Mining Source Code to Automatically Split Identifiers for Software Analysis

*

Eric Enslen, Emily Hill, Lori Pollock and K. Vijay-Shanker
Department of Computer and Information Sciences
University of Delaware
Newark, DE 19716 USA
{enslen, hill, pollock, vijay} @cis.udel.edu

Abstract

Automated software engineering tools (e.g., program
search, concern location, code reuse, quality assessment,
etc.) increasingly rely on natural language information
from comments and identifiers in code. The first step in
analyzing words from identifiers requires splitting identi-
fiers into their constituent words. Unlike natural languages,
where space and punctuation are used to delineate words,
identifiers cannot contain spaces. One common way to
split identifiers is to follow programming language nam-
ing conventions. For example, Java programmers often use
camel case, where words are delineated by uppercase let-
ters or non-alphabetic characters. However, programmers
also create identifiers by concatenating sequences of words
together with no discernible delineation, which poses chal-
lenges to automatic identifier splitting.

In this paper, we present an algorithm to automatically
split identifiers into sequences of words by mining word fre-
quencies in source code. With these word frequencies, our
identifier splitter uses a scoring technique to automatically
select the most appropriate partitioning for an identifier.
In an evaluation of over 8000 identifiers from open source
Java programs, our Samurai approach outperforms the ex-
isting state of the art techniques.

1. Introduction

Today’s large, complex software systems require auto-
matic software analysis and recommendation systems to
help the software engineer complete maintenance tasks ef-
fectively and efficiently. The software maintainer must gain
at least partial understanding of the concepts represented
by, and the programmer’s intent in, existing source code
before making modifications. A programmer codes the

*This material is based upon work supported by the National Science
Foundation Grant No. CCF-0702401.

978-1-4244-3493-0/09/$25.00 © 2009 IEEE

71

concepts and actions in terms of program structure, and
helps to convey the intent and application domain concepts
to human readers through identifier names and comments.
Thus, many of the program search, concern location, code
reuse, and quality assessment tools for software engineers
are based on analyzing the words that programmers use in
comments and identifiers.

Maintenance tools that analyze comments and identi-
fiers frequently rely on first automatically identifying the
individual words comprising the identifiers. Unlike nat-
ural languages, where space and punctuation are used to
delineate words, identifiers cannot contain spaces. Often,
programmers create identifiers with multiple words, called
multi-word identifiers, to name the entity they want to repre-
sent (e.g., toString, AST VisitorTree, newValidatingXML-
InputStream, jLabel6, buildXMLforComposite).

To split multi-word identifiers, most existing automatic
software analysis tools that use natural language informa-
tion rely on coding conventions [1, 10, 11, 13, 14, 15, 20].
When simple coding conventions such as camel casing and
non-alphabetic characters (e.g., ‘.’ and numbers) are used
to separate words and abbreviations, automatically split-
ting multi-word identifiers into their constituent words is
straightforward. However, there are cases where existing
coding conventions break down (e.g., DAYSforMONTH,
GPSstate, SIMPLETYPENAME).

Techniques to automatically split multi-word identifiers
into their constituent words can improve the effectiveness of
a variety of natural language-based software maintenance
tools. In program search, information retrieval (IR) tech-
niques are preferred over regular expression based tech-
niques because IR better captures the lexical concepts and
can order the search results based on document relevance.
However, IR techniques will miss occurrences of concepts
if identifiers are not split. Similarly, incorrect splitting can
decrease the accuracy of program search.

Consider searching for a feature that adds a text field to
a report in a GUI-based report processing system. In the
implementation, the developers are inconsistent with how

MSR 2009

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

the concept of a “text field” is split. The methods responsi-
ble for adding the text field to the system uses proper camel
case, addTextField. However, the GUI method responsible
for initiating the action combines the concept as textfield.
Thus, without correct identifier splitting, IR techniques will
never return all relevant pieces of code for a single query
(either “text field” or “textfield”). In this example, incorrect
multi-word identifier splitting led to inaccuracy in the client
software analysis because the words from incorrectly split
identifiers misrepresent the source code’s lexical semantics.

Other tools that often rely on extracting individual con-
cepts from the words used in the program are concern lo-
cation [10, 11, 21, 22, 24, 26], documentation to source
code traceability [1, 20, 25], or other software artifact anal-
yses [2, 4, 5, 7, 12, 14, 23]. In addition to IR techniques,
proper identifier splitting can help mine word relations from
source code, by first extracting the correct individual words
for analysis.

In this paper, we present a technique to automatically
split identifiers into sequences of words by mining word
frequencies in source code. Our novel identifier splitting
algorithm automatically selects the most appropriate word
partitioning for multi-word identifiers based on a scoring
function. Because our approach requires no predefined dic-
tionary, our word partitions are not limited by the words
known to a manually created dictionary, and can naturally
evolve over time as new words and technologies are added
to the programmer’s vocabulary.

Our frequency-based approach, Samurai, is capable of
correctly splitting multi-word identifiers involving camel
case in which the straightforward split would be incorrect
(e.g., getWSstring, InitPWforDB, ConvertASCIltoUTF)
and can also split same-case multi-words (e.g., COUN-
TRYCODE, actionparameters). We evaluate the effec-
tiveness of our automatic identifier splitting technique by
comparing mixed-case splitting with the only other auto-
matic technique, which conservatively splits on division
markers (e.g., camel casing, numbers and special char-
acters), and by comparing same-case splitting with the
state of the art automatic technique by Feild, Binkley, and
Lawrie [8]. In an evaluation of over 8000 identifiers from
open source Java programs, our Samurai approach outper-
forms the existing state of the art techniques. Although our
current work focuses on Java programs predominantly writ-
ten in English, our approach can be applied to any program-
ming and natural language combination.

The major contributions of this paper are:

e Detailed analyses of the form of identifiers found in
software and the challenges in automatically splitting
them

e An effective technique for automatically splitting pro-
gram identifiers into their constituent words

72

e An experimental evaluation comparing the accuracy of
our frequency-based approach against the state-of-the-
art identifier splitting approaches.

2. The Identifier (Token) Splitting Problem

Although the motivation for splitting arises from multi-
word identifiers, splitting can also be applied to string lit-
erals and comments. In fact, identifiers frequently appear
in Java doc comments as well as in sections of code that
have been commented. Thus, in this paper, we focus on
splitting fokens, which may be program identifiers or space-
delimited strings appearing in code comments or string lit-
erals.

Token splitting is the problem of partitioning an arbitrary
token into its constituent concept words, which are typically
dictionary words and abbreviations. The general form of a
token is a sequence of letters, digits, and special characters.
In addition to using digits and special characters, another
common convention for indicating word splits is camel cas-
ing [3, 6, 17, 19]. When using camel case, the first letter
of every word in an identifier is capitalized (thus giving the
identifier the look of a humped camel). Using capital let-
ters to delimit words requires less typing than using spe-
cial characters, while preserving readability. For example,
parseTable is easier to read than parsetable.

Although initially used to improve readability, camel
casing can also help to split tokens in static analysis tools
that use lexical information. However, camel casing is not
well-defined in certain situations, and may be modified to
improve readability. Specifically, no convention exists for
including acronyms within camel case tokens. For example,
the whole abbreviation may be capitalized, as in Conver-
tASCIItoUTF, or just the first letter, as in Sq|lList. The de-
cision depends on the readability of the token. In particular,
SqlList is arguably more readable than SQLList, and more
closely follows camel case guidelines than SQLlIist. Strict
camel casing may be sacrificed for readability, especially
for prepositions and conjunctions, as in DAY SforMONTH,
convertCEtoString, or PrintPRandOSError. In some in-
stances, no delimiters are used for very common multi-word
concepts, such as sizeof or hostname. Thus, although
camel case conventions exist, different decisions are made
in the interest of readability and faster typing.

Since camel case tokens are so easy to parse, pro-
grammers may not be aware how common they are. In
a 330 KLOC program with 44,315 tokens, we observed
32,817 multi-word tokens. Of this set, 1,856 tokens can-
not be partitioned using straightforward camel case split-
ting, with 100 of the splits requiring alternating case (e.g.,
DAY SforMONTH) and 1,958 of the splits occurring within
substrings of the same case (e.g., sizeof).

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

Formally, we define a token ¢ = (so, s1, 3, ...Sn,), where
s; 1s a letter, digit, or special character. The trivial first step
in token splitting is to separate the token before and after
each sequence of special characters and digits. Each sub-
string is then considered as a candidate token to be further
split. Any substrings left after the first trivial splits, we refer
to as alphabetic tokens. An alphabetic token is a sequence
of alternating upper and lower case letters. For exam-
ple, eof, Database, startCDATA, ConvertASCIItoUTF,
and buildXMLforComposite are all alphabetic tokens with
varying numbers of alternation and sizes of substrings in a
same-case sequence.

For alphabetic tokens, there are four possible cases to
consider in deciding whether to split at a given point be-
tween s; and s;:

1. s; is lower case and s; is upper case (e.g., getString,
setPoint)

2. s; is upper case and s; is lower case (e.g., get-

MAXstring, GPSstate, AST Visitor)

3. both s; and s; are lower case (e.g., notype, database-
field, actionparameters)

4. both s; and s; are upper case (e.g., USERLIB, NON-
NEGATIVEDECIMALTYPE, COUNTRYCODE)

Case (1) is the natural place to split for straightforward
camel case without abbreviations, (e.g., isCellEditable,
getDescription). However, the examples for case (2)
demonstrate how following strict camel casing can provide
incorrect splitting (e.g., get MA Xstring, GP Sstate). We
call the problem of deciding where to split when there is
alternating lower and upper case present, the mixed-case to-
ken splitting problem. The mixed-case token splitting prob-
lem is particularly complicated by the use of acronyms.

We refer to cases (3) and (4) as the same-case token split-
ting problem. The programmer has not used any camel case,
and thus has provided no clues as to whether any individual
words, or concepts, should be extracted from the token.

A fully automatic program token splitting algorithm
should automatically solve both the mixed-case and the
same-case token splitting subproblems effectively. The al-
gorithm should be capable of splitting a token into an arbi-
trary number of substrings that represent different concepts.
The client software analysis tool can always merge together
words that were split, but could be considered together as
a single concept. For example, we observed that more ex-
perienced Java programmers would consider javax to be a
single concept, the Javax API, while a novice would con-
sider ‘java’ and ‘x’ to be separate words.

73

3. State of the Art

To our knowledge, Feild, Binkley, and Lawrie [8, 16, 18]
are the only other researchers to develop and evaluate tech-
niques that address the problem of automatically partition-
ing multi-word program identifiers. They define a string of
characters between division markers (e.g., underscores and
camel case) and the endpoints of a token to be a hard word.
For example, the identifier hashtable_entry contains two
hard words: hashtable and entry. When a hard word con-
sists of multiple parts, the parts are called soft words. The
hard word hashtable contains two soft words: hash and
table. Thus, a hard word can consist of multiple soft words.
Based on our understanding, a hard word containing more
than one soft word is a same-case token.

Feild, et al. present two approaches to same-case to-
ken splitting—a greedy approach and an approach based
on neural networks. The greedy approach uses a dictio-
nary word list (from ispell), a list of known abbbreviations,
and a stop list of keywords which includes predefined iden-
tifiers, common library functions and variable names, and
single letters. After returning each hard word found in one
of the three word lists as a single soft word, the remaining
hard words are considered for splitting. The algorithm re-
cursively looks for the longest prefix and suffix that appear
in one of the three lists. Whenever a substring is found in
the lists, a division marker is placed at that position to sig-
nify a split and the algorithm continues. Thus, the greedy
approach is based on a predefined dictionary of words and
abbreviations, and splits are determined based on whether
the word is found in the dictionary, with longer words pre-
ferred. In contrast, the neural network approach passes each
hard word through a neural network to determine splits,
with each network specialized to a given hard word length.

Feild, et al. evaluated the greedy and neural network ap-
proaches using a random algorithm for splitting as a base
case. 4000 identifiers were randomly chosen from 746,345
identifiers in C, C++, Java, and Fortran codes. The hard
words were determined by division markers, and the three
techniques were run to identify soft words in each of the
hard words. The neural network approach performed well
when given specialized training data for a specific person,
while the greedy algorithm was consistent across data sets.
The greedy algorithm tended to insert more splits than de-
sired.

Feild, et al. do not discuss the mixed-case token splitting
problem, beyond stating that division markers are used to
derive hard words. Our technique tackles the challenging
situations in mixed-case token splitting that cannot be han-
dled by the camel case rule of splitting before the alterna-
tion from upper to lower case. In contrast to the dictionary,
length-based approach of Feild, et al., our approach uses
the frequency of words both in the code and in a larger suite

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

of programs to score potential splits. We require no prede-
fined dictionary, and automatically incorporate the evolving
terminology so common in the field of software.

4. Automatic Token Splitting with Samurai

Our automatic token splitting technique, called Samu-
rai, is inspired by the mining approach to expanding pro-
grammer abbreviations, where the source code is mined
for potential abbreviation expansions [9]. Our hypothesis
is that the strings composing multi-word tokens in a given
program are most likely used elsewhere in the same pro-
gram, or in other programs. The words could have been
used alone, or as part of another token. Our approach is
also based on the hypothesis that the token splits that are
more likely to represent the programmer’s intent are those
splits that partition the token into strings that occur more of-
ten in the program. Thus, string frequency in the program is
used to determine splits in the current token under analysis.

Samurai mines string frequency information from source
code and builds two string frequency tables. We build both
tables by first executing the conservative token splitting al-
gorithm based on division markers (see section 5.1.1) on a
set of source code tokens to generate a conservative listing
of all occurrences of division-marker delimited strings in
the source code tokens, which we call the extracted string
list. The extracted string list is then mined for unique string
frequency information, in the form of a lookup table that
stores the number of occurrences of each unique string. A
program-specific frequency table is built by mining over the
strings extracted for the program under analysis. A global
frequency table is built by mining over the set of strings ex-
tracted from a large corpus of programs. The two frequency
tables are used in the scoring function that Samurai applies
to a given string during the token splitting process.

For each token being analyzed, Samurai token splitting
starts by executing the mixedCaseSplit algorithm. Shown
in Algorithm 1, mixedCaseSplit outputs a space-delimited
token where each space-delimited string of letters takes the
form: (a) all lower case, (b) all upper case, or (c) a single up-
per case followed by all lower case letters. The output token
is then processed by the sameCaseSplit algorithm, shown
in Algorithm 2, which outputs a space-delimited token in
which some of its substrings have been further split and de-
limited by spaces. Each split is denoted by an inserted blank
character, and the final split token will be a sequence of sub-
strings of the original token with an inserted blank character
at each split. The following subsections describe each of the
algorithms in detail as well as the scoring function.

74

Algorithm 1 mixedCaseSplit(token)

_ = =
» 22

44
45:
46:

R A A S ol

: Input: token to be split, token
Output: space-delimited split token, sToken

token = splitOnSpecialCharsAndDigits(token)
token = splitOnLowercaseToUppercase(token)
sToken «

for all space-delimited substrings s in token do
if 3 { 7| isUpper(s[i]) A isLower(s[i + 1])} then
n <« length(s) —

/I compute score for camelcase split
if 7 > 0 then

camelScore «— score(s[i, n|)
else

camelScore «— score(s[0, n])
end if

/I compute score for alternate split
altScore «— score(s[i + 1,n])

/I select split based on score
if camlScore > v altScore then

if © > 0 then
s s[0,4 — 1]+ “” +sli, n
end if
else
s« s[0,4]+ “” +s[i + 1,n]
end if
end if

sToken « sToken+ “” +s

end for

token «— sToken
sToken «

. for all space-delimited substrings s in token do

sToken <« sToken+ “ 7 4+ sameCaseSplit(s,
score(s))
end for

return s7Token

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

4.1. Mixed-case Token Splitting

The mixedCaseSplit algorithm begins by replacing spe-
cial characters with blank characters and inserting a blank
character before and after each sequence of digits. The
splitOnLowercaseToUppercase function adds a blank char-
acter between every two-character sequence of a lower case
letter followed by an upper case letter. At this point, each
alphabetic substring is of the form zero or more upper case
letters followed by zero or more lowercase characters (e.g.,
List, AST Visitor, GPSstate, state, finalstate, NAMES-
PACE, MAX).

Each mixed-case alphabetic substring is then examined
to decide between the straightforward camel case split-
ting before the last upper case letter (e.g., “AST Visitor”,
“GP Sstate”) or the alternate split between the last upper
case letter and the first lower case letter (e.g., “ASTV isi-
tor”, “GPS state”). The split selection is determined by
comparing the score of the string to the right of the split
point, dampening the alternate split score to favor the camel
case split unless there is overwhelming evidence for the al-
ternate split. The original alphabetic substring is replaced
in the token by the split substring.

After all mixed-case splitting is completed, the mixed-
CaseSplit algorithm calls the sameCaseSplit algorithm on
each space-delimited substring of the current (possibly al-
ready split) token. The string score of the space-delimited
substring is input to the sameCaseSplit to be used in mak-
ing split decisions, particularly decisions in recursive calls
to sameCaseSplit. The substrings returned from sameCas-
eSplit are concatenated with space delimiters to construct
the final split token.

4.2. Same-case Token Splitting

Along with the score of the original same-case token to
be split, the sameCaseSplit algorithm takes as input the sub-
string under analysis, s, which is already (1) all lower case,
(2) all upper case, or (3) a single upper case letter followed
by all lower case letters. Starting with the first position in s,
the algorithm examines each possible split point in s, where
s is split into two substrings, called left and right, with
score(le ft) and score(right), respectively.

The split decision is based on several conditions. Intu-
itively, we are looking for a split with the largest possible
score such that (a) the substrings are not common prefixes
or suffixes and (b) there is overwhelming evidence to sup-
port the split decision. Based on exploratory data analy-
sis, we determined “overwhelming evidence in favor of a
split” to be when a dampened score for each of the po-
tential substrings is larger than both the score(s) and the
score of the original same-case string (before any recursive
sameCaseSplit calls). If these conditions hold, s will be

75

Algorithm 2 sameCaseSplit(s, score,s)

1: Input: same-case string, s
Input: no split score, scorey,
Output: final space-delimited split token, split.S

splitS «— s,n < length(s)—1
1 < 0, maxScore «— —1

while ; < n do

score; — score(s|0, 7))

score, « score(s[i + 1, n])

prefiz «— isPrefix(s[0, 7]) V isSuffix(s[i + 1, n])
12: toSplit; « /score; > max(score(s), scorens)
13: toSplit, « /score, > max(score(s), SCOT€y;)

R A A A o

—_
_ o

14: if lprefix A toSplit; A toSplit, then

15: if (score; + score,) > maxScore then
16: maxzScore < score; + score,

17: splitS «— s[0,4]+ “” +s[i + 1,n]

18: end if

19: elseif !prefiz A toSplit; then

20: temp — sameCaseSplit(s[i + 1, n], scoreys)
21: if temp was further split then

22: splitS «— s[0,i]4+ “” +temp

23: end if

24: end if

25: 1+ 1+1

26: end while
27: return splitS

split and no more splitting of s will be attempted. If con-
dition (a) holds but only the substring to the left of the cur-
rent potential split point (e ft) provides overwhelming evi-
dence of being a word, then sameCaseSplit is called recur-
sively to determine whether right should be further split.
If right results in being split, then we split between left
and right also, otherwise we do not split here because data
analysis showed that splitting at the current point based
solely on the evidence of left would result in improper
splits (e.g., “string ified”). Following this recursive algo-
rithm, Samurai correctly splits nonnegativedecimaltype
as “nonnegative decimal type”.

One challenge we faced in developing a frequency-based
token splitting technique is that short words occur so fre-
quently in the source code that they tend to have much
higher scores than longer words. If the algorithm does not
include some way to dampen the scores of short words, to-
kens will be split incorrectly by splitting words that should
not be split. This led us to perform the square root of the
substring scores before comparing them to the scores of
the current and original same-case strings being analyzed.
Otherwise, splits would be improperly inserted with short
words, when a better split existed (e.g., performed would

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

be split as “per formed”).
4.3 String Scoring Function

A key component of our token splitting technique is our
string scoring function, score(s), that returns a score for the
string s based on how frequently s appears in the program
under analysis and in a more global scope of a large set of
programs. The score function is called numerous times par-
ticularly to make decisions at two key steps in our automatic
token splitting algorithms:

e to score and compare the straightforward camel case
split results to the alternate split results during mixed-
case token splitting

e to score different substring partitions of same-case to-
kens to identify the best split

We compute the string score for a given string s by com-
puting the following function:

Freq(s,p) + (global Freq(s)/log,,(AllStrsFreq(p))

where p is the program under analysis. Freq(s,p)
is the frequency that string s occurs in the program p.
global Freq(s) is the frequency that string s occurs in a
large set of Java programs. AllStrsFreq(p) is the total
frequency of all strings in the program p.

As mentioned earlier, the frequency information is
mined from the source code. Over 9000 Java SourceForge
projects were mined for the occurrences of strings to create
the global frequency table used in global F'req(s). Approx-
imately 630,000 unique conservatively split words were
identified with a total number of occurrences of 938 mil-
lion. The number of occurrences of strings in a given pro-
gram varies with the program size. Larger programs have
a higher frequency of string occurrences. The frequency
analysis runs in linear time with respect to the number of
identifiers in the program.

The formula for the scoring function was developed
through exploratory data analysis. Sometimes the mined
program-specific frequency table has high frequency for a
string that does not appear with high frequency in the larger
program corpus. However, for small programs, the fre-
quency of a string in the program itself may be too low to
provide good data for splitting, motivating the inclusion of
the mined global frequency table information. Thus, the
string scoring function is comprised of both the frequency
of the string in the program under analysis as well as the
global frequency of strings.

However, the frequency of a string within a program
can be overly dominated by the global frequency of that
string due to the much larger mined data set from 9000 pro-
grams, when compared to the relatively small amount of

76

data mined from a single program. Thus, we dampen the
effect of the global frequency in the score by dividing by
the log of the frequency of all strings in the program un-
der analysis. This takes into consideration the fact that we
have more mined frequency data from larger programs than
smaller programs.

4.4 Implementation

Our token splitting technique is fully automatic and im-
plemented as a standalone tool composed of a set of perl
scripts. Samurai takes two lists of tokens from Java pro-
grams as input—the tokens from the program under anal-
ysis and the global list of tokens from the SourceForge
programs, along with the set of tokens to be split. It out-
puts the set of split tokens, split by spaces. The cur-
rent implementation is designed for batch processing of
a set of tokens, but could be incrementally updated or
run in the background to support software maintenance
tools. Samurai uses a list of common prefixes and suffixes
(which are available online: http://www.cis.udel.
edu/"enslen/samurai).

5. Evaluation

We evaluated our automatic token splitting technique
with two research questions in mind:

1. How does our technique for mixed-case token splitting
compare with the only other automatic technique, con-
servative division marker (e.g., camel case and special
character) splitting?

2. How does our technique for same-case token splitting
compare with the state of the art Feild, Binkley, and
Lawrie [8] greedy approach?

5.1. Experiment Design

5.1.1 Variables and Measures

The independent variable is the token splitting algorithm,
which we evaluate by measuring the accuracy of each tech-
nique in identifying the correct partitioning of a gold set of
tokens from Java programs.

To evaluate how effectively our mixed-case token split-
ting performs, we implemented the straightforward splitting
based on division markers and camel casing used by most
researchers in software analysis who require token splitting,
which we call conserv. Our implementation scans a token
and splits between any alternating case from lower case to
upper case and before the last upper case in a sequence of
multiple consecutive upper case followed by lower case, be-
tween letters and digits, and treating special characters as

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

delimiters. For simple camel case tokens, such as getString
or setldentifierType, the tokens would be correctly split as
“get String” and “set Identifier Type”. For strings such as
DAYSforMONTH, this conservative camel case approach
will incorrectly split as “DAY Sfor MONTH”. However,
the conservative camel case approach does not require any
knowledge of abbreviations or common situations that do
not follow this simple rule, thus making it very efficient and
easy to implement.

To evaluate the effectiveness of our same-case token
splitting, we implemented the greedy algorithm by Feild,
Binkley, and Lawrie [8]. For the three predefined lists, we
used the same ispell Version 3.1.20, a stop list of Java key-
words, and an abbreviation list that we had created as part
of our earlier work on abbreviation expansion [9]. Because
we are evaluating with Java programs, we did not include
library functions and predefined identifiers in the stop list.
We did not compare with the neural network approach be-
cause it was only shown to perform well given specialized
data, while the greedy approach was more consistent across
data sets. Since they did not have an automatic front-end
for splitting mixed-case, we ran conservative camel case for
the mixed-case splitting.

The dependent variable in our study is the effectiveness
of each technique, measured in terms of accuracy. Accuracy
is determined by counting the number of tokens that are cor-
rectly split, where correctly split is defined to be completely
matching splits with the human annotators who produced
the gold set. Tokens with multiple splits, but only some of
them correctly split by an automatic technique, were con-
sidered to be incorrectly split. Because not all trends in the
data are visible in terms of accuracy, we also measured cor-
rectness in terms of the percent of incorrectly split same-
case tokens, or oversplitting.

5.1.2 Subjects

We randomly selected tokens from 9000 open source Java
programs in SourceForge. Two human annotators who had
no knowledge of our token splitting technique manually in-
spected each token in their respective sets to identify the
most appropriate token splits. To construct the gold set, we
continued to add tokens to each human subject’s set until
we reached 1500 nondictionary words in their set. The total
number of tokens in the gold set is 8466.

5.1.3 Methodology

We mined each of the 9000 programs to produce the
program-specific and global frequency tables. We ran four
techniques on the entire set of tokens in the gold set: con-
servative camel case, Samurai, greedy, and mixedCaseSplit
without the call to sameCaseSplit. We compared the output

77

of each tool with the gold set. If the space-delimited to-
ken generated by the automated technique was identical to
the human-split token, then the automatic token split is con-
sidered to be correct. We computed the accuracy for each
tool. We then computed accuracy for different categories of
tokens based on their characteristics to analyze the differ-
ences in effectiveness. We also computed the amounts of
oversplitting performed by Samurai and greedy.

5.2. Threats to Validity

Because our technique is developed on Java programs,
the results of the study may not generalize to all program-
ming languages; however, the gold set does include tokens
in natural languages other than English.

As with any subjective task, it is possible that the human
annotators did not identify the correct split for a given to-
ken. In some instances, the annotators kept proper names
together even when they were camel cased. There were a
number of same-case tokens that were ambiguous, and up to
personal preference. We noticed that subjects more famil-
iar with Java programming would split differently from a
novice programmer. For instance, the splitting of Javadoc,
sourceforge, gmail, gcal are subjective.

Because we did not have access to the actual lists used
in the greedy algorithm, we tried to be as fair as possible in
our implementation of greedy by using the same dictionary
that they referenced, a list of common abbreviations from
our previous work [9], and a stop list of common words in
Java.

6. Results and Analysis

We present the accuracy results for our experiment in
Figure 1. Although Samurai misses some same-case split-
ting, Samurai is more accurate than the greedy algorithm
overall.

6.1. Mixed-case

Samurai performs very similar to conserv in mixed-case
splitting. There are 1632 instances where the split is camel
case. Samurai correctly chooses the camel case split in 1630
cases, and incorrectly chooses the alternate split in just two
cases. There are only four instances of alternate split, one of
which Samurai correctly selects the alternate split. conserv
does not get any of these correct because it never considers
alternating splits. Thus, for mixed-case splitting, even this
large data set is not a large enough sample to answer this
question. To get a realistic data sample, we sacrificed tar-
geting specific types of mixed-case tokens. In the future, we

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

8193 8194 8213

8067
8000 | e

n

c

()]

S 7500 |

l_

3§

5. 7000

©

o

S 6500 |

@)

ks)

o

2 6000 |

E

o

= <
5500 |
5000

NoSplit Greedy Mixed ConservSamurai Ideal

DW — US

AC c=——3

NDW momm CC mmmmm SG o

Figure 1. Accuracy of token splitting approaches per category: dictionary word requiring no split
(DW), nondictionary word without split (NDW), underscores and digits (US), camel case (CC), alter-

nating case (AC), same-case (SC).

plan to perform a more targeted evaluation toward mixed-
case splitting.

6.2. Same-case

Note that in Figure 1, except for greedy, the techniques
correctly do not split dictionary and nondictionary tokens.
Also, note that the greedy algorithm outperforms Samurai
in terms of same-case splitting. There are 249 tokens that
contain at least one same-case split. Greedy correctly splits
125 of these tokens, while Samurai correctly splits just 29.

Although Samurai splits fewer of the same-case tokens
that should be split, it makes fewer mistakes than greedy
in splitting strings that should not be split. There are 6391
no-split tokens, which require no split. 5582 of these no-

78

split tokens are dictionary words, and 809 are nondictionary
tokens. Because greedy uses the same dictionary, it is no
surprise that greedy does not split the dictionary words. It
should be noted that even though Samurai does not use a
dictionary, it also does not split any of the dictionary words.

The results for no-split nondictionary tokens are not as
favorable for greedy. Figure 2 presents the results on the
percent of oversplitting by greedy and Samurai. The incor-
rectly split same-case words are full nondictionary tokens,
words that fall between underscores/digits, or camel case
separated words. As expected from FBL’s evaluation [8],
greedy suffers from a significant amount of oversplitting.
In contrast to greedy’s 10%, Samurai’s frequency-based ap-
proach oversplits in just 1% of cases.

Although Samurai splits fewer same-case tokens than

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

12

NDW ——

Percent of Incorrectly Split Same-case Tokens
[0}

Greedy Samurai

Figure 2. Percent of incorrectly split same-
case tokens by category: nondictionary word
(NDW), underscore/digit separated words
(US), camel case separated words (CC).

greedy, it is more accurate overall by oversplitting signif-
icantly less. The data reveal that our scoring function may
be overly conservative. In future, we plan to investigate
a scoring function that more accurately balances splitting
same-case tokens while preserving no-split tokens.

7. Conclusion

Automatically partitioned tokens can be used to increase
the accuracy of natural language analysis of software, which
is a key component of many software maintenance tools in-
cluding program search, concern location, documentation
to source traceability, and software artifact analyses. In this
paper, we presented and evaluated a technique to automat-
ically split tokens into sequences of words by mining the
frequency of potential substrings from the source code.

We evaluated Samurai against the state of the art on over
8000 tokens. Our results show that frequency-based token
splitting misses same-case splits identified by the greedy
algorithm, but outperforms greedy overall by making sig-
nificantly fewer oversplits. Samurai also identifies slightly

79

more correct splits than conservative division marker split-
ting, without incorrectly splitting any dictionary words.

The Samurai technique could be further improved by
tweaking the conditions for the scoring function with re-
spect to same-case splitting. In addition, improvements
could be made by determining when to merge words back
together, especially those with digits (e.g., MP3), to include
both the split and merged form in the final set. IN the future,
we plan to evaluate our approach combined with abbrevia-
tion expansion [9].

8. Acknowledgments

The authors would like to thank Haley Boyd, Amy Siu,
and Sola Johnson for their invaluable help on this paper.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. [/EEE Transactions on Software Engineer-
ing, 28(10):970-983, 2002.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE '06: Proceeding of the 28th international
conference on Software engineering, pages 361-370, New
York, NY, USA, 2006. ACM Press.

B. Caprile and P. Tonella. Nomen est omen: Analyzing the
language of function identifiers. In WCRE ’99: Proceed-
ings of the 6th Working Conference on Reverse Engineering,
pages 112-122, 1999.

D. Cubrani¢ and G. C. Murphy. Hipikat: recommending
pertinent software development artifacts. In ICSE ’03: Pro-
ceedings of the 25th International Conference on Software
Engineering, pages 408-418, 2003.

D. Cubrani¢ and G. C. Murphy. Automatic bug triage using
text classification. In In Proceedings of Software Engineer-
ing and Knowledge Engineering, pages 92-97, 2004.

F. Deissenboeck and M. Pizka. Concise and consistent nam-
ing. Software Quality Control, 14(3):261-282, 2006.

G. di Lucca. An approach to classify software maintenance
requests. In ICSM ’02: Proceedings of the International
Conference on Software Maintenance (ICSM’02), page 93,
Washington, DC, USA, 2002. IEEE Computer Society.

H. Feild, D. Binkley, and D. Lawrie. An empirical compari-
son of techniques for extracting concept abbreviations from
identifiers. In Proceedings of IASTED International Confer-
ence on Software Engineering and Applications (SEA’06),
Nov. 2006.

E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pol-
lock, and K. Vijay-Shanker. AMAP: Automatically min-
ing abbreviation expansions in programs to enhance soft-
ware maintenance tools. In MSR '08: Proceedings of the
Fifth International Working Conference on Mining Software
Repositories, Washington, DC, USA, 2008. IEEE Computer
Society.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

(20]

(21]

(22]

(23]

E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring the
neighborhood with Dora to expedite software maintenance.
In ASE °07: Proceedings of the 22nd IEEE International
Conference on Automated Software Engineering (ASE’07),
pages 14-23, Washington, DC, USA, November 2007. IEEE
Computer Society.

E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically
capturing source code context of nl-queries for software
maintenance and reuse. In ICSE "09: Proceedings of the 31st

international conference on Software engineering, 2009.
P. Hooimeijer and W. Weimer. Modeling bug report quality.

In ASE °07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineer-

ing, pages 34-43, New York, NY, USA, 2007. ACM.
E. W. Host and B. M. Ostvold. The programmer’s lexicon,

volume I: The verbs. In SCAM ’07: Proceedings of the
Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 193-202, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

M. Kim, D. Notkin, and D. Grossman. Automatic inference
of structural changes for matching across program versions.
In ICSE °07: Proceedings of the 29th international confer-
ence on Software Engineering, pages 333-343, Washington,
DC, USA, 2007. IEEE Computer Society.

A. Kuhn, S. Ducasse, and T. Girba. Semantic clustering:

Identifying topics in source code. Information Systems and
Technologies, 49(3):230-243, 2007.

D. Lawrie, H. Feild, and D. Binkley. An empirical study of
rules for well-formed identifiers: Research articles. J. Softw.
Maint. Evol., 19(4):205-229, 2007.

D. Lawrie, H. Feild, and D. Binkley. Extracting meaning
from abbreviated identifiers. In SCAM *07: Proceedings of
the 7th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007), pages 213—
222,2007.

D. Lawrie, H. Feild, and D. Binkley. Quantifying identi-
fier quality: an analysis of trends. Empirical Softw. Engg.,
12(4):359-388, 2007.

B. Liblit, A. Begel, and E. Sweetser. Cognitive perspectives
on the role of naming in computer programs. In Proceedings
of the 18th Annual Psychology of Programming Workshop,
2006.

A. Marcus and J. I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic index-
ing. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 125-135, 2003.
A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in source
code. In WCRE '04: Proceedings of the 11th Working Con-
ference on Reverse Engineering (WCRE’04), pages 214—
223, 2004.

D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu.

Source code exploration with Google. In ICSM ’06: Pro-
ceedings of the 22nd IEEE International Conference on Soft-

ware Maintenance (ICSM’06), pages 334-338, 2006.
P. Runeson, M. Alexandersson, and O. Nyholm. Detec-

tion of duplicate defect reports using natural language pro-
cessing. In ICSE ’07: Proceedings of the 29th Interna-
tional Conference on Software Engineering, pages 499-510,
Washington, DC, USA, 2007. IEEE Computer Society.

80

[24]

[25]

(26]

D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker. Using natural language program analysis to lo-
cate and understand action-oriented concerns. In AOSD ’07:
Proceedings of the 6th International Conference on Aspect-
oriented Software Development, 2007.

S. Yadla, J. huffman Hayes, and A. Dekhtyar. Tracing re-
quirements to defect reports: an application of information
retrieval techniques. Innovations in Systems and Software
Engineering, 1(2):116-124, 2005.

W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNI-
AFL: Towards a static non-interactive approach to feature
location. ACM Transactions on Software Engineering and
Methodology, 15(2):195-226, 2006.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on October 23, 2009 at 17:07 from IEEE Xplore. Restrictions apply.

