
Linear Predictive Coding and Cepstrum coefficients for
mining time variant information from software repositories

Giuliano Antoniol
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

antoniol@ieee.org

Vincenzo Fabio Rollo
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

f.rollo@unisannio.it

Gabriele Venturi
RCOST- University Of Sannio

Via Traiano 1
82100, Benevento (BN), ITALY

+390824305526

venturi@unisannio.it

ABSTRACT
This paper presents an approach to recover time variant
information from software repositories. It is widely accepted that
software evolves due to factors such as defect removal, market
opportunity or adding new features. Software evolution details are
stored in software repositories which often contain the changes
history. On the other hand there is a lack of approaches,
technologies and methods to efficiently extract and represent time
dependent information. Disciplines such as signal and image
processing or speech recognition adopt frequency domain
representations to mitigate differences of signals evolving in time.
Inspired by time-frequency duality, this paper proposes the use of
Linear Predictive Coding (LPC) and Cepstrum coefficients to
model time varying software artifact histories. LPC or Cepstrum
allow obtaining very compact representations with linear
complexity. These representations can be used to highlight
components and artifacts evolved in the same way or with very
similar evolution patterns. To assess the proposed approach we
applied LPC and Cepstral analysis to 211 Linux kernel releases
(i.e., from 1.0 to 1.3.100), to identify files with very similar size
histories. The approach, the preliminary results and the lesson
learned are presented in this paper.

Keywords
Software evolution, data mining.

1. INTRODUCTION
An intrinsic property of software is malleability: Software systems
change and evolve at each and every level of abstraction and
implementation during their entire life span from inception to
phase out. This fact, calls for approaches, methods, and
technologies to study evolution of software characteristics during
the system life.

The evolution of a software system is observable as changes in
structural information (e.g. modular decomposition and relation
between modules), behavioral information (e.g. functionalities, or
bugs), and project information (e.g., maintenance effort). As these
changes happen in time, software evolution can be modelled and
studied as time series. A time series is a collection of measures
recorded over time. Time series and time series based approaches
haves been successfully applied to many disciplines such as
speech processing, computer vision, or stock market forecasting.
Common to these disciplines is the need to detect the occurrence
of similar phenomena evolutions over time. Therefore models and
technologies developed to study time series and time dependant
phenomena or signals can be applied to software engineering.
In applying time dependant models to software artifacts evolution
our goal is the definition of a criterion to establish similarity or
dissimilarity of artifact histories. Indeed, similarity is quite a
crucial issue: there are several software engineering areas such as
software evolution and maintenance, software analysis, software
testing, or automatic Web Services composition where the ability
to effectively compute a similarity between artifact histories can
greatly help researchers and practitioners.
On the other hand, similarity computation is a difficult problem.
Often, similarity discovering is hampered by the presence of some
distortion in one dimension of data (e.g., time). This distortion
can cause dissimilar instances seem similar and the opposite as
well.
As an example, effort prediction in software development or
maintenance requires both effort prediction and effort distribution
forecasting (i.e, schedule) [9]. Traditional approaches focus on
effort prediction assuming a relation, often linear [14], between
metrics related to complexity and/or size and the effort [1] [2] [3]
[10]. Often a simple figure quantifying the effort doesn’t suffice.
Effort distribution over time is a key issue for project planning
and staffing, therefore is an important cost driver and a cause of
organizational disruption.
Unfortunately, effort distribution forecasting is more difficult than
effort prediction because discovering similarities between past
projects effort distributions is hampered by several factors causing
‘distortion’ in the data if represented as evolving in a linear time.
While the overall effort in past maintenance projects is mainly
related to high level software metrics [6][14], the effort
distribution is determined by internal system dependencies and
organizational issues. Internal system dependencies can easily
induce ripple effects imposing constraints between activities, a

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MSR'05, May 17, 2005, Saint Louis, Missouri, USA Copyright
2005 ACM 1-59593-123-6/05/0005...$5.00

74

component must be changed after some other has undergone
maintenance. Organizational issues like holydays, staffing
decisions, reorganizations, and so on, can cause postponing of
activities and impact on the effort distribution in an unpredictable
way. Therefore, analysing past effort distribution to determine
similarities among time histories can be a difficult task, since
similarities among activities are hidden because of these factors,
while spurious similarities can emerge for the same reason. In
other words, automating similarity computation between artifact
histories is a challenging and difficult task. Similar difficulties are
present in other software engineering activities such as log file or
user behaviour analysis.
The above example outlines the usefulness of robust similarity
detection approaches, robust when the original data are distorted
in time.
We present an approach to detect similarities between artifacts
histories. In particular we aim at devising an approach to detect
similarities in evolutions starting from past maintenance and
activities effects, notwithstanding their temporal distortions.
Theories and technologies to detect similarities in phenomena
evolving in time, in a manner that the time rate can change among
instances and also during a single instance are present in
literature. In this work we applied one of these, namely
LPC/Cepstrum, to mine from a repository of Linux kernel
modules, files evolved in the same or very similar ways.

The remainder of this paper is organized as follow: first we
present the background of the used approach, Case study and
results section illustrate the application of the approach to the
Linux kernel evolution data, and in Discussion and future works
we debate about our results and indicate our future work
guidelines
.

2. TACKLING TIME RATE CHANGES
Automatic speech recognition and speech synthesis researchers
have a long history of wrestling with time distortion. Human
beings change the rate of speech when talking (prosody), but
humans recognize words also in presence of dramatic changes in
pronunciation speed or accent during locution. When machines
come into play, it is quite obvious expecting from them at least a
similar ability in comprehension. Therefore, a speech recognition
system must be robust with respect to time distortion as well as to
disturbance (noise).
Among the speech recognition approaches the family based on
Linear Predictive Coefficient and Cepstrum (LPC/Cepstrum) is
prominent for its performances and its relative simplicity.
LPC/Cepstrum, first proposed in [7] and subsequently in [12] and
[13], models a time evolving signal as an ordered set of
coefficients representing the signal spectral envelope. That is a
curve passing close to the peaks of the original signal spectrum.
To obtain the LPC/Cepstrum representation the first step is to
compute Linear Predictive Coding (LPC) coefficients. These are
the coefficients of an auto-regressive model minimizing the
difference between linear predictions and actual values in the
given time window.

The LPC analysis uses the autocorrelation method of order p.

In matrix form, we have

where

r = [r(1)r(2)..r(p)]T

is the autocorrelation vector,

is the filter coefficients vector and R is the p*p Toeplitz
autocorrelation matrix, which is nonsingular and gives the
solution

Once LPC have been obtained it is possible to compute cepstra
from them. Cepstra are the coefficients of the inverse Fourier
transform representation of the log magnitude of the spectrum.
The cepstra series represents a progressive approximation of the
‘envelope’ of the signal: as for LPC, the more are the cepstra
considered the more the envelope adheres to the original
spectrum.
Starting from a and r, we have as cm coefficients (for order p):

for 1 < m < p, and

where m > p.
In speech recognition LPC/Cepstrum has been proven capturing
most of the relevant information contained in the original series.
For a sequence of 30-300 points a number of 8-30 coefficients
suffice for most application. Therefore, LPC/Cepstrum allows to
obtain a very synthetic representation of a time evolving
phenomenon. This compact representations can be used to
efficiently compare signals, once a suitable distance measure has
been defined between LPC or Cepstrum coefficients. Most
approaches aiming to assess similarity between time series use the
Euclidean distance among the LPC/Cepstrum representations as
an indirect similarity measure. Although distance and similarity
are different concepts, cepstral distance can be used to assess
series similarity: If two cepstra series are “close”, the original
signals have a similar evolution in time. As an alternative to
Cepstrum and Euclidean distance, it is possible to use the Itakura
distance (a.k.a. Log Likelihood Ratio LLR) [4] that can be
computed directly from LPC.
LPC/Cepstrum has been used also in computer vision and in other
research fields [11]. For examples in [15] LPC/Cepstrum is

75

applied to online signatures verification and Euclidean distance
between LPC/Cepstrum has been used as dissimilarity measure to
cluster ARIMA series modeling electrocardiogram signals [5].

3. CASE STUDY AND RESULTS
We tested the application of LPC/Cepstrum to the evolution of a
real world software system: the Linux kernel. Our goal was to
verify if LPC/Cepstrum can be a starting point to produce
compact representations of software modules evolution while
preserving essential characteristics of the phenomena under study.
In other words, if the spectral based representations could be
applied to identify artifacts having very similar maintenance
evolution histories. Being interested in mining the effect of
maintenance on artefact but also in effort we selected a metric that
is quite commonly recognized as strongly related to maintenance
effort: size measure in LOC. Therefore our initial dataset was
composed by the LOC histories, 211 releases, of 1788 files
composing the Linux kernel from version 1.1.0 to 1.3.100 for 211
releases.
Over this dataset we performed LPC/Cepstrum analysis where the
modules evolution in size was thought of as signals evolving in
time. Once obtained LPC/cepstum coefficients we computed the
distance between each pair of module (that is about one million of
module pairs). A method to be effective must efficiently produce
results, our approach for the 1788 histories requires less than 5
seconds on a Pentium 4 machine at 1.6 GHz. The tools used in
each phase are summarized in Table 1. These are all open source
software integrated together allowing an almost fully automated
analysis.

Table 1: Test case technologies and instruments

Phase Instruments
Extraction of size modules
evolution from CVS repository

Perl scripts

LPC computation C program
Cepstra computation C program
Euclidean distance computation C program
Results classification and graph
plotting

Perl script and
GNUPlot

To produce useful results, a similarity assessment based on an
abstraction and on a distance measure must respond to three
minimal requirements:

a) It has to discriminate among similar histories, allowing
to identify some as similar and some as dissimilar by
applying a threshold (such as the more restrictive the
threshold the less the pairs deemed similar). The
possibility to vary the threshold is important because
similarity research often starts with a blur similarity
definition gaining sharpness in late phases. Therefore it
must be possible to customize similarity detection on
the fly.

b) It has to be sensible to the relative richness of the

information supplied. With less information most items
seem similar, increasing the information used we expect

fine grain dissimilarities to emerge. This is important
because allows researchers to decide the best abstraction
level for the case at hand.

c) It has to respond to some intuitive and meaningful

notion of similarity. Because similarity is not a value in
themselves: similarities discovery is ancillary to other
purposes for which a clear understanding of a similarity
judgment is fundamental.

To address items a) and b) we calculate the sets of files with
indistinguishable time series applying three distance thresholds
(Euclidean distances less that 1*10-3

, 1*10-4 , and 1*10-5) and four
cepstra series lengths (12, 16, 20, 32). Since the more cepstra are
used the more the envelope representation adhere to the original
data, with less cepstra we expect to find more similar pairs and the
opposite as well. The size of 8, 12, and 16, for both the LPC
coefficients and the subsequent cepstra series, is a rule of thumb
in speech coding. However, as this is the first application to
software engineering of LPC/Cepstrum spectral representation, we
decided to try the sizes from 12 to 32 to allow a richer signal
representation. It should be noted that our thresholds are quite
thight because the computed distances among software modules
were far smaller than the ones among words in speech
recognition.
By applying the above defined parameters we obtained Table 2, in
which the number of files pairs deemed indistinguishable over a
given threshold is shown for each combination of threshold value
and cepstra series length.

Table 2. Number of pairs beating the thresholds for cepstra
cardinality.

Cepstra series cardinality
Threshold

12 16 20 32
1*10-3

6045 4049 2897 1605

1*10-4
858 607 440 312

1*10-5
194 163 144 129

Table 2 responds to a) and b): the cardinality of the pairs
considered undistinguishable is sensible to both threshold value
and cepstra series length. These effects can be better appreciated
in Figure 1 and 2 reporting the impacts of thresholds and cepstra
series length, respectively. Notice that both tables have a
logarithmic Y axis thus quite different results are obtained with
different configurations.

76

100

1000

10000

1E-3 1E-4 1E-5

12
16
20
32

Figure 1. Impact of the threshold over the number of pairs
deemed similar (logaritmic).

100

1000

10000

12 16 20 32

1E-3
1E-4
1E-5

Figure 2. Impact of the cepstra series cardinality over the
number of pairs demmed similar (logaritmic).

0

5

10

15

20

25

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

Figure 3. Less similar pair selected with 32 cepstra and a
threshold of 10-5.

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Figure 4. Less similar pair selected with 16 cepstra and a
threshold of 10-5.

0

100

200

300

400

500

600

700

800

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Figure 5. Most similar pair selected with 12 cepstra and a
threshold of 10-2 that is discarded by more restrictive criteria.

To qualitatively assess whether the results of the automated
analysis responds to some intuitive notion of distance and
similarity (item c) we plotted the graphs of pairs classified as
indistinguishable. Here we report three examples chosen to give
an insight of how different configurations impact on distance and
similarity. Figure 3, 4, and 5 report plots of the less similar pair
selected with 32 cepstra and a threshold of 10-5; the less similar
pair selected with 16 cepstra and a threshold of 10-5; and the most
similar pair selected with 12 cepstra and a threshold of 10-3 not
included in the sets selected by the other criteria. Notice that the
Y axis aren’t of the same scale.
The graphs show an appreciable progressive relaxation of the
similarity as far as the cepstra series size is reduced and a less
stringent threshold is applied.

4. DISCUSSION AND FUTURE WORKS
This work presents a case study assessing the suitability of
LPC/Cepstrum to compare software artifacts evolutions.
LPC/Cepstrum allows to obtain a compact representation of
signals with linear complexity and to perform a robust
comparison with respect to signal distortion. Computational
efficiency, output compactness, and robustness are appealing
characteristics for tools supporting software engineering
activities. However, since the approach stems from a different
research field, there is the need to assess its suitability. We
conducted a first case study comparing evolution histories of 1788
Linux files at LOC level. We also defined three success criteria
for the case study. To be deemed interesting for further
explorations, the approach must: allow defining similarity
thresholds, be sensible to the quantity of information used, and
produce results responding to an intuitively understandable notion
of similarity.
Indeed, we found that Euclidean distances computed among
LPC/Cepstrum representations can be used to assess similarity in
a way that is sensible to the richness of the representation and
allows to define effective similarity thresholds. By inspecting
histories we also verified that the sets of similar pairs selected
with our approach respond to an intuitive notion of similar
evolution in size. Therefore, the case study results show that
LPC/Cepstrum is worth of further exploration by software
engineering researchers.

77

An important theoretical issue is left aside from this case study.
Distance measures are often seen and used as indirect similarity
measures under the assumption that closeness between items is
related to their similarity. This is a keystone of spectral
representations use in speech recognition. In this case study we
followed this approach as well. Nevertheless is must be pointed
out that similarity and closeness remain two different concepts.
From a theoretical perspective we believe that a better
clarification of similarity between software artifact histories can
be of great help in software evolution research.
A first further research step will be to apply the same framework
to other software systems. In doing so we aim to gain knowledge
about what are the cepstra containing the most relevant
information, what are the threshold values most suitable for the
various tasks and how the approach performs when metrics other
than size are used. This should allow a broader understand of
LPC/Cepstrum characteristics when applied in software
engineering.
Spectral based representations support also comparisons with
metrics other than Eucliedean distance (e.g. the Itakura distance),
ad allow for further abstracting from data distortion in time (e.g.
by means of time warping [8]). Exploring these alternatives it is
possible to increase the robustness of the approach with respect to
distortion and its flexibility with respect to the distance used.
Finally it is remarkable that LPC/Cepstrum has been successfully
used also in situations in which data are distorted in dimensions
other than time. This suggests the application to software
engineering situation in which data are distorted in other
dimensions as well (e.g. size or effort).

5. REFERENCES
[1] Boehm, B.W. Software Engineering Echonomics. Prentice-
Hall Inc., Englewood Cliffs, N.J., 1981.
[2] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy,
R., and Selby, R. Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0.Annals of Software Engineering.vol. 1,
1987, 57-94.
 [3] Hastings, T.E., and Sajeev, A.S.M. A Vector-Based
Approach to Software Size Measurement and Effort Estimation.
IEEE Transactions on Software Enginnering , vol. 27, no. 4,
2001, 337-350.
[4] Itakura F.,Minimum prediction residual principle applied to
speech recognition, IEEE Trans. Acoustics, Speech, and Signal
Processing . vol.23,pp.67- 72,Feb. 1975
[5] Kalpakis K., Gada D., and Puttagunta V., "Distance Measures
for Effective Clustering of ARIMA Time-Series". In Proc. of the
2001 IEEE International Conference on Data Mining (ICDM'01),
San Jose, CA, November 29-December 2, 2001, pp. 273-280.
[6] Lindvall, M. Monitoring and Measuring the Change-
Prediction Process at Different Granularity Levels: An Empirical
Study. Software Process Improvement and Practice, no. 4, 1998,
3-10.
[7] Markel, J.D. and Gray Jr, A.H. Linear Prediction of Speech.
Springer-Verlag, New York, 1976.

[8] Myers C.S. and Rabiner L.R. A comparative study of several
dynamic time-warping algorithms for connected word recognition.
The Bell System Technical Journal, 60(7):1389-1409, September
1981
[9] Mockus A., Weiss D.M., Zhang P. Understanding and
Predicting effort In Software Projects. Proc. of the 25th
International Conference On Software Engineering, 2003, 274 -
284
[10] Nesi, P. Managing Object Oriented Projects Better, IEEE
Software, vol. 15, no.4. 1998, 50-60.
[11] Oppenheim A.V and Schafer R.W, "From Frequency to
Quefrency: A History of the Cepstrum", IEEE Signal Processing
Magazine, September 2004.
[12] Papamichalis, P.E. Practical Approaches to Speech Coding.
Prentice Hall, Englewood Cliffs, NJ, 1987
[13] Rabiner, L.R. and Juang B.H. Fundamentals of Speech
Recognition. Prentice Hall, Englewood Cliffs, NJ, 1993
[14] Ramil, J.F. Algorithmic Cost Estimation Software Evolution.
Proceding of Int.Conference on Software Engineeringr, Limerick,
Ireland, IEEE CS Press, 2000, 701-703.
[15] Wu, Q.Z., Jou, I.C., Lee, S.Y.,
Online Signature Verification Using LPC Cepstrum and Neural
Networks, IEEE Transactions on Systems, Man, and Cybernetics
(27), No. 1, February 1997, pp. 148-153.

78

