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Abstract

We describe a method of creating tools to find bugs in 
software that is driven by the analysis of previously fixed 
bugs.  We present a study of bug databases and software 
repositories that characterize commonly occurring types 
of bugs.   Based on the types of bugs that were commonly 
reported and fixed in the code, we determine what types 
of bug finding tools should be developed. We have 
implemented one static checker, a return value usage 
checker. Novel features of this checker include the use of 
information from the software repository to try to 
improve its false positive rate by identifying patterns that 

have resulted in previous bug fixes.

1. Introduction 

Static analysis of source code to locate bugs is a well-
researched area [3][9].  Static analysis has several well-
known benefits.  Examining the source code without 
actually executing the code makes the quality of test 
suites, a hard problem, a moot point.  Static analysis also 
allows code to be tested that is difficult to run in all 
environments, such as device drivers.  There are a number 
of systems that provide a means to write code snippets 
that will be used to statically check code for one type of 
bug or another [5][10].   

It is easy for programmers to think about types of bugs 
that might occur, and then devise a tool to look for these 
bugs.  However, the space of possible tools to build is 
very large.  Instead of creating solutions and looking for 
bugs, we propose that efforts to build bug-finding tools 
should start from an analysis of the occurrence of bugs in 
real software, and then proceed to build tools to locate 
these bugs. This paper describes a study of bug databases 
and software repositories to determine what types of bugs 
static checkers should be looking for by classifying the 
types of bugs that are frequently reported and fixed in the 
code.

2. Related Work 

While previous work has tried to make general 
predictions about faults and identify trends across the 
software project from software repositories, our work is 
concerned with specific bugs.  We determine the types of 

bug checkers that will be useful for a code base by 
looking at the history of its development. We also feed 
data mined from the revision history back into specific 
bug detectors to make decisions on which flagged errors 
are more likely to be true errors. 

There are a large number of systems in use to statically 
check source code for bugs.  These systems have been 
very successful in finding various types of bugs [2].  At 
the very basic end of these systems are compilers that 
perform type checking.  A step beyond these are tools like 
Lint that have a set of patterns to match against the code 
to flag common types of programming errors [13].  
Systems such as metal [6] allow the user to define what 
type of patterns the static analysis checker should look for 
via state machines that are applied to the source code.  
Simple data flow analysis has also shown to be an 
effective way to statically detect bugs [10]. 

While static checkers are effective at finding bugs, 
they can produce a large number of false positives in their 
results.  Therefore, the ordering in which the results of a 
static bug checker are presented may have a significant 
impact on its usefulness.  Checkers that have their false 
positives scattered evenly throughout their results can 
frustrate users by making true errors hard to find.  
Previous work on better ordering of results has focused 
on analyzing the code that contains the flagged error [11].  
Unlike previous work, we will look at data collected over 
the entire project and historical trends to rank our error 
reports.

The historical data we use are mined from revision 
histories stored in software repositories.  Data from 
software repositories has been used in a number of ways 
to guide the software development process.  The software 
repository data has been used to identify high-risk areas 
of the code based on change histories [4].  It has been 
claimed that data based on change history is more useful 
in predicting fault rates than metrics based on the code, 
such as length [8]. Others have worked to identify 
relationships between software modules by studying 
which pieces of the source code are modified together 
[7][14]. 

3. Mining Historical Data 

The software development process produces a number 
of artifacts as code is written and maintained.  Chief 
among them are bug databases and source code 
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repositories containing revision histories. We use both of
these artifacts to guide our research. 

Table 1: Bugs Identified in the Bug Database

NULL pointer check 3
Return Value check 4
Logic Errors/Feature Request 34
Uninitialized Variable Errors 1
Error Branch Confusion 2
External Bugs (OS or other software failed) 2
System specific pattern 1
No identified code change 153

3.1 The Bug Database 

To start our investigation, we reviewed the bug 
database for the Apache web server, httpd[1].  We studied
the current branch of the software, which is version 2.0.
We looked at the first 200 bugs that were marked as 
FIXED and CLOSED.  We were interested in identifying
the types of bugs that were fixed and matching the bug
reports back to specific source code changes to classify 
the fixed bugs.

Our search through the bug database produced a 
number of interesting results.  The bug reports in the bug 
database rarely can be tied directly back to a source code 
change.  We were only able to tie 24% of the bug reports
marked as fixed directly back to a code change. While a 
developer can post a comment detailing what code needed 
to be changed, or denote which CVS commit was created
to resolve the bug, this is rarely done.  Most bug reports
consist of a discussion between the reporter and a
developer.  If the bug is fixed, the developer often ends 
the bug report with a short comment that contains some
vague notion of where in the code the problem existed.
We have also seen cases where the developer will be very
specific and explain exactly what needed to be fixed or 
attaches a diff, but these seem to be the exception.  Table 
1 contains a breakdown of the bugs we were able to
identify from the bug database.

The types of bugs we found in the bug database are 
worth discussing. Most of the bugs we found were logic
errors or feature requests. Feature requests are just what
is expected, a new feature for the software or porting a 
feature to a new platform.  We categorize bugs where the
code is correctly written to do the wrong logic as logic
errors.  These bugs can arise from the developer
misunderstanding the specifications or not understanding
how some web browsers act (in the specific case of
Apache's httpd).    These bugs do not lend themselves to
being found via static checking.  Bugs of this type are on 
the order of implementing the incorrect function to
calculate a value, but doing the implemented calculation 
correctly.

All but three of the bug reports we reviewed in the bug
database came from users outside the project.  These 
reports were mostly against a released version of the
software, rather than a random CVS dump of the source.
Only 2 of the bug reports were marked as being reported
against a CVS-HEAD version of the source code. This
leads us to believe that most of the simple "statically 
found" bugs are taken care of by the developers before a 
release is made.  Hence, the users exercise few of these
bugs.

Table 2: Bugs identified in the Software Repository

NULL pointer check 28
Return Value Check 29
Uninitialized Variable Errors 3
Failure to set value of pointer parameter 1
Feature Request 1
Error caused by if conditional short circuiting 1
Loop iterator increment error 3
System specific pattern 3

3.2 The Software Repository 

In order to understand what types of bugs are being
committed to the software repository, but not making it 
into a release, we inspected commit messages in the CVS
repository.  We looked for commit messages that
contained the strings 'fix', 'bug' or 'crash’ and did not have
a specific bug report listed.  In this way we tried to weed
out as many of the bugs from the bug database as 
possible.  Moreover, we only looked at files that had a
larger number of commits to them, 50 or more.  Table 2 
shows the breakdown of the bugs we were able to identify
from the CVS repository.

The bugs found in the CVS repository were much
more amenable to identification by static analysis.  While
a few continued to be the result of misunderstood
specifications or some other logic error, a significant
number were also of the kind easily found by static
analysis: a problem with the code, not with the algorithm.
The two most common types of bugs found in the CVS
commits were NULL pointer checks and misuse of 
function return values.  These two types of bugs
accounted for 57 of the bugs we identified in the CVS
commits.

4. Static Checker

Many of the bugs found in the CVS history are good 
candidates for being detected by static analysis, especially
the NULL pointer check and the function return value
check.  We chose to develop a return value checker based
on the knowledge that this type of bug has been fixed
many times in the past.  Additionally, a return value
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checker can easily take advantage of data in the CVS 
repository to refine its results. 

4.1 Return Value Checker 

The return value checker we wrote checks to see if, 
when a function returns a value, that value is tested before 
being used.  Using a return value can mean passing it as 
an argument to a function, using it as part of a calculation, 
dereferencing the value if it is a pointer or overwriting the 
value.  The need for checking the return value is intuitive 
in C programs since the return value of a function often 
may be either valid data or a special error code.  For 
example, in the case of returning a pointer the error code 
is often NULL.  This error code could cause problems if 
the return value is dereferenced without being tested.  If 
an integer value is returned, often -1 or 0 is an error code 
and these values should not be used in arithmetic.  Even 
though the idea of a return value checker is not new [13], 
basing the return value checker on aggregate data and bug 
fix histories makes our approach novel. 

Our checker categorizes each error it finds into one of 
several categories.  Errors are flagged for return values 
that are completely ignored; the return value is never 
stored by the calling function.  Errors are also flagged for 
return values that are used in some manner before being 
tested in a control flow statement.  See Table 3 for the 
complete list of categories of errors our checker reports. 

4.2 Ranking 

The key to our checker is the ranking system used to 
present the output in a useful manner.  Error reports are 
grouped by the called function.  A function is ranked by 
how often its return value is tested before being used.  
This is an aggregate number generated by running the 
checker over all of the code in the current version of the 
software and tracking, for each function, the number of 
times the function is called and after how many of these 
calls the return value is used improperly.  An improper
usage of a return value is defined as either never storing 
the return value in the calling function or using the return 
value, as previously defined, before it is tested.  We base 
our ranking on the notion that while developers produce 
bugs, they generally know how to use the return values of 
the functions they call and most often do so correctly.  
The more often a function has its return value checked, 
the more likely it is to need its return value checked.  If a 
function almost always has its return value checked, the 
instances in which its return value is not checked are 
highly suspect and are good candidates for being bugs.

We also gather data automatically from the CVS 
commits to help with the ranking of the error reports.  We 
search the CVS commit history to determine when a bug 
our checker would find has been fixed.  The fact that the 

developer took the time to change this code suggests that 
it is an important change to make.  We expect that the 
called function in such a bug fix, the function that 
previously did not have its return value checked, does 
need its return value checked before being used.  Each 
such function we find is flagged as being involved in a 
bug fix in a CVS commit.  We refer to these functions as 
being flagged with a CVS bug fix.  We suspect when this 
function is called the return value has a valid reason to be 
checked before being used.

Our tool ranks errors involving functions flagged with 
a CVS bug fix higher than all functions not so flagged.  
Within each list of functions--with and without CVS bug 
fixes--the functions are sorted by the percent of their 
return values checked in the current snapshot of the 
software.  At the top of the list then, are functions that 
very often have their return value checked and are flagged 
with a CVS bug fix. 

We used a simple heuristic to determine if a CVS 
commit contains a return value check bug fix.  The old 
and new versions of the committed files are both checked 
for return value check errors.  For a given function in a 
file and a given function called by that function, if the 
new version has more return value checks that are not 
errors than the old version, the commit is said to fix a 
return value check bug for the called function.  Note that 
simply adding an additional function call that has its 
return value checked makes it appear that a fix has been 
made. 

5. Case Study 

We ran a case study of our checker on the Apache 
httpd 2.0 source code.  This is a large project with a deep 
CVS history.  Our study was confined to the 2.0 branch 
and did not look into any code that resided solely in the 
1.0 branch.  The current snapshot contains about 200,000 
lines of code and approximately 2,200 unique functions 
are called.  These numbers include the core of the web 
server and optional modules.  Our checker runs on Linux 
and we only considered modules that would run on such a 
system.  We also included the Apache Portable Runtime 
(apr and apr-util) since the web server will not compile 
without it.   The APR is a set of libraries produced by 
Apache to push some of the platform specific wrapper 
code out of httpd and give the developer a consistent set 
of APIs to use for common tasks. 

In order to search the CVS repository for bug fixes we 
had to take a number of steps.  For each CVS commit, we 
checked out the version of the code from the repository 
produced by that commit.  We used the configure script
supplied with the software to generate necessary files, 
including Makefiles.  The Makefiles were used to 
determine the command line options needed to run the 
particular source file through our checker. 
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We successfully evaluated 5188 CVS commits to
determine which functions were involved in a CVS fix to
a return value check.  There were 3811 more commits
made to the CVS repository that we could not run through
our checker. Some CVS commits would not configure
correctly (1737).  Some files contained C constructs that
our parser could not handle, most notably having a
variable number of arguments to a function (1027).   The 
parser [12] we used was stricter with type checking than 
gcc.  Many statements that would give warnings in gcc
give errors in the parser. For instance, passing NULL, an
integer, to a function that expects a void* caused the
parser to raise an error.  A number of commits also had
true type errors where there was an actual bug checked in
to the repository that resulted in a type error. The number
of type errors, which caused a commit not to be checked, 
was 584.  Also, source files raised an internal error in the
parser 66 times. We were not able to track down the
cause of these internal errors. 

5.1 Initial Results 

Our checker flagged 7,223 errors in the current
snapshot of the httpd source.  Each error flagged by the
checker is an individual call site that has the return value
produced by the called function used improperly.  These 
7,223 errors represent calls to 866 unique functions.

In searching the CVS commits, we found 75 functions
that have a return value check bug fix and are called at
least once in the current CVS snapshot.  Of those 75, 41 
have their return value checked 100% of the time in the
current CVS snapshot (55%) and so are involved in no 
flagged errors.  For comparison, 52% of all functions
(886) had their return value checked 100% of the time.
The remaining 34 functions are involved in 231 errors 
flagged by our checker.  We consider these 231 errors 
likely candidates to be true errors.  Note that this number
of 231 does not include errors for functions with none of 
their return values checked, with large numbers (over 
100) of unchecked return values or functions called via
function pointers.

Upon inspecting these 231 errors, we believe 61 errors 
could be true bugs and need further inspection.  The 61 
bugs found in these errors gives a false positive rate of

74% for this chunk of our results (functions flagged with
a CVS bug fix).  See Table 3 for the breakdown of these
results.

There were 86 functions not flagged with a CVS bug 
fix but with their return value checked more than 50% of
the time in the current software snapshot.  These 
functions account for 222 of the errors flagged by our
checker.  Since these functions have their return values
checked more often than not, we expect these errors also 
to be likely candidates for being true errors.  Upon 
inspecting these 222 errors, we believe 37 could be true
bugs and need further inspection.  This chunk of our 
results produces a false positive rate of 83%. See Table
4 for the breakdown of these results.

Overall we inspected 453 error reports and found 98 
that we believe are suspicious and should be marked as a 
bug.  This gives an overall false positive rate of 78%. 
The remaining 6,770 errors marked by our checker are 
produced by functions whose return value is checked
50% of the time or less and we expect these errors to be
unlikely candidates to be true errors, thus we did not
inspect them.

A false positive rate closer to 50% would be more
palatable.  A threshold for false positives is 50% since we 
would like a user to be as likely as not to find a bug when
inspecting an error reported by our tool.  Our technique
has not yet achieved this false positive rate. However, a 
simple Lint-like tool would have had a higher false
positive rate as each error report is given equal weight 
and not ranked in any way.  We would have had to
review each of the 7,223 errors to find the 98 bugs, which 
would be 73 false positives for every real bug. 

5.2 A Bug Expressed

We were able to crash the httpd server by exploiting a 
bug found by our tool.  The return value of the function
ap_server_root_relative() is used directly as an argument
to strcmp().  The function ap_server_root_relative()
accepts two arguments, a fully qualified directory name
and a filename.  The return value is a char* that 
represents a path to a file, basically directory/filename.
The return value can be NULL in a number of cases.  The 
easiest way to get the function to return NULL is to have
the fully qualified name of the file (plus NULL

Table 3: Errors, CVS Bug fix flagged functions 

Checked
99% -51% 

Checked
50% - 1% 

Ignored (I) 22 33
Argument (A) 13 14
NULL dereference (N) 2 45
Calculation (C) 12 18
Stored, Unused (S) 8 27
Unused on Path (P) 15 9
Stored, Untested (U) 6 7

Table 4: Errors, non-CVS Bug fix flagged functions 

Checked
99% -51% 

 Checked
50%- 0% 

Ignored (I) 67 2803
Argument (A) 48 1439
NULL dereference (N) 21 532
Calculation (C) 10 61
Stored, Unused (S) 32 429
Unused on Path (P) 17 486
Stored, Untested (U) 27 216
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terminator) to be larger than 4096 bytes.  In this section 
of the source code, 4096 appears to be the size of all the 
filename buffers.  Obviously, if one passes a directory 
and filename to the function that has a combined length of 
more than 4096 the function will return NULL.  If this 
happens when the return value is used directly as an 
argument to strcmp() httpd will crash. 

6. Conclusions 

In this paper we have presented a method of creating 
bug-finding tools that is driven by the analysis of 
previous bugs.  We have shown that the bugs cataloged in 
bug databases and those found by inspecting source code 
change histories differ in their types and level of 
abstraction.  Bugs listed in a bug database are generally 
reported by users outside of the development team and 
are most often reported against a public release of the 
software rather than a CVS snapshot.  These bugs are also 
of a more high level nature, involved with algorithmic 
problems rather than simple coding problems.   

We have shown that the past bug history of a software 
project can be used as a guide in determining what types 
of bugs should be expected in the current snapshot.  
Moreover, such data can help to recommend which of a 
group of bug reports are more likely to be true. 

The checker we have implemented checks for function 
return value usage errors and uses data mined from the 
revision history of the software to rank the results in a 
useful way. With our checker we have been able to 
identify 98 instances in the Apache web server that we 
believe should be classified as bugs and need further 
inspection.

In the future we want to identify other static bug 
checkers that can benefit from information mined from a 
CVS repository.  We also plan to refine our current static 
checker and run it on other software projects. 
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