
Mining Version Histories to Verify the Learning Process of

Legitimate Peripheral Participants

Shih-Kun Huang1,2

skhuang@csie.nctu.edu.tw

Kang-min Liu1

gugod@gugod.org

1Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan
2Institute of Information Science, Academia Sinica, Taipei, Taiwan

ABSTRACT
Since code revisions reflect the extent of human involvement
in the software development process, revision histories re-
veal the interactions and interfaces between developers and
modules.

We therefore divide developers and modules into groups ac-
cording to the revision histories of the open source software
repository, for example, sourceforge.net. To describe the
interactions in the open source development process, we use
a representative model, Legitimate Peripheral Participation
(LPP) [6], to divide developers into groups such as core and
peripheral teams, based on the evolutionary process of learn-
ing behavior.

With the conventional module relationship, we divide mod-
ules into kernel and non-kernel types (such as UI). In the
past, groups of developers and modules have been parti-
tioned naturally with informal criteria. In this work, how-
ever, we propose a developer-module relationship model to
analyze the grouping structures between developers and mod-
ules. Our results show some process cases of relative impor-
tance on the constructed graph of project development. The
graph reveals certain subtle relationships in the interactions
between core and non-core team developers, and the inter-
faces between kernel and non-kernel modules.

Keywords: Legitimate Peripheral Participants(LPP), Open
Boundary, Open Source Software Development Process.

1. INTRODUCTION
Because of the success of Linux, GNU, Apache, and tens
of thousands of open source development (OSD) projects in
sourceforge.net, we review the process of OSD and com-
pare it with conventional approaches to proprietary software
development. Many researchers have explored and tried to
explain the differences between the software processes of
OSD and conventional approaches. Among them, Eric S.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Raymond was the first to publish his findings in the noted
Cathedral and Bazaar [11] model.

Ye and Kishida also proposed an open source software(OSS)
development process model [15]. It is based on the evolving
nature of a community with projects and a learning the-
ory – Legitimate Peripheral Participation (LPP), proposed
by Lave and Wenger [6]. In [15], an OSS project may be
associated with a virtual community, and developers may
play certain roles in both the community and the project.
During the learning process, the role of each member of the
virtual community co-evolves in both the project and the
community.

Few of the criteria of conventional software engineering meth-
ods, which are concerned with process models and control
of schedules, can be applied in open source project develop-
ment. In OSD, developers of a project may work together
without knowing each other and build a successful system
with millions of users worldwide. Although OSD does not
appear to allow complete control and scheduling over soft-
ware, it works well in reality. Besides, OSD projects often
release new versions of software that are comparable to high
quality proprietary software with similar functions. Such
sustainable nature of the OSD process is worth exploring.
However, although OSD has low initial deployment costs,
there may be higher long-term costs.

In our experience, many open source developers do not con-
tribute a great deal to OSD. They only do relatively mi-
nor work, such as fixing non-critical bugs, and do not make
major contributions to the development process. Even so,
although such minor contributors form weak links in devel-
oper networks, they are often a major driving force behind
a project growing larger. This is similar to the small-world
phenomenon.

The project-community evolutionary model, proposed by Ye
and Kishida [15], states that any change of roles in the com-
munity maps to a change of roles in the project. The model
also lists eight possible project roles and states that users, or
peripheral developers, change their roles by learning about
the project in detail, and are therefore central to the project.

In this paper, we propose a quantitative approach to ana-
lyzing the data of open source project development in or-
der to evaluate the role changes of developers in a project.

84

Through this analysis, we verify the learning process of LPP
and provide a quantitative measurement for open source de-
velopment models. The major advantage of our approach
is that it is fully automatic; thus, manual verification is not
required in the middle of the data mining process.

We believe that, in each open source project, there is a large
amount of source code that does not need to be opened; that
is, the success of an open source project depends on only a
small proportion of its code. This would allow commer-
cial developers of software to work with peripheral teams in
the development of products without loosing control of their
source codes.

2. METHODS
We use a similar approach to that of Luis et al [7]. For each
target project, we perform network analysis of its version
control repository. Our main source of data is sourceforge.net,
which provides a full CVS repository archive.

From revision histories, we can construct social network
graphs that represent the relations between developers of
different parts of a project. The evolutionary pattern of a
social network reflects some process features and anomalies
during a project’s evolution. With network analysis meth-
ods, we can measure the relative importance of each devel-
oper, and classify each one’s role.

For each path, p, found in the revision log, we define a de-
veloper set, Dp, for path p (such paths refer to directories
specified in the revision log.) Formally, we define a developer
network graph as follows.

Dp = {d|developer d has modified path p}.

Then, we can define a symmetric developer graph, Gd, as:

Gd = {Vd, Ed}
Vd = {d|d is a developer}
Ed = {(d1, d2)|∃ path p s.t d1 ∈ Dp and d2 ∈ Dp}.

In [7], the affiliation graph group is associated with the
source code modules, while our group is associated with the
directory. Our approach requires relatively less prior knowl-
edge about the source code itself, and is more independent
in terms of programming language; hence, it does not re-
quire human involvement to decide the affiliation group, as
every step can be processed automatically.

We use the following definition in our analysis.

Distance Centrality (Dc) [12] : also called closeness cen-

trality. The higher the value of Dc, the closer the vertices
are to each other. Given a vertex, v, and a graph , G, Dc is
defined as:

Dc(v) =
1P

t∈G dG(v, t)
. (1)

For each project, we first generate the developer social net-
work, then compute the distance centrality of each node.

From the distribution of the centrality values, we can dis-
cover the properties of different stages in the project devel-
opment process.

3. RESULTS AND DISCUSSIONS
Figure 1 shows the developer social network for the project
awstats [3]. Although this is a typical small project with
only three developers, it has been very active according to
sourceforge.net’s records. Its social network is fully con-
nected, which means that all developers co-develop at least
one directory. Project phpmyadmin [9] also has this kind
of developer social network (Figure 2). In such a network, it
is impossible to determine the importance of each developer,
because they all have exactly the same attributes. Hence,
we say that each developer plays the same role in the devel-
opment process.

The above network pattern may reflect a possible flaw in
our analytical method, because grouping developers based
on directories is not detailed enough. However, it is also
possible that the design of the software lacks proper mod-
ularity so that developers cannot modify a feature without
modifying many directories in the source code.

The results of project moodle [8] (Figure 3) demonstrate
another extreme case of social network patterns. A vertex’s
color represents its distance centrality value; the darker the
color, the higher the centrality value. Nodes with the high-
est centrality values are rectangular in shape. The central
portion of a node has only one vertex and all other vertices
connect directly to that vertex. There are very few con-
nections between non-central vertices. Project filezilla [5]
(Figure 4) is another example of this kind of pattern.

Projects with this pattern start with a few developers de-
ciding to work together, and they keep control of the source
code as the project grows bigger. Non-central developers
only make relatively minor contributions.

Nearly all projects with more then 10 developers have the
same social network pattern as project gallery [1] (Figure
5). In such a pattern, only a small group of developers
have a relatively high distance centrality, i.e., they are the
center of the developer relationships; other developers play
peripheral or intermediate roles. Project bzflag [13] (Figure
6) is another example of this kind of pattern.

Such social networks have many distance centrality values,
which reflect many different kinds of project roles. Devel-
opers with high centrality values play important roles (core
members or active developers), while those with lower values
play peripheral roles (peripheral developers or bug fixers.)

Ye and Kishida [15] propose a project-community co-evolution
process model, and define eight different roles in an open
source project: Project Leader, Core Member, Active
Developer, Peripheral Developer, Bug Fixer, Bug
Reporter, Reader, and Passive User. Although, from
the repository mining process, we are unable to associate
each developer with a certain role, we can at least group
developers into two large categories: active developer and
above; and peripheral developer and below.

85

Figure 1: The awstats developer social network

ne0x

glund

lem9

gandon
uid52400

mikebeckarmel

spiggy

swix

korakot

staybyte

uid81396
robbat2

loic1

rabus

uid23515
garvinhicking

nijel

Figure 2: The phpmyadmin developer social net-
work

Figure 3: The moodle developer social network

botg

eddan

thunderw

batagy

doberman_fr

ycfu

zelon

uid46771

xiaowen
romulusrfabienillide

lomsel

Figure 4: The filezilla developer social network

Figure 5: The gallery developer social network

chestal

davidtrowbridgetimriker

atupone

brlcad

larsl

dbrosius

rae

mmu_man

bzflag

jeffm2501

journey

nafees

galkire micahjd

crs23

cyberpi

shkoo

eddienull

trepan

michaelh20

valoche

uid125564

dbw192

dtremenak

cobraa1

bz-akira

cjmandrake

Figure 6: The bzflag developer social network

86

4. RELATED WORK
In 1999, Eric Steven Raymond proposed the community-
based development model in his famous work Cathedral and

Bazaar [11]. In this work, he takes the development process
of the fetchmail project as an example and proposes the
bazaar process development model.

Ye and Kishida [15], state that, in an open source project,
“Every user is a potential developer,” and propose a role
hierarchy to show that participation in a project is actu-
ally a learning process for both peripheral users and core
developers.

Project Bloof [10] gives a statistical revision log analysis for
the source code evolution of a software project. The aim
of Bloof is to help people comprehend software systems and
the underlying development processes.

Project CVSMonitor [4] provides a more comprehensive pre-
sentation of revision analysis of the CVS repository, a ver-
sion control system that has been widely used in the last ten
years.

Zimmermann et al [16] recently proposed that mining ver-
sion control histories can be helpful during the project de-
velopment process, as they give programmers information
about all the changes of a given revision.

White and Smyth [14] discuss several methods for analyzing
large and complex network structures. In their experiments,
they evaluated the different properties of many algorithms
on toy graphs and demonstrated how their approach can
be used to study the relative importance of nodes in real-
world networks, including a network of interactions among
the September 11th terrorists, a network of collaborative re-
search in biotechnology among companies and universities,
and a network of co-authorship relationships among com-
puter science researchers.

Scacchi and Jensen [2] use techniques that exploit advances
in artificial intelligence to discover the development pro-
cesses of publicly available open source software develop-
ment repositories. Their goal is to facilitate process discov-
ery in ways that use less cumbersome empirical techniques
and offer a more holistic, task-oriented process than current
automated systems provide.

5. CONCLUSION
In this work, we use social network analysis methods to an-
alyze the developer social network of a project created from
the project’s revision history.

We then try to verify the LPP process in Ye and Kishida’s
work [15]. Although this is not very accurate, we can at
least split project developers into two groups: core and pe-
ripheral. This supports our conjecture that even in an open
source project, there is a part of the source code that can be
retained by core members only. With further graph-based
network analysis, we believe that it would be possible to
achieve more accurate results.

Developers involved in the revision process reveal their skill
and familiarity with the source modules by different degrees

of interfacing and interaction with core members. From the
revision histories, we build a link structure between develop-
ers and code modules and analyze the relationships between
these structures to determine their level of involvement with
core teams and kernel modules. The extent of developers’
involvement can be ranked. From the ranking results, we
can verify the LPP learning process and propose a potential
boundary between conceptual kernel and non-kernel mod-
ules. This boundary gives a clear indication of the degree of
source code openness in joint development projects involv-
ing core and none-core teams of developers . The weak links
around the boundary may significantly affect the ability of
external peripherals to maintain the project’s vitality and
popularity. Our preliminary results reveal a few such pro-
cess cases of relative importance on the constructed graphs
that could affect a project’s development.

6. REFERENCES
[1] Chris Smith Bharat Mediratta. Gallery. a slick,

intuitive web based photo gallery with authenticated
users and privileged albums, 2000.
http://sourceforge.net/projects/gallery/.

[2] Walt Scacchi Chris Jensen. Data mining for software
process discovery in open source software development
communities. In Proc. Workshop on Mining Software

Repositories, page 96, 2004.

[3] Laurent Destailleur. Awstats is a free powerful and
featureful server logfile analyzer, 2000.
http://sourceforge.net/projects/awstats/.

[4] Adam Kennedy. Project cvsmonitor. cvsmonitor is a
cgi application for looking at cvs repositories in a
much more useful and productive way, 2002.
http://ali.as/devel/cvsmonitor/.

[5] Tim Kosse. Filezilla is a fast ftp and sftp client for
windows with a lot of features. filezilla server is a
reliable ftp server, 2001.
http://sourceforge.net/projects/filezilla/.

[6] J. Lave and E. Wenger. Situated Learning: Legitimate

Peripheral Participation. Cambridge university Press,
Cambridge, 1991.

[7] Jesus M. Gonzales-Barahona Luis Lopez-Fernandez,
Gergorio Robles. Applying social network analysis to
the information in cvs repositories. In MSR2004, 2004.

[8] Eloy Lafuente Martin Dougiamas. Moodle is php
courseware aiming to make quality online courses (eg
distance education) easy to develop and conduct.,
2001. http://sourceforge.net/projects/moodle/.

[9] Löıc Chapeux Oliver Müller, Marc Delisle.
phpmyadmin is a tool written in php intended to
handle the administration of mysql over the web.
http://sourceforge.net/projects/phpmyadmin/.

[10] Lukasz Pekacki. Project bloof. bloof is an
infrastructure for analytical processing of version
control data, 2003.
http://sourceforge.net/projects/bloof/.

87

[11] Eric Steven Raymond. The Cathedral and the Bazaar:

Musings on Linux and Open Source by an Accidental

Revolutionary. O’Reilly, 1999.

[12] Gert Sabidussi. The centrality index of a graph,
volume 31, pages 581–603. Psychometrika, 1966.

[13] David Trowbridge Tim Riker. Opensource opengl
multiplayer multiplatform battle zone capture the flag.
3d first person tank simulation, 2000.
http://sourceforge.net/projects/bzflag/.

[14] Scott White and Padhraic Smyth. Algorithms for
estimating relative importance in networks. In KDD

’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 266–275. ACM Press, 2003.

[15] Yunwen Ye and Kouichi Kishida. Toward an
understanding of the motivation open source software
developers. In ICSE ’03: Proceedings of the 25th

International Conference on Software Engineering,
pages 419–429. IEEE Computer Society, 2003.

[16] T. Zimmermann, P. Weigerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In 26th International Conference on Software

Engineering (ICSE 2004.), 2004.

88

