
On Automatic Categorization of Open Source Software

Shinji Kawaguchi †, Pankaj K. Garg ††

Makoto Matsushita † and Katsuro Inoue †

† Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{s-kawagt, matusita, inoue}@ist.osaka-u.ac.jp
†† Zee Source

1684 Nightingale Avenue
Sunnyvale, California, 94807, USA

garg@zeesource.net

Abstract

The number of Open Source software systems is increas-
ing at a rapid rate. For example, SourceForge currently
has about fifty-five thousand software systems registered,
twenty-two thousand of which were added in the past twelve
months. With such a large number of software projects, lo-
cating the right project for a given purpose can obviously
be quite challenging. We propose to use automatic software
categorization to address this challenge. At present, we
leave open the issue of the nature of the categorization, and
explore several known approaches like code clones-based
similarity metric, decision trees, and latent semantic analy-
sis. The results from applying each of the approaches gives
us some insights into the problem space, and sets some di-
rections for further work.

1. Introduction

We report on experiments to automatically deduce cat-
egories of Open Source software systems. Categorization
of Open Source software systems can be helpful in several
ways:

• Several similar software can be grouped together in a
category for ease of browsing. For example, Source-
Forge [13] categorizes software according to their
function (editors, databases, etc.), and also has the no-
tion of software foundries for related software.

• Developers working on a software system may be in-
formed about related software, so they can avoid dupli-
cate work and promote more reuse. This becomes spe-
cially useful in situations like Corporate Source [5, 6],

where global groups in companies may not be aware
of the relationship among their work [7].

In the past, such relationships have been determined manu-
ally. With the increase in the number of Open Source soft-
ware, e.g., SourceForge now has over fifty-five thousand
software systems registered and continues to grow, such
manual determination is not enough.

Automatic categorization of software systems is a novel
and intriguing challenge. Manual categorization generally
requires deep understanding of not only the target software
system, but also other software systems and their classifi-
cation policy. Past work in software engineering (e.g., see
[2, 12]), has focused on determining relations among com-
ponents of a given software system. We, however, propose
finding relationships among many software systems.

We have experimented with three approaches for auto-
matic categorization of software systems:

1. We use a similarity measure based on code-clone de-
tection [8, 14]. Replicated code portions existing at
different location in the source code are called code
clones. The ratio of the total lines of code clones to
the total lines of software is defined as the similarity of
two software systems.

This similarity measure has previously been useful in
characterizing the evolution history of software sys-
tems, i.e., tracing ancestors and descendants of a soft-
ware versions. In this paper, we investigate the use of
this measure for software categorization.

2. Generating decision trees from example classes is a
common approach in supervised machine learning. In
this approach, an example category set of software and
their features is fed to a learning algorithm. From this

79

example category set, the rule learner determines rules
(or a decision tree) that helps categorize any future
software system.

3. Latent Semantic Analysis(LSA) is a method for ex-
tracting and representing the contextual-usage mean-
ing of words by statistical computations applied to a
large corpus of text [9]. LSA has found a variety of
uses ranging from understanding human cognition [9]
to data mining [3]. Also, it is used for clustering com-
ponents in a software system [10]. We apply LSA for
determining categories of software systems.

The rest of the paper is structured as follows: in sec-
tions 2, 3, and 4, we describe the application and use of
SMAT, C4.5, and LSA, respectively. We conclude with a
discussion of current and future work in section 5.

2. Similarity Measure by SMAT

SMAT is a tool to measure a similarity between two large
software systems based on correspondence of each source-
code line of the systems [14]. To get the correspondence
efficiently, a fast code-clone detection tool CCFinder [8] is
employed to detect file pairs sharing common clones. The
detail line-by-line correspondence is then computed using
file difference detection tool diff [4].

Similarity is defined as the ratio between LOC (lines of
code) in the correspondence and the total LOC of two soft-
ware systems. Thus, by counting the number of lines in the
correspondence, the similarity of two software systems can
be obtained.

This similarity measure characterizes evolution history
of software systems. By applying it to BSD unix operating
systems, we automatically classified versions of released
operating systems into FreeBSD, NetBSD, and OpenBSD.

We applied this measure to classify several software sys-
tems in SourceForge. Table 1 shows the resulting similarity
between each pairs of systems.

As seen from the table, the similarity values are gener-
ally low even for software systems that belong to the same
manually determined category. This shows that although
systems in the same category provide similar features, they
do not share much code. This obviously raises the question
of why these developers have chosen to provide different
implementations for similar features?

3. Decision Trees

Decision trees are a machine learning approach for au-
tomatic classification of a data set. The decisions trees are
based on certain features of the data points. Initially, an
example set of data points with known classification and

features is fed to a rule-learner. The rule-learner uses the
example set to develop a set of rules. These rules operate
on the features of the data points to classify any future data.

C4.5 [11] is a commonly available Open Source tool that
can be used for classifying a set of data points. We used
C4.5 on 41 software systems from SourceForge. For fea-
tures, we used 3-gram representation of filenames used in
the software source code. This is similar in principle to the
approach used by Anquetil and Lethbridge [1] for their ap-
proach for clustering of software components. Instead of
deriving concepts, however, we directly used 3-grams. The
41 software resulted in 6977 features (3-gram representa-
tion of filenames). The resulting decision tree is shown in
Figure 1.

Read 41 cases (6977 attributes) from 3gram.data

Decision Tree:

tyx = t: xterm (2.0)
tyx = f:
| _fu = t: database (6.0)
| _fu = f:
| | mpe = t: videoconversion (3.0)
| | mpe = f:
| | | alo = t: editor (4.0)
| | | alo = f:
| | | | ops = t: database (2.0/1.0)
| | | | ops = f:
| | | | | win = t: compilers (6.0)
| | | | | win = f:
| | | | | | tin = t: compilers (2.0)
| | | | | | tin = f:
| | | | | | | Lib = t: compilers (2.0)
| | | | | | | Lib = f: boardgame (14.0/1.0)

Evaluation on training data (41 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

17 2(4.9%) 17 2(4.9%) (29.4%) <<

Figure 1. Decision tree based on application
of C4.5 to 41 software

As shown in Figure 1, the results of this classification
are encouraging. The training data set recorded an error of
less than 5%. The only drawback of this approach is that
it requires up-front a set of example categories. We would
like to discover categories or classifications that we don’t
even know exist! The latent semantic analysis approach
presented in the next section provides such a capability.

4. Latent Semantic Analysis (LSA)

Latent Semantic Analysis, LSA, is a practical method for
the characterization of word meaning. LSA produces mea-
sures of word-word, and passage-passage relations which
are well correlated with semantic similarity [9]. The method
creates a vector description of documents. This represen-
tation is used for comparing and indexing documents, and
various similarity measures can be defined using it.

LSA is based on a single value decomposition (SVD) of

80

D1 D2 D3 D4 D5 E1 E2 E3 E4 X1 X2
D1: centrallix 1 0 0 0 0 0 0 0 0 0 0
D2: gtm V43001A 0 1 0 0.00003 0.00012 0 0 0 0 0 0
D3: leap-1.2.6 0 0 1 0.00345 0.00003 0 0 0 0 0 0
D4: mysql-3.23.49 0 0.00003 0.00345 1 0.0111 0 0 0 0 0 0
D5: postgresql-7.2.1 0 0.00012 0.00003 0.0111 1 0 0 0 0 0 0
E1: gedit-1.120.0 0 0 0 0 0 1 0 0.00176 0 0 0
E2: gmas-1.1.0 0 0 0 0 0 0 1 0 0 0 0
E3: gnotepad+-1.3.3 0 0 0 0 0 0.00176 0 1 0.10 0 0
E4: peacock-0.4 0 0 0 0 0 0 0 0.10 1 0 0
X1: R6.3 0 0 0 0 0 0 0 0 0 1 0.64
X2: R6.4 0 0 0 0 0 0 0 0 0 0.64 1

Table 1. Similarity between Systems in SourceForge by Smat

a matrix derived from a word set of target documents. SVD
is a form of factor analysis and acts as a method for reducing
the dimensionality of the matrices.

Consider a simple matrix shown in Table 2. Each column
means a document and each row represents a word which
may appear in the documents. Cell entries show the occur-
rence of the word in the document.

This matrix is the input of LSA, and SDV has been
applied to this matrix. The result we obtain is the two-
dimensionally reconstructed matrix shown in Table 3.

c1 c2 c3 m1 m2 m3
computer 1 1 0 0 0 0
user 0 1 1 0 0 0
response 0 1 1 0 0 0
time 0 1 1 0 0 0
survey 0 1 0 0 0 1
trees 0 0 0 1 1 0
graph 0 0 0 0 1 1
minors 0 0 0 0 1 1

Table 2. An Example of Matrix for the Input of
LSA

Each column vector of this matrix indicates the char-
acteristics of the document through the word occurrences,
which are not only directly visible ones but also indirectly
related ones. This vertical vector can be used to determine
the similarity of two documents. A simple similarity defini-
tion used here is cosine of two vectors [9].

c1 c2 c3 m1 m2 m3
computer 0.12 0.76 0.53 -0.02 -0.02 0.10
user 0.18 1.11 0.78 -0.04 -0.10 0.09
response 0.18 1.11 0.78 -0.04 -0.10 0.09
time 0.18 1.11 0.78 -0.04 -0.10 0.09
survey 0.11 0.75 0.45 0.10 0.46 0.55
trees -0.02 -0.02 -0.11 0.16 0.64 0.59
graph 0.00 0.08 -0.09 0.24 0.99 0.93
minors 0.00 0.08 -0.09 0.24 0.99 0.93

Table 3. Resulting Two Dimensionally Recon-
structed Matrix

4.1. Applying LSA to Classification of Software Sys-
tems

We applied LSA to classification of software systems.
One key factor of this application is selection of words.
We might be able to get the input word list for LSA from
the documentation associated with target software systems.
Also, we could obtain meaningful word lists from com-
ments embedded into the source code.

The former approach would work if the documentation
of each software systems are rich enough. Many Open
Source software systems, however, do not have sufficient
documentation, especially when a project is in its early
phases. Also the granularity of description would be un-
stable over documentats. Some documents focus only on
usage of the systems, while others only describe the details
of implementation.

Using words from program comments is more closely re-
lated to the implementation of the target software systems,
and the granularity would be more stable. In many Open
Source software systems, however, comments in the source

81

code contains a lot of sentences for their license policy and
system evolution, which are very important for the develop-
ers of Open Source software, but which may not be relevant
for classification purpose and would have to be removed.
Identifying the license policy and evolution history auto-
matically would not be so easy.

For the work reported in this paper, we deleted all com-
ments and used only identifiers (variable, constants, and
function names) found in the source code as words. A soft-
ware system is composed of many source code files, and
each source code file is made up of a sequence of tokens in
a particular programming language. The tokens can be cat-
egorized into two sets: keywords specified by the program-
ming language, and identifiers given by the developers. The
keywords generally are common over many software sys-
tems, hence we use identifiers for the input of LSA.

The following process overviews the process of classifi-
cation using LSA.

1. Collect source code files of software systems.

2. Remove comments and extract tokens. Keywords
in the programming language are discarded and only
identifiers are obtained.

3. Count the occurrence of each identifier and create the
word matrix for the input of LSA.

4. Remove meaningless words (identifiers) from the ma-
trix. Unique words appearing only in a software sys-
tem are removed. Also, common words appearing in
more than half of those systems are removed. These
removed words would not contribute the classification.

5. Perform LSA.

6. Compute cosine of each pair of the vertical vectors of
the resulting matrix of LSA, and obtain the similarity
value of two software systems.

7. Perform clustering using the similarity values.

4.2. Experiments

We collected the source code files of 41 software sys-
tems from SourceForge. They are classified into 6 groups
(board game, compiler, database, editor, video conversion,
and xterm) at SourceForge. This classification has been
made by the developers decision.

The total number of different kinds of identifiers ex-
tracted from these 41 software systems are 164,102, and
meaningless words mentioned above are removed from
them. The remaining are 22,048 different identifiers. So
a 41 x 22,048 matrix is the input of LSA.

The resulting similarity between the software systems is
presented in Figure 2.

As you can see from Figure 2, the software systems in
the manual classification groups of editor, video conver-
sion, and xterm showed very high similarity each other.
On the other hand, systems in board game, compiler, and
database did not show high similarity. This is because in
board game, compiler, or database, there are little common
concept which characterize overall systems. Editor, video
conversion, and xterm contain a lot of characterizing sys-
tem call names and variable names among systems.

There are two systems in board game which show high
similarity with editors. This is because it share the same
GUI framework.

5. Conclusion

We have reported some preliminary work on automatic
categorization of Open Source software systems. Such cat-
egorization can be useful for reification of a multitude of re-
lationships among Open Source systems. To understand the
nature of the problem and its parameters, we have reported
on several experiments to applied well-known approaches
to classification. Wherever possible, we have build-upon
the results of previous work in the area of determining rela-
tionships among components of a software system. We ap-
plied a code-clone based similarity metric, a decision tree
based approach, and a latent semantic analysis approach.
In each of the cases, we have limited success with the pa-
rameters that we chose. Hence, further work is required to
understand the appropriate automated techniques that can
be applied for this purpose. We are actively pursuing this
research direction.

Acknowledgments

References

[1] N. Anquetil and T. C. Lethbridge. Recovering Soft-
ware Architecture from the Names of Source Files.
Journal of Software Maintenance: Research and
Practice, 11:201–221, 1999.

[2] S. C. Choi and W. Scacchi. Extracting and restruc-
turing the design of large systems. IEEE Software,
7(1):66–71, Jan 1990.

[3] Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A. Harsh-
man. Indexing by latent semantic analysis. Jour-
nal of the American Society of Information Science,
41(6):391–407, 1990.

[4] Diffutls. http://www.gnu.org/software/
diffutils.

82

[5] J. Dinkelacker and P. Garg. “Corporate Source: Ap-
plying Open Source concepts to a corporate environ-
ment (Position Paper)”. In Proceedings of the 1st
ICSE workshop on Open Source software engineering,
Toronto, Canada, 2001.

[6] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Pro-
gressive Open Source. In Proceedings of the Interna-
tional Conference on Software Engineering, Orlando,
Florida, 2002.

[7] J. Herbsleb and A. Mockus. An Empirical Study
of Speed and Communication in Globally-Distributed
Software Development. IEEE Transactions. Software
Engineering, 2003.

[8] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. “CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale Source
Code”. IEEE Transactions. Software Engineering,
28(7):654–670, 2002.

[9] T. K. Landauer and S. T. Dumais. “Latent Semantic
Analysis and the Measurement of Knowledge”. In Ed-
ucational Testing Service Conference on Natural Lan-
guage Processing Techniques and Technology in As-
sessment and Education, princeton, 1994.

[10] J.I. Maletic and A. Marcus. Using latent semantic
analysis to identify similarities in source code to sup-
port program understanding. In 12th IEEE Interna-
tional Conference on Tools with Artificial Intelligence
(ICTAI’00), pages 46–53, November 2000.

[11] Ross Quinlan. http://www.cse.unsw.edu.
au/˜quinlan.

[12] R.W. Schwanke. An intelligent for re-engineering
software modularity. In Proc. of 13th International
Conference on Software Engineering, pages 83–92,
Austin, Texas, USA, May 1991.

[13] SOURCEFORGE.net. http://sourceforge.
net.

[14] Tetsuo Yamamoto, Makoto Matsusita, Toshihiro
Kamiya, and Katsuro Inoue. “Measuring Similarity of
Large Software Systems Based on Source Code Cor-
respondence”. Technical Report of Dept. of ICS, IIP-
03-03-02, 2002.

Figure 2. Similarity of software systems by
LSA83

