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ABSTRACT 
This paper presents an approach to recover time variant 
information from software repositories. It is widely accepted that 
software evolves due to factors such as defect removal, market 
opportunity or adding new features. Software evolution details are 
stored in software repositories which often contain the changes 
history. On the other hand there is a lack of approaches, 
technologies and methods to efficiently extract and represent time 
dependent information. Disciplines such as signal and image 
processing or speech recognition adopt frequency domain 
representations to mitigate differences of signals evolving in time. 
Inspired by time-frequency duality, this paper proposes the use of 
Linear Predictive Coding (LPC) and Cepstrum coefficients to 
model time varying software artifact histories. LPC or Cepstrum 
allow obtaining very compact representations with linear 
complexity. These representations can be used to highlight 
components and artifacts evolved in the same way or with very  
similar evolution patterns. To assess the proposed approach we 
applied LPC and Cepstral analysis to 211 Linux kernel releases 
(i.e., from 1.0 to 1.3.100), to identify files with very similar size 
histories. The approach, the preliminary results and the lesson 
learned are presented in this paper.   
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1. INTRODUCTION 
An intrinsic property of software is malleability: Software systems 
change and evolve at each and every level of abstraction and 
implementation during their entire life span from inception to 
phase out. This fact, calls for approaches, methods, and 
technologies to study evolution of software characteristics during 
the system life.  

The evolution of a software system is observable as changes in 
structural information (e.g. modular decomposition and relation 
between modules), behavioral information (e.g. functionalities, or 
bugs), and project information (e.g., maintenance effort). As these 
changes happen in time, software evolution can be modelled and 
studied as time series. A time series is a collection of measures 
recorded over time. Time series and time series based approaches 
haves been successfully applied to many disciplines such as 
speech processing, computer vision, or stock market forecasting. 
Common to these disciplines is the need to detect the occurrence 
of similar phenomena evolutions over time. Therefore models and 
technologies developed to study time series and time dependant 
phenomena or signals can be applied to software engineering. 
In applying time dependant models to software artifacts evolution 
our goal is the definition of a criterion to establish similarity or 
dissimilarity of artifact histories. Indeed, similarity is quite a 
crucial issue: there are several software engineering areas such as 
software evolution and maintenance, software analysis, software 
testing, or automatic Web Services composition where the ability 
to effectively compute a similarity between artifact histories can 
greatly help researchers and  practitioners.   
On the other hand, similarity computation is a difficult problem. 
Often, similarity discovering is hampered by the presence of some 
distortion in one dimension of data (e.g., time). This distortion 
can cause dissimilar instances seem similar and the opposite as 
well.   
As an example, effort prediction in software development or 
maintenance requires both effort prediction and effort distribution 
forecasting (i.e, schedule) [9]. Traditional approaches focus on 
effort prediction assuming a relation, often linear [14], between 
metrics related to complexity and/or size and the effort [1] [2] [3] 
[10]. Often a simple figure quantifying the effort doesn’t suffice. 
Effort distribution over time is a key issue for project planning 
and staffing, therefore is an important cost driver and a cause of 
organizational disruption. 
Unfortunately, effort distribution forecasting is more difficult than 
effort prediction because discovering similarities between past 
projects effort distributions is hampered by several factors causing 
‘distortion’ in the data if represented as evolving in a linear time. 
While the overall effort in past maintenance projects is mainly 
related to high level software metrics [6][14], the effort 
distribution is determined by internal system dependencies and 
organizational issues. Internal system dependencies can easily 
induce ripple effects imposing constraints between activities, a 
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component must be changed after some other has undergone 
maintenance. Organizational issues like holydays, staffing 
decisions, reorganizations, and so on, can cause postponing of 
activities and impact on the effort distribution in an unpredictable 
way. Therefore, analysing past effort distribution to determine 
similarities among time histories can be a difficult task, since 
similarities among activities are hidden because of these factors, 
while spurious similarities can emerge for the same reason. In 
other words, automating similarity computation between artifact 
histories is a challenging and difficult task. Similar difficulties are 
present in other software engineering activities such as log file or 
user behaviour analysis.  
The above example outlines the usefulness of robust similarity 
detection approaches,  robust when the original data are distorted 
in time.  
We present an approach to detect similarities between artifacts 
histories. In particular we aim at devising an approach to detect 
similarities in evolutions starting from past maintenance and 
activities effects, notwithstanding their temporal distortions. 
Theories and technologies to detect similarities in phenomena 
evolving in time, in a manner that the time rate can change among 
instances and also during a single instance are present in 
literature. In this work we applied one of these, namely 
LPC/Cepstrum, to mine from a repository of Linux kernel 
modules, files evolved in the same or very similar ways.  
 
The remainder of this paper is organized as follow: first we 
present the background of the used approach, Case study and 
results section illustrate the application of the approach to the 
Linux kernel evolution data, and in Discussion and future works 
we debate about our results and indicate our future work 
guidelines 
. 

2. TACKLING TIME RATE CHANGES 
Automatic speech recognition and speech synthesis researchers 
have a long history of wrestling with time distortion. Human 
beings change the rate of speech when talking (prosody), but 
humans recognize words also in presence of dramatic changes in 
pronunciation speed or accent during locution. When machines 
come into play, it is quite obvious expecting from them at least a 
similar ability in comprehension. Therefore, a speech recognition 
system must be robust with respect to time distortion as well as to 
disturbance (noise). 
Among the speech recognition approaches the family based on 
Linear Predictive Coefficient and Cepstrum (LPC/Cepstrum) is 
prominent for its performances and its relative simplicity. 
LPC/Cepstrum, first proposed in [7] and subsequently in [12] and 
[13], models a time evolving signal as an ordered set of 
coefficients representing the signal spectral envelope. That is a 
curve passing close to the peaks of the original signal spectrum. 
To obtain the LPC/Cepstrum representation the first step is to 
compute Linear Predictive Coding (LPC) coefficients. These are 
the coefficients of an auto-regressive model minimizing the 
difference between linear predictions and actual values in the 
given time window. 
 
The LPC analysis uses the autocorrelation method of order  p. 

In matrix form,  we have  

 
 
where  

r = [r(1)r(2)..r(p)]T 

is the autocorrelation vector,  
 

 
 
is the filter coefficients vector and R is the p*p Toeplitz 
autocorrelation matrix, which is nonsingular and gives the 
solution  

  
 
Once LPC have been obtained it is possible to compute cepstra 
from them. Cepstra are the coefficients of the inverse Fourier 
transform representation of the log magnitude of the spectrum. 
The cepstra series represents a progressive approximation of the 
‘envelope’ of the signal: as for LPC, the more are the cepstra 
considered the more the envelope adheres to the original 
spectrum.  
Starting from a and r, we have as cm coefficients (for order p): 

 
 
for 1 < m < p, and 
 

 
where m > p. 
In speech recognition LPC/Cepstrum has been proven capturing 
most of the relevant information contained in the original series. 
For a sequence of 30-300 points a number of 8-30 coefficients 
suffice for most application. Therefore, LPC/Cepstrum  allows to 
obtain a very synthetic representation of a time evolving 
phenomenon. This compact representations can be used to 
efficiently compare signals, once  a suitable distance measure has 
been defined between LPC or Cepstrum coefficients. Most 
approaches aiming to assess similarity between time series use the 
Euclidean distance among the LPC/Cepstrum representations as 
an indirect similarity measure. Although distance and similarity 
are different concepts, cepstral distance can be used to assess 
series similarity:  If two cepstra series are “close”, the original 
signals have a similar evolution in time. As an alternative to 
Cepstrum and Euclidean distance, it is possible to use the Itakura 
distance (a.k.a. Log Likelihood Ratio LLR) [4] that can be 
computed directly from LPC. 
LPC/Cepstrum has been used also in computer vision and in other 
research fields [11]. For examples in [15] LPC/Cepstrum is 
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applied to online signatures verification and Euclidean distance 
between LPC/Cepstrum has been used as dissimilarity measure to 
cluster ARIMA series modeling electrocardiogram signals [5].  

3. CASE STUDY AND RESULTS 
We tested the application of LPC/Cepstrum to the evolution of a 
real world software system: the Linux kernel. Our goal was to 
verify if LPC/Cepstrum can be a starting point to produce 
compact representations of software modules evolution while 
preserving essential characteristics of the phenomena under study. 
In other words, if the spectral based representations could be 
applied to identify artifacts having very similar maintenance 
evolution histories. Being interested in mining the effect of 
maintenance on artefact but also in effort we selected a metric that 
is quite commonly recognized as strongly related to maintenance 
effort: size measure in LOC. Therefore our initial dataset was 
composed by the LOC histories, 211 releases,  of 1788 files 
composing the Linux kernel  from version 1.1.0 to 1.3.100 for 211 
releases.  
Over this dataset we performed LPC/Cepstrum analysis where the 
modules evolution in size was thought of as signals evolving in 
time. Once obtained LPC/cepstum coefficients we computed the 
distance between each pair of module (that is about one million of 
module pairs). A method to be effective must efficiently produce 
results, our approach for the 1788 histories requires less than 5 
seconds on a Pentium 4 machine at 1.6 GHz. The tools used in 
each phase are summarized in Table 1. These are all open source 
software integrated together allowing an almost fully automated 
analysis.   
 
Table 1: Test case technologies and instruments 

Phase Instruments 
Extraction of size modules 
evolution from CVS repository 

Perl scripts 

LPC computation C program 
Cepstra computation  C program 
Euclidean distance computation C program 
Results classification and graph 
plotting 

Perl script and 
GNUPlot 

 
 
To produce useful results, a similarity assessment based on an 
abstraction and on a distance measure must respond to three 
minimal requirements: 

a) It has to discriminate among similar histories, allowing 
to identify some as similar and some as dissimilar by 
applying a threshold  (such as the more restrictive the 
threshold the less the pairs deemed similar). The 
possibility to vary the threshold is important because 
similarity research often starts with a blur similarity 
definition gaining sharpness in late phases. Therefore it 
must be possible to customize similarity detection on 
the fly.  

 
b) It has to be sensible to the relative richness of the 

information supplied. With less information most items 
seem similar, increasing the information used we expect 

fine grain dissimilarities to emerge. This is important 
because allows researchers to decide the best abstraction 
level for the case at hand.  

 
c) It has to respond to some intuitive and meaningful 

notion of similarity. Because similarity is not a value in 
themselves: similarities discovery is ancillary to other 
purposes for which a clear understanding of a similarity 
judgment is fundamental.  

 
To address items a) and b) we calculate the sets of files with 
indistinguishable time series applying three distance thresholds  
(Euclidean distances less that 1*10-3 

, 1*10-4 , and 1*10-5) and four 
cepstra series lengths (12, 16, 20, 32). Since the more cepstra are 
used the more the envelope representation adhere to the original 
data, with less cepstra we expect to find more similar pairs and the 
opposite as well. The size of 8, 12, and 16, for both the LPC 
coefficients and the subsequent cepstra series, is a rule of thumb 
in speech coding. However, as this is the first application to 
software engineering of LPC/Cepstrum spectral representation, we 
decided to try the sizes from 12 to 32 to allow a richer signal 
representation. It should be noted that our thresholds are quite 
thight because the computed distances among software modules 
were far smaller than the ones among words in speech 
recognition.  
By applying the above defined parameters we obtained Table 2, in 
which the number of  files pairs deemed indistinguishable over a 
given threshold is shown for each combination of threshold value 
and cepstra series length. 

 
Table 2. Number of pairs beating the thresholds for cepstra 
cardinality. 

Cepstra series cardinality 
Threshold 

12 16 20 32 
1*10-3 

6045 4049 2897 1605 

1*10-4 
858 607 440 312 

1*10-5 
194 163 144 129 

 
 
Table 2 responds to a) and b): the cardinality of the pairs 
considered undistinguishable is sensible to both  threshold value 
and cepstra series length. These effects can be better appreciated 
in Figure 1 and 2 reporting the impacts of thresholds and cepstra 
series length, respectively. Notice that both tables have a 
logarithmic Y axis thus quite different results are obtained with 
different configurations. 
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Figure 1. Impact of the threshold over the number of pairs 
deemed similar (logaritmic). 
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Figure 2. Impact of the cepstra series cardinality over the 
number of pairs demmed similar (logaritmic). 
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Figure 3. Less similar pair selected with 32 cepstra and a 
threshold of 10-5. 
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Figure 4. Less similar pair selected with 16 cepstra and a 
threshold of 10-5. 
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Figure 5. Most similar pair selected with 12 cepstra and a 
threshold of 10-2 that is discarded by more restrictive criteria. 
 
To qualitatively assess whether the results of the automated 
analysis responds to some intuitive notion of distance and 
similarity (item c) we plotted the graphs of pairs classified as 
indistinguishable. Here we report three examples chosen to give 
an insight of how different configurations impact on distance and  
similarity. Figure 3,  4, and 5 report plots of the less similar pair 
selected with 32 cepstra and a threshold of 10-5; the less similar 
pair selected with 16 cepstra and a threshold of 10-5; and the most 
similar pair selected with 12 cepstra and a threshold of 10-3 not 
included in the sets selected by the other criteria.  Notice that the 
Y axis aren’t of the same scale.  
The graphs show an appreciable progressive relaxation of the 
similarity as far as the cepstra series size is reduced and a less 
stringent threshold is applied. 
 
 

4. DISCUSSION AND FUTURE WORKS 
This work presents a case study assessing the suitability of 
LPC/Cepstrum to compare software artifacts evolutions. 
LPC/Cepstrum allows to obtain a compact representation of 
signals with linear complexity and to perform  a robust 
comparison with respect to signal distortion. Computational 
efficiency, output compactness, and robustness are appealing 
characteristics for tools supporting  software engineering 
activities. However, since the approach stems from a different 
research field, there is the need to assess its suitability. We 
conducted a first case study comparing evolution histories of 1788 
Linux files at LOC level. We also defined three success criteria 
for the case study. To be deemed interesting for further 
explorations, the approach must: allow defining similarity 
thresholds, be sensible to the quantity of information used, and 
produce results responding to an intuitively understandable notion 
of similarity.        
Indeed, we found that Euclidean distances computed among 
LPC/Cepstrum representations can be used to assess similarity in 
a way that is sensible to the richness of the representation and 
allows to define effective similarity thresholds. By inspecting 
histories we also verified that the sets of similar pairs selected 
with our approach respond to an intuitive notion of similar 
evolution in size. Therefore, the case study results show that 
LPC/Cepstrum is worth of further exploration by software 
engineering researchers. 
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An important theoretical issue is left aside from this case study. 
Distance measures are often seen and used as indirect similarity 
measures under the assumption that closeness between items is 
related to their similarity. This is a keystone of spectral 
representations use in speech recognition. In this case study we 
followed this approach as well. Nevertheless is must be pointed 
out that similarity and closeness remain two different concepts. 
From a theoretical perspective we believe that a better 
clarification of similarity between software artifact histories can 
be of great help in software evolution research.   
A first further research step will be to apply the same framework 
to other software systems.   In doing so we aim to gain knowledge 
about what are the cepstra containing the most relevant 
information, what are the threshold values most suitable for the 
various tasks and how the approach performs when metrics other 
than size are used. This should allow a broader understand of 
LPC/Cepstrum characteristics when applied in software 
engineering.  
Spectral based representations support also comparisons with 
metrics other than Eucliedean distance (e.g. the Itakura distance), 
ad allow for further abstracting from data distortion in time (e.g. 
by means of time warping [8]). Exploring these alternatives it is 
possible to increase the robustness of the approach with respect to 
distortion and its flexibility with respect to the distance used.  
Finally it is remarkable that LPC/Cepstrum has been successfully 
used also in situations in which data are distorted in dimensions 
other than time. This suggests the application to software 
engineering situation in which data are distorted in other 
dimensions as well (e.g. size or effort).   
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