitate asynchronous
collaborations, and 5) encourage motivated students to do
more in one quarter.

2.2.1. OSSD Principle No. 1: “Release early, release
often”. As Raymond stated in [13] (Chapter 4) that “early
and frequent releases” effectively helped connect open
source projects and their users, and ensure the quality of
open source software. To achieve the same goal, I divided
the overall distributed process management system into
five projects, some of which have dual stages. Students
are required to submit compilable code at each stage, as
shown in Table 1.

2.2.2. Principle No. 2: “Good open source developers
take pride in their code”. While some researchers have
found that economic incentives and status competition
may be reasons that developers contribute to open-source
projects, it is a consensus that pride and personal interest

are common reasons behind successful open-source
projects [4, 7, 9, 11, 13]. To take advantage of such
phenomenon in this class, several motivated students who
were interested in GUI design were assigned as GUI-
specialists. They continued working on the monitors with
GUI while their classmates moved on to develop local
process managers (project 3 stage 1). This happened after
each student had built a monitor (less networking
capability, project 2 stage 2).

Table 1. Individual projects and stages.

Project/Stage | Target
Project 1 | Preparation (network programming and
debugging)
Project 2 | The monitor
Stage 1 Create a hard-coded monitor that can display
one pre-defined scenario
Stage 2 Add capability to parse messages from a file.
Stage 3 Add capability to receive msgs from network
(GUI-specialists only, in parallel to Prj3-1)
Project 3 l The local process manager
Stage 1 Create a simple local PM that reads in
commands and prints out actions
Stage 2 Add capability to connect to remote monitors
Project 4 | Simple global PM and system integration
Stage 1 Create a “dumb” global PM that does nothing
but watches what happens in local PMs.
Stage 2 Add capability to deal with portable resources
and processes
Project S System optimization and competition of global

and local process management algorithms.

2.2.3. OSSD Principle No. 3: Simple, standard
protocols. As pointed out by an observer of OSSD,
“highly commoditized, simple protocols” is a key to the
success of many open source projects, where
development takes place in an extremely decentralized,
asynchronous fashion [2]. While students in this class met
four times a week during lectures, they could hardly find
common free time to arrange team meetings outside the
class because many students worked many hours a week
in addition to several courses they took. As a result, what
typically happens in classes that require teamwork, is that
students meet shortly once or twice per week in evenings
or weekends. They cannot rely on that time to do
development. To facilitate teamwork in such an
environment that resembles many open source projects, |
decided to use simple, standard protocols

These protocols worked extremely well. One most
prominent example is the success of monitors. Different
monitors developed by different GUI specialists can all
work with process managers developed by any students,
even though no coordination meeting between them was
ever scheduled.

3. Progresses of the Student Projects

Out of 36 students of winter 2003 CS442/542
(including 28 undergraduate students who took CS442
and 8 graduate students who took CS542), only four had
SourceForge.net accounts before they were required to
open one. All four of them only participated in
SourceForge.net projects as “observers”. They did not
have any development experience with SourceForge.net.
Therefore, none of the students had experience with
OSSD at SourceForge.net before they took my class. The
majority of them had never used tools such as CVS
before. While a few students had difficulty submitting
code to SourceForge.net for the first time, several of them
even incidentally imported unrelated file or overwrote
existing file, the majority of the class learned to use CVS
remarkable fast.

Students chose to use difficult software packages to
build the GUI for their monitors. The most popular choice
was X Window programming with C/C++, mainly
because this was the only option explained in class.

To test the local process managers, stable, network-
enabled monitors are needed. Six students in the class,
including three graduate students and three undergraduate
students, who were both more interested and stronger in
graphic programming, were selected to serve as GUI
specialists for the class. They were responsible of each
maintaining a monitor, enabling it for network
communication, and responding to feature requests and
bug reports.

Table 2 shows the distribution of students’ choices of
GUI packages as well as the distribution of GUI
specialists.

As the time of this writing, this class has not
concluded yet. However, the complete result of this class
will be presented in the workshop.

Table 2. Choice of GUI packages for the monitor.

GUI package Number of | GUI
students Specialists

X Window + C/C++ 18 1
Qt+ C++ 8 2
Java/Swing 4 2

X + Tk lib + C/C++ 1 0
GTK2.0+C 1 1

X Window + C + a 1 0
provided simple graphic

library

88

4. Discussions

Opening up project source code to everybody else in
the class is something totally different from traditional
practice in Computer Science classes, where plagiarism

was a constant concern and students are often
discouraged to look at each other’s code. In fact, students
were usually warned that tools such as Moss would be
used to detect similar code [3].

In this class, it is much easier to copy somebody else’s
project because now one does not even have to ask that
somebody else to give the permission to copy.
Interestingly, though, precisely because that now
everybody can see everybody else’s code and that the
code will stay in SourceForge.net repository and remain
accessible to the public long after the class is over, the
deterrent for plagiarism is in deed much greater. Those
few students who would take risk and count on slipping
through the grader’s eye knows that it is next to
impossible to slip through the public’s eyes. Whatever
mistakes they made will be well documented by the CVS
logs on SourceForge.net. As a result, plagiarism was a
lesser concern in this class because of OSSD.

Understandably, some students were quite
uncomfortable with opening up their source code, many
chose to check in their code only shortly before the
deadlines. One student was so concerned that he decided
to check in .o object files instead of source code (after
asking me for permission).

5. Summary

In summary, OSSD is an effective software
engineering approach that has its own unique appeals and
characteristics. When applied carefully with suitable
projects, OSSD approaches can help motivate Computer
Science students, facilitate asynchronous collaboration,
enable them to learn and do more in class projects, and
prevent plagiarism through the strong deterrent of
possible public scrutiny.

6. Acknowledgements

The author would like to thank the thirty six Ohio
University students of winter 2003 CS442/542 for
braving the new world of adopting OSSD in Computer
Science education, Dr. Shawn Ostermann of School of
EECS for providing course materials from past
CS442/542 and answering numerous questions
throughout the quarter, and Dr. Karin Sandell of the
Center of Teaching Excellence, Ohio University, for
encouraging experiments with new teaching methods in
classrooms.

References
(1]
(2]

"CS442/542 Project Site at SourceForge.net," 2003,
http://sourceforge.net/projects/ou-cs442-542/.
"Halloween Document," October 1998,
http://www.opensource.org/halloween/.

&9

(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10

—

(1]

[12]

[13]

[14]

[15]

A. Aiken, "Moss: A System for Detecting Software
Plagiarism,"
http://www.cs.berkeley.edu/~aiken/moss.html.

N. Bezroukov, "A Second Look at the Cathedral and
the Bazaar," First Monday, vol. 4, no. 12, 1999.

E. W. Dijkstra, "Cooperating Sequential Processes,"
Technological University, Eindhoven, the
Netherlands, Technical Report, 1965.

J. Dinkelacker and P. K. Garg, "Corporate Source:
Applying Open Source Concepts to a Corporate
Environment," The 23rd International Conference
on Software Engineering, 1st Workshop on Open
Source Software Engineering, Toronto, Canada,
May 15, 2001.

FirstMonday, "Interview with Linus Torvalds: What
motivates free software developers?," First Monday,
vol. 3, no. 3, 1998.

I. F. Haddad and E. Paquin, "MOSIX: A Cluster
Load-Balancing Solution for Linux," Linux Journal,
vol. 2001, no. 85es, pp. 6-es, May 1, 2001.

I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding,
"Why Do Developers Contribute to Open Source
Projects? First Evidence of Economic Incentives,"
The 24th International Conference on Software
Engineering, 2nd Workshop on Open Source
Software Engineering, Orlando, FL, USA2002.

C. Liu, "CS442/542 Winter 2003: Operating
Systems and Computer Architecture I," 2003,
http://ace.cs.ohiou.edu/~changliu/teaching/Y 03 W-
442-542/.

H. Masum, "Reputation Layers for Open-Source
Development," The 23rd International Conference
on Software Engineering, 1st Workshop on Open
Source Software Engineering, Toronto,
Canada2001.

D. Port and G. Kaiser, "Introducing a "Street Fair"
Open Source Practice Within Project Based
Software Engineering Courses," The 23rd
International Conference on Software Engineering,
1st Workshop on Open Source Software
Engineering, Toronto, Canada, May 15, 2001.

E. S. Raymond, The Cathedral & the Bazaar -
Musings on Linux and Open Source by an
Accidental Revolutionary: O'Reilly, February 2001.
ISBN: 0-596-00108-8.

W. Scacchi, "Is Open Source Software Development
Faster, Better, and Cheaper than Software
Engineering?," The 24th International Conference
on Software Engineering, 2nd Workshop on Open
Source Software Engineering, Orlando, FL, USA,
May 19-25, 2002.

A. Silberschatz, P. B. Galvin, and G. Gagne,
Operating System Concepts, 6th ed: John Wiley &
Sons, 2001. ISBN: 0471417432.

