
Detecting Similar Java Classes Using Tree Algorithms

Tobias Sager, Abraham Bernstein, Martin Pinzger, Christoph Kiefer
Department of Informatics

University of Zurich, Switzerland
tsager@gmx.ch {bernstein,pinzger,kiefer}@ifi.unizh.ch

ABSTRACT
Similarity analysis of source code is helpful during devel-
opment to provide, for instance, better support for code
reuse. Consider a development environment that analyzes
code while typing and that suggests similar code examples
or existing implementations from a source code repository.
Mining software repositories by means of similarity mea-
sures enables and enforces reusing existing code and reduces
the developing effort needed by creating a shared knowledge
base of code fragments. In information retrieval similarity
measures are often used to find documents similar to a given
query document. This paper extends this idea to source
code repositories. It introduces our approach to detect sim-
ilar Java classes in software projects using tree similarity
algorithms. We show how our approach allows to find sim-
ilar Java classes based on an evaluation of three tree-based
similarity measures in the context of five user-defined test
cases as well as a preliminary software evolution analysis
of a medium-sized Java project. Initial results of our tech-
nique indicate that it (1) is indeed useful to identify similar
Java classes, (2) successfully identifies the ex ante and ex
post versions of refactored classes, and (3) provides some
interesting insights into within-version and between-version
dependencies of classes within a Java project.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; E.1 [Data Struc-
tures]: Trees; H.3.3 [Information Storage and Retriev-
al]: Information Search and Retrieval—retrieval models

General Terms
Algorithms, Measurement, Experimentation

Keywords
Tree Similarity Measures, Software Repositories, Change
Analysis, Software Evolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Similarity analysis of source code is helpful during de-

velopment to provide, for instance, better support for code
reuse, faster prototyping, and clone detection. Consider a
development environment that analyzes code while typing
and that suggests similar code examples or existing imple-
mentations from a source code repository. Mining software
repositories by means of similarity measures enables, for in-
stance, code reuse and reduces the development effort (and
thus cost) by making the shared knowledge base of code
fragments in the repository better accessible. As another
software evolution-based scenario, consider software project
analysis: the detection of similar entities (Java classes in
our case) in a complete project can indicate a deficit in the
architecture or implementation flaws. Removing or merging
similar classes may increase the overall quality as well as
maintainability of a software project.

The goal of this paper is to present an approach to de-
tect similar Java classes based upon their abstract syntax
tree (AST) representations. These trees are generated using
Eclipse’s [10] JDT API in which all statements and oper-
ations of Java source code are represented. The generated
complete ASTs are converted into an intermediary model
called FAMIX (FAMOOS Information Exchange Model) [13,
14]. FAMIX is a programming language-independent model
for representing object-oriented source code. The similarity
between two classes is computed by tree comparison algo-
rithms comparing the FAMIX tree representations of the two
classes. We implemented this process as an Eclipse plug-in
called Coogle (short for Code GoogleTM). Our initial results
show that Coogle is indeed useful to find similar Java classes
within a Java software project.

The rest of this paper is structured as follows: next, we
introduce our current implementation including the prepro-
cessing in Eclipse and the three implemented tree compari-
son algorithms: bottom-up maximum common subtree iso-
morphism, top-down maximum common subtree isomorphism,
and the tree edit distance. We then evaluate the effective-
ness of these algorithms in the context of five constructed
test-cases and a real-world Java project (Section 3), which
leads to a discussion of our technique in Section 4. Section 5
reflects on our approach in the light of related work. Finally,
we close with our conclusions in Section 6.

2. OUR APPROACH: COOGLE
We implemented a first prototype as an Eclipse plug-in

[10] called Coogle that stands for Code GoogleTM . Coogle
essentially implements the following two steps to determine

65

Figure 1: The figure shows the preprocessing steps
of Java source code into FAMIX trees which are used
as inputs for the similarity measures.

similarity between two or more Java classes: first, it trans-
forms the abstract syntax tree representations of the classes’
source code into intermediary FAMIX tree representations,
and second, the similarity between these trees is computed
based on tree similarity algorithms. The remainder of this
section explains both steps in detail.

2.1 Tree Generation
Every piece of code can be represented as an abstract syn-

tax tree (AST). An original, complete AST gets transformed
into an abridged FAMIX tree representation using Eclipse’s
ASTParser and our AST2FAMIX converter as illustrated
in Figure 1. We succinctly explain both of those tools.

The ASTParser is a component of the Eclipse JDT API
that processes Java source code into its abstract syntax tree
representation.1 The classes that make up the tree are speci-
fied in the package org.eclipse.jdt.core.dom. By default,
the ASTParser returns complete ASTs out of which the code
can be perfectly reconstructed.

Our AST2FAMIX parser traverses the abstract syntax
tree as generated by the ASTParser and builds a FAMIX
representation from the nodes of the tree. Figure 2 shows
a sample Java source code fragment and its corresponding
FAMIX tree representation. The elements from the ab-
stract syntax tree are mapped to FAMIX elements accord-
ing to Table 1. Note that FAMIX does not represent all
elements of Java abstract syntax trees, but instead repre-
sents a language-independent reduction of complete ASTs.
This results in an information loss when converting Java
to FAMIX since the level of granularity is reduced in the
FAMIX model. However, the benefit from using FAMIX is
the ability to perform programming language-independent
similarity analyses, i.e., to compare, for instance, classes in
C++ or Smalltalk with classes in Java. After the tree gen-
eration phase, the resulting FAMIX trees are passed to the
similarity measures, which we discuss in the next subsection.

2.2 Tree Similarity Analysis
The current implementation of Coogle is able to detect

structural similarity, i.e., similarity between the structure
of the FAMIX trees of the source code. When represent-
ing source code as trees one important question arises: Is
the order of the trees important? A Java compiler, for ex-
ample, does not necessarily consider the order of top-level
class body entities, such as methods or field declarations,

1http://www.eclipse.org/jdt/

Figure 2: Original Java class source code and its
corresponding FAMIX tree representation.

AST Node FAMIX Element

- FAMIXInstance
- Model
PackageDeclaration Package
TypeDeclaration Class
- InheritanceDefinition
FieldDeclaration Attribute
MethodDeclaration Method
SingleVariableDeclaration FormalParameter
SingleVariableDeclaration LocalVariable
ConstructorInvocation,
SuperConstructorInvocation,
ClassInstanceCreation,
MethodInvocation,
SuperMethodInvocation

Invocation

FieldAccess,
SuperFieldAccess,
SimpleName,
QualifiedName

Access

Table 1: Eclipse AST elements with the correspond-
ing FAMIX elements.

as relevant, whereas instructions in the bodies of these enti-
ties depend on the order of appearance in the source code.
Hence, we need an algorithm that disregards the order be-
tween top-level entities but takes the order of low-level en-
tities, such as method bodies, into consideration. As the
FAMIX model does not represent all instructions which can
occur in the body of an entity, e.g., it does not represent
control structures, we would prefer using algorithms that
perform a matching of unordered trees. Unfortunately, not
all of the similarity measure algorithms that we have chosen
have efficient solutions for unordered trees. For example, an
unordered solution for the tree edit distance (see 2.2.1) is
NP-complete as shown in [18]. We, therefore, implemented
unordered tree matching for the bottom-up maximum com-
mon subtree search only and otherwise use algorithms for
ordered trees.

2.2.1 Tree Similarity Algorithms
The literature on tree searching/editing is very elabo-

rate. Shasha et al., for instance, describes his work on gen-
eral tree and graph searching using exact and approximate
search algorithms in [12]. Wang et al. presents a tool called
TreeRank that does a nearest neighbor search for detect-
ing similar patterns in a given phylogenetic tree [17]. These
algorithms are highly specialized/optimized and, therefore,
complex. Valiente [16], in contrast, discusses a number of
standard tree searching and editing algorithms in detail pro-
viding efficient code implementation examples. To ensure a

66

Figure 3: Bottom-up maximum common subtree
isomorphism for two ordered trees (adapted from
Fig. 4.15 in [16], page 225).

quick prototyping approach we decided to first implement
three different algorithms from Valiente’s work for measur-
ing tree similarity: bottom-up maximum common subtree
isomorphism, top-down maximum common subtree isomor-
phism, and tree edit distance.

Bottom-up Maximum Common Subtree Isomorphism.
The goal of this algorithm is to find the largest isomorphic
subtree of two given trees T1 = (V1, E1) and T2 = (V2, E2).
Valiente reduces this problem to the problem of partition-
ing the nodes V1 ∪ V2 into equivalence classes. If two nodes
v and w belong to the same equivalence class, the bottom-
up subtree of T1 rooted at node v ∈ V1 is isomorphic to
the bottom-up subtree of T2 rooted at node w ∈ V2. The
equivalence classes of two ordered trees are illustrated by
the numbers in the nodes in Figure 3, where the bottom-
up maximum common subtree for the trees is highlighted in
gray. We determine the isomorphism code of a given node by
recursively building an isomorphism string consisting of the
isomorphism codes of all children of the node. This string
gets then compared to a collection of existing isomorphism
strings. If the string is already in the collection, the cor-
responding equivalence class is read from the collection. If
the isomorphism string is not contained in the collection, we
add it to the collection and assign a new equivalence class
code to the string. After collecting the equivalence classes of
both trees T1 and T2, the algorithm searches for the biggest
equivalence class by using a queue with the size of the nodes
as priority. The first element in the queue is the node with
the biggest size. This ensures that the matched subtree is
indeed a maximum common subtree.

Valiente describes this algorithm for unlabeled trees only.
We extended the algorithm to use labeled trees by assigning
a unique integer value to each FAMIX node type (Pack-
age, Class, Method, etc.). The equivalence classes are then
matched based on this value and the already defined equiv-
alence class code. This solution is also suggested in [15].
We implemented the comparator pattern [3] for this label
comparison.

To use this algorithm for unordered trees as well, the iso-
morphism codes of the children of a processed node are
sorted based on their assigned FAMIX node type before
searching for already existing code sequences in the equiva-
lence class collection. This ensures that all children of a node
only differing in order are treated the same, thus unordered.

Note that so far, we have only identified the maximum
common subtree of both of the input trees. In order to get
a similarity score between the two trees, we apply the follow-
ing procedure: the size (number of nodes) of the first input

tree T1 is denoted by |V1|. The cardinality |V2| stands for the
size of the tree T2 representing the second class. Further-
more, Tm denotes the maximum matched subtree of size
|Vm|. An efficient similarity measure needs to satisfy the
following properties: first, the more of T1 is matched, the
higher the similarity score of T1 and T2 is. This is expressed
by |Vm|

|V1|
. This results in low values for complete matches

of T2, e.g., in the case if T2 is much smaller than T1. Sec-
ond, complete matches should get higher values than non-
complete ones, i.e., not the whole tree T2 can be matched
to T1. We experimented with different possibilities. Finally,
we decided to use a solution also described in [1] that results
in a similarity value between 0 and 1 (1 for identical trees
T1 and T2).

simMaxCommonSubtree(T1, T2) =
2 × |Vm|
|V1| + |V2|

(1)

Having two trees T1 and T2 with |V1| and |V2| nodes,
where |V1| ≤ |V2|, the algorithm for ordered trees runs in
O(|V1| log |V2|) time using O(|V1| + |V2|) additional space
(see Theorem 4.56 in [16]). The algorithm for unordered
trees takes O((|V1|+ |V2|)2) time and also uses O(|V1|+ |V2|)
additional space (Theorem 4.60 in [16]).

Top-down Maximum Common Subtree Isomorphism.
An algorithm to find a top-down maximum common subtree
isomorphism for ordered and unordered trees is defined in
[16]. This algorithm finds the largest common subtree of
two given trees T1 and T2 under the prerequisite that the
root of the common subtree is identical (same node type)
with the root nodes of the compared trees. The differences
between the algorithm for ordered trees and the algorithm
for unordered trees are fundamental. For this paper, we
implemented the algorithm for ordered tree matching.

Starting from the root nodes of T1 and T2, the algorithm
recursively processes all children in preorder and compares
each pair of nodes for equality. If two nodes match, they are
added to a mapping M ⊆ V1×V2 that contains the complete
subtree after the recursion finishes. Note that the recursion
stops at nodes which do not match, i.e., the children of non-
matching nodes are not getting compared to each other.

The comparison of the nodes during the recursive pro-
cessing again allows for an extension of the algorithm to
labeled trees, returning a successful match only when the
labels (node types) match. Again, we used Equation 1 to
get a similarity score from the size of the maximum common
subtree and the two trees T1 and T2 under comparison.

This algorithm is very efficient with a running time of
O(|V1|) and O(|V1|) additional space for two ordered trees
T1 and T2, where |V1| ≤ |V2| (see Lemma 4.52 in [16]).

Tree Edit Distance. Calculating the tree edit distance is a
completely different approach for tree analysis than the max-
imum common subtree isomorphism algorithms. The tree
edit distance algorithm answers the question of how many
steps it takes to transform one tree into another tree by ap-
plying a set of elementary edit operations to the trees: in-
sertion, substitution, and deletion of nodes. For the ordered
trees T1 = (V1, E1) and T2 = (V2, E2) we denote a deletion of
a leaf node v ∈ V1 by v &→ λ or (v, λ). The substitution of a
node w ∈ V2 by a node v ∈ V1 is denoted by v &→ w or (v, w)
and an insertion of a node w ∈ V2 as a new leaf into T2 is de-

67

Figure 4: Transformation between two ordered trees
(adapted from Fig. 2.1 in [16], page 56).

noted by λ &→ w or (λ, w). Deletion and insertion operations
are performed on leaves only. When deleting a non-leaf node
v, every node in the subtree rooted at v has to be deleted
first. The same applies to the insertion of non-leaves. A
tree is transformed into another tree by using a sequence of
elementary edit operations as illustrated in Figure 4. Note
that in this figure, substitution of corresponding nodes is not
indicated. The complete transformation script is: [(v1, w1),
(v2, w2), (v3, λ), (v4, λ), (v5, w3), (λ, w4), (λ, w5), (λ, w6),
(λ, w7)]. Costs are assigned to all elementary edit opera-
tions. Our current implementation uses a cost function of
γ(v, w) = 1 if v = λ or w = λ and γ(v, w) = 0 other-
wise. The function reflects that node substitutions usually
denote relabelings which have little structural significance
and should, therefore, not be weighted. The edit distance
then is the least-cost transformation of T1 to T2 normalized
by the sum of nodes in T1 and T2. The lower the normalized
edit distance of two trees, the higher their similarity.

simTreeDistance(T1, T2) =
TreeDist(T1, T2)

|V1| + |V2|
(2)

Finding the least-cost transformation of an ordered tree
T1 and T2 by determining shortest paths in an edit graph
runs in O(|V1||V2|) time using O(|V1||V2|) additional space
(see Lemma 2.20 in [16]).

3. EXPERIMENTAL EVALUATION
To evaluate the ability of our approach to detect similar

entities in a software project, we ran the evaluation on two
datasets. First, we constructed a set of special test cases
capturing frequently occurring changes which happen dur-
ing software development. Evaluating our similarity detec-
tion algorithms for these constructed changes, we were able
to analyze how specific changes affect structural similarity.
In a second experiment we chose a well known Java project
as the dataset for our implemented similarity measures. We
used Eclipse’s compare plug-in org.eclipse.compare2 and
measured the similarity of the classes within the same ver-
sion as well as between different versions of the plug-in. This
analysis focused on the efficiency of the measures for detect-
ing structural similarities between two classes in the former
and on software evolution considerations in the latter case.
The remainder of this section shows our obtained results of
this two experiments.

2http://dev.eclipse.org

Figure 5: Results with constructed test cases for
each similarity measure.

3.1 Experiment #1: Constructed Test Cases
As a basis for the construction of the test cases we took the

class AzureusCoreImpl from the Azureus project (except in
test case E).3 This class was chosen as it uses both “normal”
and static attributes and methods. Additionally, it defines
getter and setter methods for its attributes. In addition to
the test cases we compared AzureusCoreImpl with an empty
class to ensure the plausibility of our implemented measures.
The defined test cases are the following:

Test Case A: Add Constructor. This test case adds a new
constructor with a single this()-invocation as body to the
class.

Test Case B: Add Attribute. We add a new attribute with
its respective getter and setter methods to the class. The
rest of the class is left unchanged.

Test Case C: Add Invocation. We insert an invocation,
i.e., a method call into the body of an existing method.

Test Case D: Method Extraction. This case models the
movement of code statements from an existing method into
a new method. An invocation of the new method is added to
the original one. This change often happens during a code
refactoring to remove duplicated code or when pulling-up
code into parents [2].

Test Case E: Implement Interface. The interface pro-
gramming pattern is one of the most important design pat-
terns in object-oriented programming [3]. This test case
measures the similarity between classes implementing the
same interface. We expect this case to have very low struc-
tural similarity, as the structural similarities between classes
implementing the same interfaces are limited to the imple-
mentation of the methods defined in the interface, which
may be implemented in structurally completely dissimilar
ways.

3.1.1 Results of Test Cases
This section presents our findings, discusses major draw-

backs, and details the performance of the implemented al-
gorithms. The results of this experiment are shown in Fig-
ure 5. Confirming our expectations, none of the algorithms

3http://azureus.sourceforge.net

68

detected any significant similarity in Test Case E. A similar-
ity measure finding classes implementing the same interface
would have to put special emphasis on the interface defini-
tions, which none of our measures does.

Bottom-up Maximum Common Subtree Isomorphism.
The obtained results show clearly that the bottom-up sub-
tree isomorphism algorithm performs worst for detecting
similar Java classes. The similarity score remains at about
14%. The reason for this is that this measure uses equiv-
alence classes for checking equality of different nodes. For
a better match, the measure would have to include the un-
changed parts of the tree as well, requiring the equivalence
class of the root to remain the same. This is not the case in
our tests as a node insertion/deletion at tree depth level 1
changes the equivalence code of the root. Hence, the mea-
sure matches the biggest subtree from level 2, which usually
is the biggest method.

Top-down Maximum Common Subtree Isomorphism.
We obtain mixed results with this measure. Case C, D,
and partly case A show good scores for detecting similarity
with the top-down algorithm. In case B, similarity is not
well detected because the insertion of a variable stops the
matching process too early. Hence, this algorithm overval-
ues small changes near the root, such as simple insertions,
deletions, and relabelings. This limitation could possibly
be lessened by continuing the comparison even when nodes
have different names or by using a top-down algorithm for
unordered trees.

Tree Edit Distance. The tree edit distance algorithm per-
formed best for our test cases. The similarity scores in each
test (except E) are over 97%, which is sufficient for estab-
lishing a similarity relation between two classes with a high
accuracy. The big advantage of this algorithm in compari-
son to the two maximum common subtree algorithms is that
it is not as susceptible to node insertions/deletions.

3.2 Experiment #2: Java Project
The org.eclipse.compare-plug-in of Eclipse is used as

sample, real-world Java project to test the similarity mea-
sures. The analysis demonstrates the ability of using the
implemented similarity measures in a non-laboratory envi-
ronment and critically highlights shortcomings. “The plug-
in provides support for performing structural and textual
compare operations on arbitrary data” (from its Javadoc).
The goal of this experiment was to visualize the project’s
code evolution steps by comparing different versions of the
plug-in. I.e., how strongly is class similarity affected when
changes/refactorings occur to the code from one version to
the next. To achieve this goal, we have compiled a heatmap
illustrated in Figure 6 showing similarities between classes
of two different versions of the plug-in. For our experiment,
we used versions 3.0 and 3.1 of the compare-plug-in.

3.2.1 Results of org.eclipse.compare-Plug-in
Based on our findings of Experiment #1 (see Section 3.1),

we chose to perform a similarity analysis using the tree edit
distance measure to determine class similarity within the
org.eclipse.compare-plug-in. Consider the heatmap de-
picted in Figure 6: class similarity is computed between any
class of version 3.0 (on the x-axis) and 3.1 (on the y-axis).

Figure 6: Heatmap showing similarities between all
classes of versions 3.0 and 3.1 of the org.eclipse.
compare-plug-in. Black squares indicate similarity
above 90%, dark-gray above 75%, and light-gray
above 50%.

The similarity score between two classes is visualized as a
shaded square. Similarity above 90% is indicated by black
squares. Squares shaded in dark-gray denote class similarity
above 75%, whereas squares in light-gray indicate similarity
above 50%. Similarities below 50% are not shaded.

The elements on the diagonal indicate how strong the soft-
ware has changed between versions. I.e., the diagonal is
clearly visible as a dark “line” showing that the same classes
of two versions have very high similarity—more than 75% in
most cases. As shown in Figure 6, a few classes have changed
from version 3.0 to 3.1. As an example, we picked the
class MergeMessages from the package org.eclipse.com-
pare.internal.merge (indicated in Figure 6 by a circle on
the line marked with the arrow labeled with a “2”) that has
a similarity of 74% between the two versions. Examining the
source code of the two versions, we found that three more
static fields were added and one method was removed and
replaced with a static initializer in version 3.1. Hence, three
more attribute nodes and one method node with an invoca-
tion node are added to the tree representation in version 3.1
resulting in a similarity score of 74%.

The map of Figure 6 is not only useful to visualize soft-
ware evolution but also to measure and visualize similarity
between any two classes of a software project. Again, we ex-
plain this with an example: “The interface ICompareNavi-
gator is used to navigate through the individual differences
of a CompareEditorInput” (from its Javadoc). It is a simple
interface defining exactly one method with one argument.
Similarity between this interface and 25 other classes/in-
terfaces out of 114 is very high, i.e., above 75% (refer to
Figure 6 that shows an arrow labeled with a “1” point-
ing to the line corresponding to ICompareNavigator in this

69

heatmap). The entities with high similarity are, for instance,
INavigatable (sim=75%) also specifying one method with
one parameter but, in addition, defining a static field. Hence,
the corresponding tree representations of these interfaces are
very similar, which is correctly reflected by their high sim-
ilarity value. Another interface similar to ICompareNavi-
gator is IViewerDescription (sim=75%) also defining one
method but with 3 arguments instead of 1 as in the case of
ICompareNavigator. Note that Figure 6 shows the similar-
ities of classes in version 3.0 with those in 3.1. To compare
the similarity of classes within the same version, we double-
checked our findings in a heatmap comparing classes from
version 3.0 with all other classes from version 3.0 (omit-
ted due to space constraints). Naturally, all similarities
on the diagonal in this within-version analysis were 100%
equal since classes where compared with themselves. The
line comparing ICompareNavigator with the other classes
within the package showed a similar (but not the same) be-
havior as in the between-version analysis above.

4. DISCUSSION
In this section we discuss the results of our experiments,

highlight shortcomings of the tree similarity algorithms and
propose possible improvements for future work.

4.1 Comparison of Implemented Measures
Our obtained results showed that a bottom-up maximum

common subtree isomorphism match is not a good measure
for similarity when evaluated on the user-constructed test
cases. It is too susceptible to subtle code modifications in
methods, which usually cause changes at the bottom-level
of the tree.

The top-down maximum common subtree algorithm pro-
duces promising results on the test cases. The measure is
a good indicator for similarity as it is able to detect classes
with similar structures. One negative characteristic of this
algorithm is that simple changes at the top of the tree, such
as adding a new attribute or inserting an attribute between
existing methods, reduces the reliability of the measure. The
top-down approach is, however, not as sensitive to changes
at the bottom of the trees as the bottom-up approach.

The best-performing similarity algorithm turned out to be
the tree edit distance on both datasets. It detected the small
changes specified in the test cases and provided itself as a
good indicator for structural similarity when tested on the
compare-plug-in. Note that the price to pay for it is high: it
runs in quadratic time complexity O(|V |2) of its tree input
size, which resulted for the n × n-comparison of 114 classes
of the org.eclipse.compare-plug-in in more than an hour
to finish.

4.2 Limitations and Future Work

Field or Method Name Matching. Additional informa-
tion can be gained from class, field, or method names in
similarity comparisons. Methods and fields used for sim-
ilar tasks are (hopefully) named with similar names if the
code was created abiding reasonable naming standards. This
helps detecting cloned parts of classes. Text-based similarity
measures can then be used to calculate similarity between
names. The current implementation of Coogle treats nodes
representing class X and class Y, for instance, as equal
since only the types (“Class” in this case) of nodes are com-

pared. Note that because Coogle currently does not com-
pare names, also access control qualifiers, such as public,
protected, and private, are not taken into consideration
since those are not proper FAMIX entities, but simple string
attributes of entities.

FAMIX Limitations. The FAMIX model represents a fixed
set of elements (see Table 1), i.e., invocations, declarations,
attributes, etc., but does not include assignments, mathe-
matical operations, and control structures. This limits the
detection of small changes to basic, top-level instructions.
Different results are to be expected when bypassing FAMIX
and directly generating the comparisons from complete ab-
stract syntax trees or when extending the FAMIX model
with a more fine-grained hierarchical structure. This might
help to detect “real” functionally similar classes and dimin-
ish the detection of classes only structurally similar. On the
other hand, because the size of the input trees would be
much bigger, the algorithm’s performance would get worse.

Surrounding String Matching. We plan to include sur-
rounding text in similarity comparisons, as statements in
source code are frequently surrounded by free text, such as
Javadoc. Analyzing the similarity of this text and including
this textual similarity in the measures will probably further
boost the precision of the similarity algorithms.

Similarity Measure Combinations. We think it is useful
to investigate different combination approaches of structure-
based as well as text-based similarity measures to further
increase the precision of matches. We, therefore, postponed
the implementation and evaluation of such combinations to
the future.

5. RELATED WORK
Both Mishne & Rijke [7] and Neamtiu et al. [9] de-

fine a conceptual model for source code representation that
partially resembles the abstract syntax tree as defined by
Eclipse. Mishne & Rijke use code similarity for retrieving
similar code fragments from an existing repository of code
documents based on classifying instructions in the code with
varying weights. They do, however, not apply tree similarity
measures to retrieve similar code fragments from the repos-
itory. Neamtiu et al. extract similarity by mapping corre-
sponding AST elements of two code documents. Again, this
algorithm does not use a generic tree similarity algorithm.
Their focus lies on the mapping algorithms to measure sim-
ilarity between AST representations, which relies on node
names within the ASTs.

A different approach is introduced by Kontogiannis who
defines a Program Description Tree (PDT) that is generated
from code fragments [5]. These fragments are treated as be-
havioral entities, i.e, as independent components interact-
ing with resources and other entities of the software project.
The PDT, therefore, not only represents structural informa-
tion like an AST does, but also contains information such
as interactions and read or write accesses, i.e., behavioral
information. Similar fragments are detected by searching
for entities with similar characteristics of these PDTs. In
our current implementation of Coogle we do not examine
attribute accesses, but take interactions, such as method in-
vocations, into account. It would be interesting to extend

70

Coogle to operate on PDTs and compare the performance
of the two.

A similar approach to ours is described by Holmes & Mur-
phy in [4]. Their tool, Strathcona, is used to find source
code in an example repository by matching the code a de-
veloper is currently writing. In contrast to Coogle, this ap-
proach is not based on tree similarity algorithms, but on
multiple structural matching heuristics, such as examining
inheritance relationships, method calls, and class instanti-
ations. The measures are applied to the currently typed
code. Matched examples from the repository are retrieved
and displayed to the developer for selection. We have not yet
implemented such a feature in Coogle, which could clearly
help to foster code reuse. Again, it would be interesting
to compare their approach that makes heavy use of domain
knowledge (in the form of heuristics) with ours that solely
relies on the power of the similarity algorithms.

A promising approach to help developers navigate source
code efficiently is presented by Robillard in [11]. The pre-
sented technique is able to find relevant (in our context sim-
ilar) elements in source code to a given query element by
examining the topological properties of the structural de-
pendencies of the query element. Elements are considered
as relevant if they fulfill well-defined criteria, such as speci-
ficity and reinforcement to other elements. In that context,
it would be interesting to know about the performance of
our implemented tree similarity algorithms as another crite-
ria to determine relevant elements of interest.

Finally, various other approaches exist for detecting simi-
larity in trees and source code. Baxter & Manber describe a
tool that analyses projects for duplicated code [1]. Their im-
plemented algorithm is based on abstract syntax trees and
employs a hashing function on code fragments for detecting
exact and near-miss clones. Myles & Collberg take a simi-
lar approach by using a birth-marking technique, deducing
unique characteristics from the instruction set of a program
to detect software theft [8]. While it would make perfectly
sense to use Coogle as a tool to find code clones and pos-
sible software plagiarisms, we currently only employ it to
find similarity between classes to, for instance, comprehend
software evolution steps.

6. CONCLUSION
In this paper we presented our approach to detect similar-

ities between different Java classes based on abstract syntax
trees. Similarity is calculated by means of three tree sim-
ilarity algorithms: bottom-up maximum common subtree
isomorphism, top-down maximum common subtree isomor-
phism, and the tree edit distance. We chose the FAMIX
model of object-oriented programming languages to repre-
sent the compared trees.

The trees under comparison are generated in two steps:
first, the abstract syntax tree representation of the source
code is built through Eclipse’s ASTParser, and second, our
AST2FAMIX parser traverses the abstract syntax tree and
builds a FAMIX representation from the nodes of the tree.
Finally, the similarity algorithms are used to determine the
degree of similarity between different FAMIX trees.

We validated our approach on two datasets: user-con-
structed test cases and the org.eclipse.compare-plug-in.
Of the three tree similarity measures, we found the tree edit
distance to produce the best results, followed by the top-
down maximum common subtree isomorphism algorithm.

Especially, when measuring the effects of small changes, the
tree edit distance measure proved to be very robust. When
evaluating our approach on the org.eclipse.compare-plug-
in, we successfully detected structural similarities between
classes of the same version. In addition, our approach proved
to be very promising when comparing different versions of
the project, i.e., when focusing on questions concerning soft-
ware evolution, for instance, how did the classes change from
one release to the next. Visualizing class similarities by the
use of heatmaps, we were able to illustrate this code evolu-
tion within the org.eclipse.compare-plug-in.

As our initial results have shown, our approach is very
promising. It (1) indeed identified similar Java classes, (2)
successfully identified the ex ante and ex post versions of
refactored classes, and (3) provided some interesting insights
into the within-version and between-version dependencies of
classes within a medium-sized Java project.

7. REFERENCES
[1] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier.

Clone Detection Using Abstract Syntax Trees. In Proceedings
of the International Conference on Software Maintenance,
pages 368–377, 1998.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke,and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[4] R. Holmes and G. C. Murphy. Using Structural Context to
Recommend Source Code Examples. In Proceedings of the
27th International Conference on Software Engineering,
pages 117–125, 2005.

[5] K. Kontogiannis. Program Representation and Behavioural
Matching for Localizing Similar Code Fragments. In
Proceedings of the 1993 Conf. of the Center for Advanced
Studies on Collaborative Research, pages 194–205, 1993.

[6] A. Michail and D. Notkin. Assessing Software Libraries by
Browsing Similar Classes, Functions and Relationships. In
Proceedings of the 21st International Conference on Software
Engineering, pages 463–472, 1999.

[7] G. Mishne and M. de Rijke. Source Code Retrieval using
Conceptual Similarity. 2004.

[8] G. Myles and C. Collberg. K-Gram Based Software
Birthmarks. In Proceedings of the 2005 ACM Symposium on
Applied Computing, pages 314–318, 2005.

[9] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding Source
Code Evolution Using Abstract Syntax Tree Matching. In
Proceedings of the 2005 International Workshop on Mining
Software Repositories, pages 1–5, 2005.

[10] Object Technology International, Inc. Eclipse Platform
Technical Overview. 2003.

[11] M. P. Robillard. Automatic Generation of Suggestions for
Program Investigation. In Proceedings of the 10th European
Software Engineering Conference, pages 11–20, 2005.

[12] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and
Applications of Tree and Graph Searching. In Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 39–52, 2002.

[13] S. Tichelaar. FAMIX Java Language Plug-in 1.0. 1999.
[14] S. Tichelaar, P. Steyaert, and S. Demeyer. FAMIX 2.0: The

FAMOOS Information Exchange Model. 1999.
[15] G. Valiente. Simple and Efficient Tree Pattern Matching.

Technical Report LSI-00-72-R, Technical University of
Catalonia, Dec. 2000.

[16] G. Valiente. Algorithms on Trees and Graphs.
Springer-Verlag, Berlin, 2002.

[17] J. T.-L. Wang, H. Shan, D. Shasha, and W. H. Piel. TreeRank:
A Similarity Measure for Nearest Neighbor Searching in
Phylogenetic Databases. In Proceedings of the 15th
International Conference on Scientific and Statistical
Database Management, pages 171–180, 2003.

[18] K. Zhang, R. Statman, and D. Shasha. On The Editing
Distance Between Unordered Labeled Trees. Information
Processing Letters, 42(3):133–139, 1992.

71

