
This work was supported in part by DOE Grants DE-FG02-
93ER25176, DE-FG02-01ER25510, and DE-CFC02-
01ER254489 and NSF award EIA-0080206.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. MSR'05, May 17, 2005, Saint
Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Recovering System Specific Rules from Software Repositories

Chadd C. Williams
Department of Computer Science

University of Maryland
chadd@cs.umd.edu

Jeffrey K. Hollingsworth
Department of Computer Science

University of Maryland
hollings@cs.umd.edu

Abstract

One of the most successful applications of static
analysis based bug finding tools is to search the source
code for violations of system-specific rules. These rules
may describe how functions interact in the code, how data
is to be validated or how an API is to be used. To apply
these tools, the developer must encode a rule that must be
followed in the source code. The difficulty is that many of
these system-specific rules are undocumented and "grow"
over time as the source code changes. Most research in
this area relies on expert programmers to document these
little-known rules. In this paper we discuss a method to
automatically recover a subset of these rules, function
usage patterns, by mining the software repository. We
present a preliminary study that applies our work to a
large open source software project.

1 Introduction

Static analysis of source code has been used very
successfully to locate bugs in software. One of the most
successful applications of static analysis to find bugs has
been tools that look for violations of system-specific rules
in the source code. Source code must adhere to a large
number of rules that describe how data should be handled,
how to interact with objects or APIs and how to use
functions safely. Violations of these system-specific rules
are often a source of error [5].

The difficulty with these rules is that they are implicit
and dynamic. As the source code changes new rules are
added and old rules are removed. When functions are
added to an API a new set of rules must be followed that
describe how they are to be used. It is challenging for the

developers of a widely distributed project to keep track of
the rules the code must follow. This task is complicated
by the fact that many of these rules are not documented as
they are created, or are only documented in a CVS
commit message or an email on a developer mailing list.

This leaves the project to rely on developers learning
these rules in a number of unsatisfactory ways. For
example, senior developers relating the rules that they
know to new developers, developers searching CVS
commit messages and mailing lists when they have a
question or code reading. New developers are not the
only ones to suffer. Senior developers need to keep up on
the rules being added and removed from the source code.

In this paper we propose recovering these system-
specific rules by studying the changes made to the source
code. We specifically focus on rules that describe
function usage patterns, how functions should be invoked
in relation to each other. We believe that these usage
patterns can shed light on how an external API should be
used or how internal functions should interact. We have
developed a tool that analyzes each version of a file in the
software repository and determines what new function
usage patterns are introduced in subsequent versions of
each file.

2 Related Work

There has been ample research in the area of detecting

violations of system-specific rules to identify bugs. One
such system, metal [2], allows the user to supply patterns
to match against the source code and flag as warnings.
The patterns the developer supplies are encoded via state
machines that are then applied to the source code. This
system has been used to find a large number of errors
(500) in real software projects. The metal system was
also used to try to infer system specific patterns that
should be checked [3]. While Engler, et al., look only at
the current source code, our work focuses on looking at
the changes made to the source code over time and what
system specific rules these changes highlight.

Work has also been done to validate the notion that
violations of system-specific rules cause a significant
number of the errors seen in software [5]. Matsumura, et
al., describe a case study that shows 32% of failures
detected during the maintenance phase of a software
project were due to violations of implicit code rules. The

7

implicit rules used to check the source code were
generated by ‘expert’ programmers.

The need for information sharing in large, distributed
open source software projects has been studied. Gutwin,
et al., studied the need for group awareness, knowledge
about who is doing what is the project [4]. One of the
aspects of awareness they describe is feedthrough, which
is defined as observations of changes to project artifacts to
indicate who has been doing what.

There has also been work on identifying frequently
applied changes to source code through mining the
software change history [7]. Rysselberghe and Demeyer
state that frequently applied changes can be used to study
how software maintenance proceeds and to suggest
solutions to future problems. They look for both system
specific change patterns and more general patterns. While
our work studies the state of the code after a change is
made, their work looks exclusively at the changes applied
to the code.

Pinzger and Gall identify patterns to recover software
architecture [6]. They use code patterns specified by the
user, and data describing the associatations of these
patterns, to reconstruct higher-level patterns describing
the software architecture.

3 Function Usage Patterns

The system-specific rules that we are studying in this

work are function usage patterns. We want to determine
how functions are invoked with respect to each other,
specifically which functions are often called in close
proximity within the source code. Instances of these
patterns in a software project build up a set of
relationships between functions. We define an instance of
a function usage pattern as a set of two particular function
call sites such that the pattern template is satisfied. We
will explore the relationship aspect in Section 5.3.
Experience suggests that there are sets of functions that
are smaller parts of the implementation of a larger
conceptual goal that need to be invoked together. These
functions may operate on common data, provide error
recovery functionality or perform some type of pair-wise
functionality like lock/unlock. The two specific function
usage patterns we are looking for are the called after and
conditionally called after patterns. The called after
relation is simple, function X is called after function Y in
the source code of some function Z. The conditionally
called after pattern describes the case where function X is
called after function Y, but its invocation is guarded by a
conditional statement. These two function usage patterns

are the only two that we investigated for our preliminary
study. Figure 1a provides an example of the called after
pattern. Figure 1b provides an example of the
conditionally called after pattern. Each of these code
snippets highlight one instance of a function usage pattern
identified by our tool in the Wine source code [10]. The
code snippets have been edited for clarity.

There are a number of other patterns that might be
useful. For example, in Figure 1b the function
GetProcessHeap is called and its return value is used
as an argument to both HeapAlloc and HeapFree.
This type of pattern involving dataflow is something we
plan to study in the future. A similar usage pattern is
evident in Figure 1a between the functions BeginPaint
and DrawIcon.

4 Our Tool

Our tool is very simple and casts a very wide net in

terms of the instances of patterns it finds. This gives us
the freedom to put off making decisions on how to filter
the data until later in the process. This is important as
retrieving the data from the software repository and
generating our results is the most computationally
expensive aspect of this work.

We use the framework developed for our previous
work in mining software repositories to manage the data
from the CVS repository and the results produced by our
tool [9]. In summary, the data from the CVS repository
and the raw results are stored in a database.

The tool we have produced is merely a prototype to
support this preliminary study. It is based on the Edison
Design Group C parser [1]. The tool parses the source
file and scans for function call sites. Within each function
in the source file, two function usage patterns are applied
to each function call site. For every function call site in a
function, every other function call site located later in that
function is involved with it in a called after pattern (unless
the later call site is guarded by an conditional). For each
instance of a pattern, the tool records the names of each
function, the line numbers of the call sites and the name of
the enclosing function. The same process is used to
determine conditionally called after patterns, with a bit
more analysis to identify which functions are guarded by
conditionals.

4.1 Mining the Source Code Repository

When mining the software repository we are looking

for an instance of a function usage pattern in a revision of

Figure 1b: Conditionally Called After Pattern

mdi_cs = HeapAlloc(GetProcessHeap());
if (!mdi_cs)
 HeapFree(GetProcessHeap(), 0, cs);

 HDC hdc = BeginPaint(hwnd, &ps);
if(hdc)

 DrawIcon(hdc, x, y, hIcon);
 EndPaint(hwnd, &ps);

Figure 1a: Called After Pattern

8

a file, where that instance of the pattern did not exist in
the revision immediately prior. We are looking for new
instances of patterns entering the code. Specifically with
this tool we are looking for either a called after or
conditionally called after pattern that did not exist in the
previous revision of the file. Note that we are doing this
on a per file, rather than on a per function, basis.

4.2 Identifying New Instances of Patterns

Once the data is mined from the source code repository

and stored in the database, we must analyze it to
determine when a new instance of a pattern has been
added to the source code. Since our tool casts such a wide
net in identifying patterns we need some way to filter the
data. We have chosen, as a simple heuristic, to only look
at instances of patterns that involve function invocations
that are separated by no more than 10 lines of source
code. This heuristic was chosen with the notion that many
functions in an API need to be invoked in quick
succession and that error handling, a possible target for
the conditionally called after pattern, usually happens in
close proximity to the error producing function.

In the future, we plan on refining this heuristic to be
based on a deeper analysis of control flow. For example,
the entry and exit basic blocks of a function may contain
some function pairs that perform some type of paired
functionality (lock/unlock). The basic blocks before a
control flow split and after a control flow union may
contain function calls related in some interesting way.
Also looking at the type of conditional may be interesting.
The conditional of a while loop versus that of an if
statement may provide an important distinction between
the applications of the conditionally called after pattern.

4.3 Transitive Patterns

Currently the patterns we are searching for are binary.

The specific patterns we are searching for may be
transitive in some cases, allowing larger relationship to be
created. If a call to function foo is often followed by a
call to bar, which is often followed by a call to zoo, then a
call to foo may often be followed by a call to zoo. This
transitivity may or may not exist. The context in which
bar follows foo may be different from the context in
which zoo follows bar. We may find we need to add more
context information to our tool to differentiate usage
patterns for a particular context. Section 5.3 contains a
discussion of how to visualize the patterns mined from the
source code.

5 Wine Case Study

We have used our tool to mine the software repository

for the Wine project to determine what types of patterns
can be recovered [10]. Each revision of each file has been
analyzed by our tool. All instances of patterns that our

tool finds are recorded in a database, tagged with the file
and revision in which the pattern appeared.

Our tool identified over 50 million instances of these
two patterns in the software repository. There were over
2,175 unique instances of patterns that were added to the
source code 10 or more times. Sixty-five unique patterns
were added to the source code 100 times or more. Many
of these 65 patterns dealt with functions that manage the
heap or provide tracing or debugging functionality.

5.1 Called After Pattern

As shown in Figure 1a, this pattern involves two

functions, one called after the other. It is very simple and
our goal with this pattern was to identify chains of
functionality that need to be performed together. Our tool
identified a number of patterns of this type, 1,253 unique
instances of this pattern that were added to the source
code 10 or more times. Some of the patterns identified
were obvious, and while these did not provide novel
insight, they did provide evidence that our analysis was
working as expected. As mentioned, many of the
instances found involved the heap management functions.
In the Wine source code, almost every function that
manipulates their internal heap must first retrieve the heap
for the current process via GetProcessHeap.
Consequently, many heap manipulation functions such as
HeapAlloc and RtlAllocateHeap are called in close
proximity to GetProcessHeap.

Our tool also identified a number of patterns that
represent a notion of paired functionality. These patterns
include pairings such as BeginPaint and
EndPaint, GlobalLock and GlobalUnlock and
EnterCriticalSection/LeaveCriticalSection.
Again, these instances of the pattern are mainly interesting
to validate the results.

A more interesting instance of the pattern involves the
functions DeleteCriticalSection and
HeapFree. In this case, once a critical section object
has been deleted, the memory allocated for that object
needs to be deallocated. This data structure appears to
always be allocated off the internal heap (we also found,
as another instance of the pattern, HeapAlloc followed
by InitializeCriticalSection) and the
memory on the heap needs to be freed to do this. Another
instance of the pattern is LoadCursorA and
RegisterClassA. The latter function takes as a
parameter a data structure representing a class. One field
of that data structure must be initialized with the return
from the function LoadCursorA.

It is instructive to look at the categories of functionality
that are being discovered in instances of these patterns.
Table 1 shows how many new instances of the called after
pattern fall into a selected group of categories. The
number of new instances is broken down by how many
times a particular instance of a pattern was flagged as new
during the software repository mining.

9

New Instances Category
> 99 99 - 25 24 - 10

Debug 14 95 341
Heap 7 8 11
String Manipulation 0 25 121
GUI 0 3 94
Memory 0 19 17
Paired Functionality 0 6 26
Error Handling 0 3 34

Table 2: Function Pairing Categories for Conditionally
Called After

Table 1 shows that debug statements are heavily used
in the Wine source code. There are 97 instances of
function usage patterns that involve a debug function and
were added to the source code at least 25 times. This
means that there are 97 functions that are called in close
proximity to a particular debug function.

The instances of the pattern listed in the Heap category
are instances in which both functions involved are part of
the heap interface. There are a total of 46 instances found
in the code, indicating that functionality provided by the
heap interface may require a number of function calls.

The category Paired Functionality contains instances of
the pattern where the invoked functions provide
functionality that needs to surround some bit of code.
This includes such function pairings as BeginPaint/
EndPaint and GlobalLock/GlobalUnlock.
Eight such instances were added to the code between 25
and 99 times. Many of these instances involve some type
of synchronization.

5.2 Conditionally Called After Pattern

The conditionally called after pattern is shown in

Figure 1b. Our goal with this pattern was to see whether
or not adding a small amount of control flow context to
the pattern would help to elicit more interesting patterns.
We expected this pattern to be able to identify error
handling code and debugging idioms, instances of code
where the second function is only called if the first
function fails. Many of the instances of this pattern our
tool identified supported this expectation. Our tool found
922 unique instances of this patterns that were added to
the source code 10 or more times.

One of the instances involved the function
RegQueryValueExA being conditionally called after
RegOpenkeyA. In this case, the function
RegOpenKeyA may or may not find a key in the registry.
If it is successful the value can be queried. The insight
here is that the developer cannot assume a key exists and
should do the proper error checking to ensure that it was
found properly.

Another interesting instance of this pattern is
conditionally calling SetLastError after calling
HeapAlloc. This instance of the pattern describes how
errors should be propagated in the code. Table 2 shows
how many new instances of the conditionally called after

pattern fall into a selected group of categories based on
functionality.

5.3 Visualization

While the patterns we are searching for are binary, the

functions involved may be part of many different
instances of the pattern. Because of the type of patterns
we are searching for, two functions that are each involved
separately in an instance of a pattern with a common third
function may themselves be related. This serves to build
up a web of relationships, similar to those studied in the
area of social networks. We have used a social network
viewer, TouchGraph LinkBrowser [8], to explore the
relationships between functions. Figure 2 shows the
neighborhood of the network centered on BeginPaint
and EndPaint.

Looking at this network graph gives quick insight into
the functions that are invoked in close proximity to both
BeginPaint and EndPaint. The function
BeginPaint and EndPaint are used to wrap access to
drawing functionality. We expect functions that provide
this functionality to be found in instances of the called
after pattern with either or both of these functions. The
network in Figure 2 shows this clearly. We can see that
SetTextColor and GetClientRect, for example,
are attached to each of these functions. Further, the thin
end of the edge is attached to the function which is called
after the function at the thick end of the edge. We can see
that GetClientRect is called after BeginPaint, and

Figure 2: Social Network for BeginPaint/EndPaint

New Instances Category
> 99 99 - 25 24 - 10

Debug 17 80 278
Heap 14 16 16
String Manipulation 3 41 153
GUI 3 22 271
Memory 7 28 19
Paired Functionality 0 8 39
Error Handling 0 9 30
Table 1: Function Pairing Categories for Called After

10

EndPaint is called after GetClientRect.

6 Why Mine the Full Repository?

We have chosen to mine each revision of each file to

obtain a finer level of detail about changes made to the
software. Since we gather data on what instances of
patterns were added at each CVS transaction, we can
investigate how instances of patterns entered the source
code. Instances that are added to the source code steadily
over time (over a large number of CVS transactions) may
indicate a very important, frequently used pattern or a
pattern that causes confusion among developers. On the
other hand, patterns that are added to the source code in a
relatively small number of CVS transactions may indicate
refactoring. Determining the profile of how a pattern is
added to the code may be useful in deciding the
importance of that pattern, how to apply the instance in
the future or how likely the pattern is to be misused by
developers.

7 Future Work

The work we have presented here is still in its early

stages. We have looked at only one software repository,
and have only searched for instances of two patterns. In
the future we will expand the number and complexity of
patterns we search for and apply this technique to more
software projects. We also do not track removed patterns.
Knowing what patterns have been removed from the code
could be useful in keeping an up-to-date list of important
patterns in the project.

Mining the software repository of the Wine project has
produced an enormous amount of data, a total of over 50
million instances of these two patterns were found in the
repository. As we continue to work with this data we will
need to find better ways of filtering out the more
important, or more likely to be important, patterns.
Currently our filter is based on the distance between, in
terms of lines of code, the call sites of the two functions in
the pattern. Clearly there is room for improvement. A
filter that takes into account the files or directories the
called functions (or the calling function) reside in may be
useful in pulling out usage patterns of functions in the
same module. Filters based on control flow graphs and
deeper analysis of conditionals will provide more context
as to the surrounding source code. Dataflow analysis as
well will provide more context and may serve to provide a
stronger link between two function calls. Finally, we need
to not only think about patterns in terms of function calls.
Patterns based on how data is accessed in a function, what
parts of a structure need to be initialized or updated, need
to be investigated as well.

We also need to explore how to use the instances of
these patterns that are mined from the software repository.
Providing these instances of patterns to a knowledge
repository or as an appendix to a developer’s guide may

be a useful way to inform developer’s of the system-
specific rules the source code. Potentially more
interesting is the use of instances of these patterns to
automatically identify problems in the code. This may be
done by feeding the rules into static analysis tools that
identify violations of the rules in the source code.

8 Conclusions

In this paper we have demonstrated how system-
specific rules, in this case function usage patterns, can be
recovered from source code change histories. We have
run a preliminary study to recover such rules from a large,
open source software project. This study has recovered a
number of interesting and non-obvious rules that we think
are critical for developers to understand and follow.

9 References

[1] Edison Design Group, http://www.edg.com/cpp.html
[2] Engler, D., Chelf, B., Chou, A., Hallem, S., Checking

System Rules Using System Specific, Programmer-Written
Compiler Extensions. In Proceedings of the Fourth
Symposium on Operating Systems Design and
Implementation, San Diego, CA, October 2000.

[3] Engler, D., Chen, D. Y., Hallem, S., Chou, A., Chelf, B.,
Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code, In Proceedings of the
ACM symposium on Operating Systems Principles, Banff,
Canada, Oct 2001.

[4] Gutwin, C., Penner, R., Schneider, K., Group Awareness in
Distributed Software Development, In Proceedings of ACM
Conference on Computer Supported Cooperative Work,
Chicago, IL, Nov 2004.

[5] Matsumura, T., Monden, A., Matsumoto, K., The Detection
of Faulty Code Violating Implicit Coding Rules,
Proceedings of the International Workshop on Principles
of Software Evolution (IWPSE ’02), Orlando, FL, USA,
May 2002.

[6] Pinzger, M., Gall, H., Pattern-supported architecture
recovery. In Proceedings of the International Workshop on
Program Comprehension (IWPC’02), Paris, France, June
2002.

[7] Rysselberghe, F., Demeyer, S., Mining Version Control
Systems for FACs (Frequently Applied Changes),
Proceedings of International Workshop on Mining
Software Repositories (MSR ’04), Edinburgh, Scotland,
UK, May 2004.

[8] TouchGraph LinkBrowser, Available online at
http://touchgraph.sourceforge.net

[9] Williams, C. C., Hollingsworth, J. K., Bug Driven Bug
Finders, In Proceedings of International Workshop on
Mining Software Repositories (MSR ’04), Edinburgh,
Scotland, UK, May 2004.

[10] Wine, Available online at http://www.winehq.org

11

