
When Process Data Quality Affects the Number of
Bugs: Correlations in Software Engineering Datasets

Adrian Bachmann and Abraham Bernstein
Department of Informatics

University of Zurich, Switzerland
{bachmann,bernstein}@ifi.uzh.ch

Abstract—Software engineering process information extracted
from version control systems and bug tracking databases are
widely used in empirical software engineering. In prior work,
we showed that these data are plagued by quality deficiencies,
which vary in its characteristics across projects. In addition, we
showed that those deficiencies in the form of bias do impact the
results of studies in empirical software engineering. While these
findings affect software engineering researchers the impact on
practitioners has not yet been substantiated. In this paper we,
therefore, explore (i) if the process data quality and character-
istics have an influence on the bug fixing process and (ii) if the
process quality as measured by the process data has an influence
on the product (i.e., software) quality. Specifically, we analyze six
Open Source as well as two Closed Source projects and show that
process data quality and characteristics have an impact on the
bug fixing process: the high rate of empty commit messages in
Eclipse, for example, correlates with the bug report quality. We
also show that the product quality – measured by number of bugs
reported – is affected by process data quality measures. These
findings have the potential to prompt practitioners to increase the
quality of their software process and its associated data quality.

Keywords-case study; process quality; product quality; corre-
lation; mining software repositories

I. INTRODUCTION

Empirical software engineering researchers make use of
software process data such as bug reports and version control
log files, e.g., to predict the number and locale of bugs in
future software releases (e.g., [1], [2], [3], [4]). Unfortunately,
the process data characteristics and quality may have a major
impact on the results of studies that rely on such data. In
prior work we, therefore, introduced process data quality and
characteristics measures, which make an evaluation of process
data possible. Based on these measures we surveyed five
Open Source Software (OSS) projects and one Closed Source
Software (CSS) project and showed that such process data
is plagued by quality issues across all surveyed projects [5].
In addition to the quality issues in these process datasets,
we showed that there are vast differences in the data char-
acteristics of these projects often used in empirical software
engineering studies.

These findings give rise to one main question: Why should
one care about data quality and characteristics issues? In a
first step, this lead to the following two research questions:

RQ 1: Do quality issues in software engineering datasets
have an impact on studies that rely on such datasets?

RQ 2: Do data characteristics, which differ from project to
project, have an impact on studies that rely on such datasets?

We tried to answer both questions in prior work. In [6]
and [7] we investigated historical data from several software
projects, and found strong evidence of systematic bias. We
then investigated potential effects of “unfair” or “imbalanced”
datasets on the performance of prediction techniques. Our
experiments suggested that bug-feature bias affects the per-
formance of the award-winning BUGCACHE defect prediction
algorithm and that this type of bias is a serious problem.
We also discussed the impact of varying data characteristics
across projects [5] and concluded that, e.g., the nature of used
software engineering processes, the use of process support
tools, and kind of testing (e.g., professionalized testing vs.
beta user testing) result in differing data characteristics. Such
differences may raise threats in generalizability of research re-
sults, algorithms, tools, and heuristics across projects’ borders.

Whereas RQ1 and RQ2 addressed the “why we should care
about data quality and characteristics issues in empirical soft-
ware engineering research”, this paper would like to highlight
why practitioners – software engineers and software project
managers – should care about these issues. Therefore, we
analyze the interplay of data quality and characteristics and
its influence on the product (i.e., software) quality. Primarily,
we answer the following two research questions:

RQ 3: Do software engineering data quality and
characteristics issues have an impact on the bug fixing
process?

RQ 4: Does software engineering process quality have an
immediate (or time-shifted) impact on product quality?

Basically, we analyze several research hypotheses based on
our two new research questions (RQ3 and RQ4). To test our
hypotheses, we selected six OSS projects, which are widely
used in empirical software engineering studies. In addition, we
used the data of two CSS projects. This allows a first compar-
ison of results across different software engineering processes,
project communication habits, and testing approaches.

After the customary discussion of related work, this paper
first explorers briefly the theoretical background of our study
(Section III). We then present what software projects we
selected, show what kind of data we used, and how we
prepared them for this study (Section IV). In Section V, we

introduce our research hypotheses and provide a short contex-
tual discussion. Also, we test our hypotheses by calculating
Kendall tau rank correlations between the measures and the
number of defects as software quality measure and provide
our main contributions:

1) We find that process data quality and characteristics
measures affect each other and correlate over time.
For instance, we find—non surprisingly—that the rate
of empty commit messages has an negative qualitative
impact on the bug fixing process (RQ3).

2) We evaluate the correlation between process quality and
product quality. In other words, we analyze immediate
and time-shifted data correlations between process data
quality measures and product quality measured by num-
ber of bugs reported and find that product quality is
affected by part of our data quality measures (RQ4).

We close with threats to validity and the usual discussion and
conclusions.

II. RELATED WORK

We discuss related work on data extraction and integration,
data quality in software engineering, and work on data quality
effects in empirical software engineering. To our knowledge,
no studies on correlations between process data quality and
characteristics and software product quality have been pub-
lished so far.

A. Process Data Extraction and Integration

Bug reports and version control log files are a valuable
source of information about the history/evolution of a software
project and are widely used in empirical software engineering
research. The integration of these two data sources, e.g.,
by scanning trough commit log messages for bug report
links, provides even more information. Therefore, several
researchers provided approaches and algorithms to extract and
integrate/link these data for applications which rely on such
data.

Fischer et al. [8] presented a Release History Database
(RHDB) which contains the version control log and the
bug report information. To link the change log and the bug
tracking database, Fischer et al. searched for change log
messages which match to a given regular expression. Later,
they improved this linking algorithm and built in a file-module
verification [9].
A similar approach to link the change log with the bug tracking
database was chosen by other researchers. All of them used
regular expressions to find bug report link candidates in the
change log file (e.g., [10], [2], [11], [12], [13], [11]).
In [14], we improved this well established linking approach
to get a better linking rate and verified links at the same time.
In addition, we presented a step-by-step guidance to retrieve,
parse, convert and link the data sources. The datasets used in
this study are prepared in this way.

B. Quality in Software Engineering

Quality of software and source code is a widely explored
field in research. But only a few publications focus on process
data quality and characteristics. Due to space considerations
we focus our discussion on recent work on process data quality
and omit a detailed discussion of publications concerning
software and source code quality.

Bettenburg et al. [15], [16], [17] provide an analysis of
bug report quality. They investigated the attributes of a good
bug report surveying developers and used it to develop a
computational model of a bug report quality. Using the result-
ing model, the current bug report quality is displayed whilst
typing. Hooimeijer et al. [18] also analyzed the quality of
defect reports and tried to predict whether the defect report
will be closed within a given amount of time.

Koru and Tian [19] surveyed members of 52 different
medium to large size OSS projects to gain knowledge about
the defect handling practices. They found that defect-handling
processes varied among projects. Some projects are disciplined
and require recording all bugs found; others are more lax.
Some of the surveyed projects record defects only in source
code while others record defects also in documents. This vari-
ation in bug handling practices may raise threats concerning
cross project re-use of empirical work.

Chen et al. [20] studied the change logs of three OSS
projects and analyzed the quality of these log files.

In [5] we defined process data quality and characteristics
measures in order to provide a deeper insight into the quality
and characteristics of these often-used process data. Then, we
computed this measures for five OSS projects and one CSS
project and discussed the issues arose from these observation.
We showed that there are vast differences between the projects,
particularly with respect to the quality in the linking rate
between bug reports and commit log messages.

Paulson et al. [21] and Yu et al. [22] analyzed differences
between OSS and CSS projects. Paulson et al. hypothesized
that OSS has a higher quality. In addition, they provided five
hypothesis analyzing them with the data of three CSS and
OSS projects. They concluded that OSS projects foster more
creativity and CSS projects are generally less defective since
defects are found and fixed more rapidly. On the other hand,
Yu et al. analyzed the average fault (defect) hidden time,
average fault pending time, and average fault correction time
in CSS projects and OSS projects. They concluded that defects
are fixed more rapidly in OSS projects.

C. Data Quality Effects on Empirical Software Engineering

Today, data quality issues and effects are not widely ex-
plored in empirical software engineering. Liebchen and Shep-
perd [23] surveyed hundreds of empirical software engineering
papers to analyze how studies manage data quality issues.
They found only 23 studies discussing data quality. Only four
of the 23 suggested that data quality might impact analysis,
but made no suggestion how to deal with it.

Unfortunately, effects of poor data quality on empirical
software engineering is even less explored. In [6] and [7] we

investigated historical data from several software projects,
and found strong evidence of systematic bias. Basically, we
described two kinds of bias: bug feature and commit feature
bias. Ideally, all bug-fixing commits are linked to bug reports;
then empirical research would consider all type of fixed bug
reports. However only some of the fixed bugs have links to
the bug-fixing commits. This raises the possibility of two
types of bias: bug feature bias, where only certain types of
bugs are linked, or commit feature bias, whereby only certain
types bug-fixing repairs are linked. With our experiments, we
investigated potential effects of “unfair, imbalanced” datasets
on the performance of prediction techniques, showed that
bug-feature bias affects the performance of the award-winning
BUGCACHE defect prediction algorithm.

Summarizing, the studies analyzing data quality and charac-
teristics and show the effects on different types of outcomes. A
study that shows the relationship between process data quality
and product quality as investigated in this paper, however,
seems to be missing.

III. EVALUATION METHODS AND THEORY

In this section, we introduce the evaluation methods we
used for this study. Additionally, we briefly discuss how we
measured correlations in the datasets and how we defined
process and product quality.

A. Measurement of Process Quality

Current publications (e.g., [24], [25], [26]) present several
approaches to measure and ensure quality in processes. For
this study, we use a statistical approach that measures the
quality of data provided by tools and systems used in these
processes (such as bug tracking databases and version control
systems). In particular, we make use of software engineering
process data quality and characteristics measures introduced
in [5]. Tables I and II summarize these measures including
their definition.1 Based on these measures, we are able to
analyze the process characteristics and quality, compare the
values across projects, and calculate correlation metrics.

B. Measurement of Software Product Quality

The evaluation and measurement of software product quality
is a widely explored field with many approaches. Already in
1978, for instance, Cavano and McCall presented a framework
to measure software quality [27]. They defined the following
software quality dimensions and factors:

• Product revision: maintainability, flexibility, and testability
• Product transition: portability, reusability, and interoperability
• Product operations: correctness, reliability, efficiency, in-

tegrity, and usability

We acknowledge that software engineering changed over the
past few years and, therefore, many approaches for software
quality management and measurement were newly developed.
Nonetheless, we believe, that this framework still defines the

1We refer to [5] for a full discussion of the measures.

TABLE I
PROCESS DATA QUALITY MEASURES

Quality measure Definition

Rate of fixed bug reports #fixed bug reports / #bug reports

Rate of duplicate bug reports #duplicate bug reports / #bug
reports

Rate of invalid bug reports #invalid bug reports / #bug reports

Rate of empty commit messages #empty commit messages /
#commit messages

Rate of commit messages with
bug report links (w/o empty)

#commit messages with bug
report links / #commit messages
(w/o empty)

Rate of linked bug reports #linked bug reports / #bug reports

Rate of linked bug reports (only
fixed bug reports)

#linked bug reports / #fixed bug
reports

TABLE II
PROCESS DATA CHARACTERISTICS MEASURES

Characteristics measure Definition

Average status changes per bug
report

#bug report status changes / #bug
reports

Average comments per bug report #bug report comments / #bug
reports

Average attachments per bug
report

#bug report attachments / #bug
reports

Average bug reports per bug
reporter

#bug reports / #bug reporters

Average length of commit
messages (w/o empty)

sum of all message lengths /
#commit messages (w/o empty)

Average number of bug report
status changers per developer

#bug report status changers /
#developers

Average bug reporters per
developer

#bug reporters / #developers

Average bug reports per developer #bug reports / #developers

Average fixed bug reports per
developer

#fixed bug reports / #developers

Average bug report links per
linked bug report

#bug report links / #linked bug
reports

Average commits per bug report
(all bug reports)

#commits / #bug reports

Average commits per bug report
(only fixed bug reports)

#commits / #fixed bug reports

Average commits per developer #commits / #developers

most important factors for software quality factors although
the labels changed somehow.
In our study, we mainly focus on the product operations aspect:
i.e., quality factors affecting the users. These are typically
reported as bugs, whenever they exhibit unwanted behavior
(e.g., code is wrong, to slow, crashes, etc.). Luckily, it is very
easy to evaluate the number of bugs, if we have access to a
bug tracking database.

Measuring product quality by number of bugs, we asked
ourselves what kind of bugs we should consider: all bugs or

only post-release bugs. Based on RQ4, we should consider
all bugs which were released and available to the public in
any release of the software. Irrelevant of the version in which
version a bug was found: it was implemented and released
without being noticed by the developers. Consequently, we
define the product quality in this study as the number of bugs
reported over time (pre- and post-release), which is common
practice (see [24]).

C. Evaluation of Correlations in Process and Product Quality

To evaluate the relation between each measure and the
number of bugs, we computed the correlations between them
for each week in a project. As correlation we used the Kendall
tau (τ) rank correlation coefficient [28]. In contrast to other
correlation coefficient metrics (e.g., Spearman or Pearson), this
correlation coefficient has substantial advantages. Basically,
the Kendall tau rank correlation coefficient

1) makes no assumptions about the particular nature of the
relationship between the variables (linear relationship
not required),

2) does not require a normal distribution of the data,
3) does not require equidistance of the values, and
4) has a high robustness against outliers.

In addition, it allows an easy interpretation of values which lie
between -1 and 1. Please note that the correlation values of
Kendall tau cannot be meaningfully compared to other rank
correlation coefficients values such as Spearman’s ρ as it usu-
ally generates lower correlation values. Since the interpretation
of the Kendall tau rank correlation values is not standardized,
we used the following interpretation schema [29]:

0.1 ≤ |τ | < 0.3 weak correlation
0.3 ≤ |τ | < 0.5 moderate correlation
0.5 ≤ |τ | ≤ 1.0 strong correlation

To test the τ correlation values for significance we calculated
the two-sided p-values (t-test).

D. Time-Shifted Correlations

Some effects may appear only with time delays. Bugs are
usually discovered some time after the introducing commit
(see Section V). Hence, we computed not only the correlation
between the measures and the number of bugs within the same
week but also calculated time-shifted correlations to uncover
time-shifting effects. Essentially, we calculated the correlation
between the measures at time t = 0 and the number of bugs
reported at time t±0..50 weeks. For all time constrained values
we used the week of reporting or committing as time stamp.

E. Correlations and Causality

It is important to note that all our explorations are based
on correlations. Hence, we cannot make definitive statements
on causality.

IV. USED DATASETS

For our experiments we selected eight medium to large scale
projects with a long project history:

• Apache HTTP web server (OSS)
• Eclipse IDE (OSS)
• GNOME desktop suite (OSS)
• NetBeans IDE (OSS)
• OpenOffice.org productivity suite (OSS)
• Mozilla project (OSS)
• Banking system #1 (CSS)
• Banking system #2 (CSS)

The selected OSS projects are widely-used and well-known
in empirical software engineering research. Many studies in
this area rely on them. In addition, we selected two CSS
datasets provided by the Zurich Cantonal Bank2. These two
CSS datasets allow a slight insight into the commercial
practices/processes and the resulting data quality and charac-
teristics. For all OSS projects and one of the CSS projects
we analyzed the data quality and characteristics presented
in [5]. Therefore, due to space considerations, we omit a full
discussion of the datasets. Unfortunately, due to security and
confidentiality concerns, we are not allowed to publish detailed
information about the CSS datasets. But both CSS projects are
medium-scale banking software systems with many users or
systems involved and have various releases over many years.

All considered OSS projects make use of BugZilla3 or
IssueZilla4 as bug tracker and SVN5 or CVS6 as version
control system. Both systems – bug tracker and version control
system – allow free and open access to their contents.
The CSS projects, on the other hand, make use of HP Quality
Center7 as bug tracker and SVN as version control system.
In contrast to the OSS projects, only a few people have the
permission to access and modify the version control and bug
data. Therefore, this data is not available to the public.

To test our hypotheses, we needed to obtain the process
data from the source systems introduced above. Therefore, we
retrieved, processed and linked these data as presented in [14]:

1) We downloaded or dumped all bug report information
from the bug tracking database.

2) We downloaded the SVN or CVS log file.
3) We parsed the bug report information and SVN/CVS log

data.
4) We linked these two data sources by scanning through

all the commit log messages for bug report numbers.
5) We verified the caught bug report numbers for validity

based on our heuristic.
Following this procedure, we created a process dataset for

every software project introduced above. Table III lists some

2See http://www.zkb.ch
3See http://www.bugzilla.org/
4IssueZilla is no longer available online.
5See http://subversion.tigris.org/
6See http://www.nongnu.org/cvs/
7See http://www.hp.com

http://www.zkb.ch
http://www.bugzilla.org/
http://subversion.tigris.org/
http://www.nongnu.org/cvs/
http://www.hp.com

TABLE III
DETAILS OF SOFTWARE PROJECTS INVESTIGATED

Apache Eclipse GNOME NetBeans OpenOffice Mozilla BS #1 BS #2

considered time period 2002-03-18
to

2008-04-30

2001-10-11
to

2008-02-29

2000-05-18
to

2008-09-30

2000-06-05
to

2008-04-30

2000-10-21
to

2008-04-30

1998-10-01
to

2009-08-31

2005-03-18
to

2008-02-29

2007-04-03
to

2009-07-30

weeks 201 333 436 412 392 569 154 123

bug reports (entries
in the bug database)

4 997 215 298 492 107 127 421 88 837 495 985 7 843 640

fixed bug reports8 1 439 112 309 113 303 66 786 34 586 158 386 4 449 304

bug report duplicates 619 28 052 144 020 18 890 14 319 129 069 108 13

bug report activities 19 152 1 412 467 1 973 620 923 764 684 988 5 384 816 114 109 8 108

bug report comments 17 900 929 056 1 266 172 568 788 579 747 3 672 984 18 315 1 454

bug report
attachments

1 586 89 250 N/A 60 317 53 219 389 868 8 606 208

bug reporters 3 510 18 836 158 561 11 410 19 707 122 325 133 39

commit log revisions
(transactions)

16 546 221 156 655 668 378 284 106 710 220 460 24 045 22 652

developers
(committers)

75 187 1 503 648 122 651 51 49

basic statistics for each of the project datasets and shows the
time-periods we considered.

V. RESEARCH HYPOTHESES AND RESULTS

In this section, we introduce our research hypotheses, pro-
vide a contextual discussion and test the hypotheses on our
eight datasets.

A. Interplay of Data Quality and Data Characteristics

In our prior work, we showed that the quality and char-
acteristics of process data varies across projects [5]. Supple-
mentary and detailed analysis showed that the quality and
characteristics measures vary over time. Figure 1 shows the
quality measures for the Eclipse project over the considered
time period.

Due to similar value changes over time in many of the
characteristics and quality measures, we assume that the
phenomena they measure are connected. For example, empty
commit messages (a data characteristic) are undesirable due to
missing information about commit’s reason and may influence
the quality in bug reports (a quality characteristic).

HYPOTHESIS 1. Empty commit messages have an impact on
the bug report quality.

The problem of empty commit messages arises mainly in the
Eclipse dataset where about 20% of all commit messages are
empty. In all other projects, this rate is far below 1% [5], e.g.,
due to commit message rules & regulations in these projects.
Therefore, we are only able to test this hypothesis on the
Eclipse project. Table IV lists the τ correlation coefficient
values between the ”Rate of empty commit messages” measure

8We define “fixed” bug reports as bug reports that have at least one
associated fixing activity (i.e., status change to “fixed”).

and the other quality measures. It also shows the two-sided p-
values.

TABLE IV
CORRELATIONS FOR “RATE OF EMPTY MESSAGES” IN ECLIPSE

Quality measure τ value p value (τ) ρ value

Rate of fixed bug reports −0.096 <8.652·10−3 −0.142

Rate of duplicate bug reports 0.481 <2.22·10−16 0.672

Rate of invalid bug reports 0.481 <2.22·10−16 0.671

Rate of commit messages
with bug report links (w/o
empty)

−0.228 <5.397·10−10 −0.337

Rate of linked bug reports 0.475 <2.22·10−16 0.671

Rate of linked bug reports
(only fixed bug reports)

0.488 <2.22·10−16 0.691

As already mentioned in Sub-Section III-C, the
Kendall τ rank correlation values are usually lower than
other correlation values. For illustration purposes, Table IV
contains also the Spearman’s ρ correlation values (right part
of the table).

The τ values in the table show a moderate to strong positive
correlation between the “Rate of empty messages” and the
proportion of duplicate, invalid and linked bug reports. Please
note, that the “Rate of fixed bug reports” does not exhibit any
correlation. Based on the correlation values, we can conclude
that the more empty messages the more duplicate and invalid
bug reports we have. On the other hand, we seem to have also
a beneficial effect, due the positive correlation to linked bug
reports. Because we were able to test this hypothesis with
Eclipse data only, we acknowledge possible generalization
threats.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Rate of fixed bug reports

Rate of duplicate bug reports
Rate of invalid bug reports
Rate of empty commit messages
Rate of commit messages with bug report links (w/o empty)
Rate of linked bug reports
Rate of linked bug reports (only fixed)

2001−10−11 2002−03−28 2002−09−12 2003−02−27 2003−08−14 2004−01−29 2004−07−15 2004−12−30 2005−06−16 2005−12−01 2006−05−18 2006−11−02 2007−04−19 2007−10−04

Fig. 1. History of data quality measure values for Eclipse (weekly frames)

The results of empirical software engineering studies rely
on completeness in datasets. Therefore, it is essential at which
rate bug reports are mentioned in the datasets. As a common
practice, we scan trough commit messages for valid bug report
numbers and then link commit messages with bug reports
(see Section IV). Unfortunately, as already shown in previous
work [5], only a fraction of fixed bug reports are linked. Such
linking has to be established by developers, which may e.g.,
miss the linking. Therefore, we theorize the higher the ratio
between number of commits and bug reports, the higher the
chance (and probability) to get linked bug reports.

HYPOTHESIS 2. The higher the ratio between number of
commits and bug reports, the higher the chance to have
linked bug reports.

We can observe a strong correlation between “Average
commits per bug report” and “Rate of linked bug reports”
in Eclipse and Mozilla, a weak correlation in GNOME, Net-
Beans, and BS #2, as well as almost no correlation in Apache,
OpenOffice and BS #1 (Table V). Therefore, we have positive
correlations supporting our hypothesis in four datasets. Three
projects do not support the hypothesis and for NetBeans
we have a negative correlation which also contradicts our
hypothesis.

With our hypothesis, we theorize that bug report linking
varies because developers link bug reports sometimes and
sometimes not. In other words: we assume inconsistent de-
velopers that link with some probability. Missing correlations
in three projects may be an indicator for strict habits of
developers in these projects. Hence, some bugs get linked and
some bugs not (e.g., consistently based on bug report features),
which may be an indicator of bug-feature bias [7].

Usually, bugs are reported by users who discover an un-

TABLE V
CORRELATIONS BETWEEN “AVERAGE COMMITS PER BUG REPORT” AND

“RATE OF LINKED BUG REPORTS”
Project τ value p value

Apache −0.028 <5.818·10−1

Eclipse 0.574 <2.22·10−16

GNOME 0.239 <2.22·10−16

NetBeans −0.103 <1.864·10−3

OpenOffice −0.063 <6.317·10−2

Mozilla 0.529 <2.22·10−16

BS #1 −0.003 <9.607·10−1

BS #2 0.181 <7.269·10−3

wanted behavior of the system during its use. Particularly after
new releases, more bugs are found and get reported. This leads
also to a varying number of bug reports over time to take care
of by developers. Given that developer work time is a limited
resource, we hypothesize that when the workload – measured
by number of bug reports to fix – goes up, developers will only
be able to attend a smaller fraction of them – measured by bug
reports that get fixed and linked to source code commits.

HYPOTHESIS 3. The higher developer workload, the fewer
bug reports get fixed and linked to source code commits.

Mozilla and Gnome have moderate negative correlations
between developer workload and fixing rate. This means, that
in these projects the more bugs a developer has to fix (on
average) the less bugs get fixed. Contrariwise, both projects
have a high bug duplicate rate of about 33% (see Table III)
which may have an effect such as duplicates usually never get
fixed rather than merged with other bug reports. OpenOffice
also has a weak negative correlation with a similar finding, that
this project has a bug duplicate rate above average. Eclipse

TABLE VI
CORRELATIONS BETWEEN “AVERAGE BUG REPORTS PER DEVELOPER”

AND “RATE OF FIXED BUG REPORTS” OR “RATE OF LINKED BUG
REPORTS”

“Rate of fixed bug reports” “Rate of linked bug reports”

Project τ value p value τ value p value

Apache 0.032 <5.103·10−1 0.021 <6.842·10−1

Eclipse 0.160 <1.398·10−5 −0.407 <2.22·10−16

GNOME −0.449 <2.22·10−16 −0.209 <7.215·10−11

NetBeans −0.080 <1.531·10−2 0.005 <8.751·10−1

OpenOffice −0.261 <1.382·10−14 0.132 <1.053·10−4

Mozilla −0.412 <2.22·10−16 −0.550 <2.22·10−16

BS #1 0.022 <6.852·10−1 0.109 <5.477·10−2

BS #2 0.327 <1.783·10−6 0.333 <8.007·10−7

and BS #2 have weak positive correlations. We believe this
to be related to Hypothesis 2: both projects have positive
correlations (Eclipse τ = 0.574, BS #2 τ = 0.181) between
“Average commits per bug report” and “Rate of linked bug
reports”. Hence, the more bugs get reported (and therefore the
developer’s workload and the proportion of bugs to commits
arise), the higher the fixing rate. In contrast, Mozilla and
Gnome have also high correlations between “Average commits
per bug report” and “Rate of linked bug reports” but have
negative correlations between developer workload and “Rate
of fixed bug reports”. All other projects have no significant
correlations in the data (left part of Table VI).
Regarding the correlations between developer workload and
“Rate of linked bug reports”, Eclipse, Gnome, and Mozilla
support the hypothesis, that the higher the developer’s work-
load the lower the “Rate of linked bug reports”. In contrast,
OpenOffice and interestingly both CSS projects have a weak
to moderate positive correlation (right part of Table VI). These
three projects have less developers compared to the other
projects, which may have an impact on the correlations.

In OSS projects it is a usual practice to release alpha and
beta versions of a product and let users perform testing. In
the CSS projects investigated, in contrast, a professionalized
product testing is performed by a few testers [5]. These testers
follow a defined test-procedure composed of test-cases, test-
scenarios, and test-data. Whereas in professionalized testing
only a few people report bugs, in OSS alpha and beta testing
many people use/test a new release and report bugs. Therefore,
in many OSS projects, most of users only report a few bugs
in their life, potentially leading to a lower quality of the bug
reports due to lacking experience. A poor bug report may
lower the probability of it being fixed, as a developer may
not understand it.

HYPOTHESIS 4. The more experienced the bug reporters, the
higher the chance to get fixed bug reports.

Mozilla, GNOME, Eclipse, and BS #2 have a moderate
to strong positive correlation; Apache has a weak positive
correlation. All these projects support our hypothesis with
very low p-values that the more bugs a reporter reports, the

TABLE VII
CORRELATIONS BETWEEN “AVERAGE BUG REPORTS PER BUG REPORTER”

AND “RATE OF FIXED BUG REPORTS”
Project τ value p value

Apache 0.123 <1.855·10−2

Eclipse 0.342 <2.22·10−16

GNOME 0.427 <2.22·10−16

NetBeans −0.118 <3.611·10−4

OpenOffice −0.192 <1.577·10−8

Mozilla 0.604 <2.22·10−16

BS #1 0.054 <3.305·10−1

BS #2 0.417 <6.492·10−9

higher the linking rate of its bug reports. Only NetBeans and
OpenOffice weakly reject the hypothesis (Table VII). Despite
these two counterexamples we believe that the evidence of the
other projects suggests that the more bugs somebody reports,
the better the quality of these reports, and, therefore, the higher
the chance for a developer to understand and fix the problem.
This finding justifies methods for enhancement of bug report
quality (e.g., Bettenburg et al. [15], [16], [17]).

Important bugs usually get high attention by the community
and, therefore, many users and developers make use of the
discussion function of the bug tracker. We hypothesize that the
more attention a bug has (measured by number of comments),
the higher the chance a developer mentions the report in the
commit message of the bugfix.

HYPOTHESIS 5. The more people discuss bug reports, the
higher the chance for bug reports to get linked.

TABLE VIII
CORRELATIONS BETWEEN “AVERAGE COMMENTS PER BUG REPORT” AND

“RATE OF LINKED BUG REPORTS”
Project τ value p value

Apache 0.255 <3.682·10−7

Eclipse −0.026 <4.702·10−1

GNOME 0.605 <2.22·10−16

NetBeans 0.323 <2.22·10−16

OpenOffice 0.112 <1.025·10−3

Mozilla 0.297 <2.22·10−16

BS #1 0.227 <5.909·10−5

BS #2 0.348 <4.148·10−7

This hypothesis is supported by the strong correlation in
Gnome and the weak to moderate correlations in all other
projects except of one (Table VIII). Eclipse neither supports
nor contradicts this hypothesis with τ = −0.026. We believe,
that high attention of the community acts as incentive to
developers for a better documentation of their work (which
includes the linking of bug fixes to bug reports). On the other
hand, without attention from the community, a developer has
less benefits from linking bug fixes and, therefore, might act
not that strictly.

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Eclipse

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

GNOME

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

NetBeans

Rate of fixed bug reports
Rate of duplicate bug reports
Rate of invalid bug reports
Rate of empty commit messages
Rate of commit messages with bug report links (w/o empty)
Rate of linked bug reports
Rate of linked bug reports (only fixed)

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

OpenOffice

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Mozilla

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

BS #1

−50 −44 −38 −32 −26 −20 −14 −8 −3 1 5 9 13 18 23 28 33 38 43 48

Fig. 2. Time-shifted correlations between process quality measures and number of defects (t± 0..50 weeks)

B. Influence of Process Quality on Product Quality

With our second research question (RQ4), we try to evaluate
the impact of process quality on product quality. Again, we
present several hypotheses, provide a contextual discussion
and discuss the results based on our project datasets. Unfortu-
nately, we found no significant product quality correlations in
Apache and BS #2. Therefore, we omit a discussion of these
two projects in this sub-section.

First, we hypothesize that an impact of process quality on
product quality may be time-shifted. E.g., when the process
quality drops then more bugs get introduced later e.g., due
to poor documentation quality. Hence, we test our hypotheses
using time-shifting correlations. Figure 2 illustrates the time-
shifted τ correlation values between our process quality mea-
sures and the number of bugs. For each project we claculated
the correlation between: quality measures at time t = 0 and
number of bugs at time t ± 0..50 weeks. Interestingly, most
correlations have their maximum values at ∆t = 0 (except
for OpenOffice). Hence, we do not seem to have any time-
shifting effects in these datasets. A finding we find surprising
given our previous work [4], [30].

Particularly in OSS projects, all users of a system are
allowed to report bugs (see discussion above). Hence, many
duplicate and invalid bug reports are stored in the bug tracking
database (as shown in [5]) and need attention of developers.
If duplicate bug reports are valuable or not, is a controversial
discussion in current research. For instance, Bettenburg et al.
believe, that duplicates provide additional information to a
specific problem and are not harmful per se [17]. Nevertheless,

duplicate and invalid bug reports may increase the needed
effort by developers to fix a specific problem and may raise the
risk, that multiple developers work on similar problems. This
could give rise to two effects: (1) developers have less time to
carefully implement bug fixes and feature requests, and (2) a
synchronous work of multiple developers on the same problem
may lead to conflicts. Therefore, we believe that duplicate and
invalid bug reports may influence the number of (future) bugs.

HYPOTHESIS 6. The proportion of duplicate and invalid
bugs correlate with the number of bugs.

Analyzing Figure 2, we see that the maximum values lie
at ∆t = 0, which we also verified statistically. Therefore, we
present only the τ and p values for ∆t = 0 (Table IX).

TABLE IX
CORRELATIONS BETWEEN “NUMBER OF BUG REPORTS” AND “RATE OF

DUPLICATE BUG REPORTS”, ∆t = 0

Project τ value p value

Eclipse −0.304 <2.22·10−16

GNOME 0.640 <2.22·10−16

NetBeans 0.086 <8.891·10−3

OpenOffice 0.310 <2.22·10−16

Mozilla 0.169 <1.696·10−9

BS #1 0.424 <1.147·10−11

GNOME, BS #1 and OpenOffice have a moderate to strong
and Mozilla a weak positive correlation and, therefore, support
Hypothesis 6. Only Eclipse contradicts our hypothesis with a

moderate negative correlation (τ = −0.304). We believe that
in the Eclipse project duplicate bug reports are not a substantial
problem and provide additional information to the developers
as proposed by Bettenburg et al.. Otherwise, a negative cor-
relation would not be meaningful. For the correlations with
invalid bug reports, we got similar correlations and omit a
discussion due to space considerations.

A version control system allows a concurrent development
and tracks all changes: all source code changes are associated
with a developer and change-time. In addition, developers
usually describe in the commit message why a change was
done. In the bug fixing process, such commit messages ideally
contain links to bug reports they fix. Hence, these changes are
justified and other developers can follow the changes’ ratio-
nale. Explicit rationale is conducive to an efficient maintenance
of the product by developers.

Consequently, we hypothesize that the better source code
changes (commits) are documented, the less bugs get imple-
mented in future releases. E.g., we can assume, the higher
the linking rate of bug reports, the more bug fixing commits
are documented/justified and therefore, the less bugs get
introduced.

HYPOTHESIS 7. The proportion of linked bugs correlate with
the number of bugs.

Again, we calculated the τ correlation values between
the number of bugs and “Rate of linked bug reports” for
t ± 0..50 weeks. Unfortunately, we did not found any sig-
nificant correlations for any ∆t in any project and have to
reject Hypothesis 7.

Nonetheless, for similar reasons, we believe that empty
commit messages have an impact on the number of bugs.
Empty commit messages provide no information about the
commit’s reason. Again, we hypothesize that a good documen-
tation of source code changes allow a faster and less buggy
maintenance and enhancement of a product. We therefore
believe, that developers tend to implement more bugs due to
the missing information in commits.

HYPOTHESIS 8. The proportion of empty commit messages
correlate with the number of bugs.

As already mentioned in Hypothesis 1, Eclipse is the
only project with a high ”Rate of empty commit messages”.
Therefore, we were only able to calculate the correlation for
this project. Interestingly, we found an almost strong negative
correlation of τ = −0.483 with a two-sided p-value of
< 2.22 · 10−16 at t = −6. The negative correlation indicates
that when the “Rate of empty commit messages” sinks, the
number of bug reports rises. Or in other words: if we have
less empty commit messages, we get more bug reports. The
time-shift of t = −6 signifies that a high number of bug reports
correlates with a high number of empty messages six weeks
later. This is exactly the opposite of what we hypothesized.
Hence, it could be hypothesized that an increase of bug reports

leads to “overworked” developers who then lower the quality
of their reports to save time and catch up.

VI. THREATS TO VALIDITY

Software engineering tools and processes vary in differ-
ent projects and, therefore, our findings based on the used
projects may not generalize. However, we analyzed often-used
and well-known OSS projects. Therefore, it is reasonable to
conclude that the selected projects are no exception in OSS
engineering.
On the other hand, we were only able to analyze two CSS
projects, both provided by the Zurich Cantonal Bank. There-
fore, we acknowledge threats in generalizing these results to
other CSS projects.

Our choice of number of bugs as the only indicator for
software product quality gives rise to internal and/or construct
validity issues. In particular, we counted bugs when they were
reported on the bug tracking database. The reported bugs
were introduced a varying time before they were found and
reported. Due the variable delay between the bug introducing
commit and bug report, we may have time shifting threats
in our correlation calculations. We evaluated the number of
developers based on the version control log file. In other
words, a developer equals to a committer. This may raise to
threats, as not all OSS developers are allowed to commit and,
therefore, are not counted in this study. Also, some bugs may
not have been reported in the bug tracking system or not at
all.

VII. DISCUSSION AND CONCLUSIONS

In prior work, we analyzed the impact of poor data quality
in software engineering on empirical software engineering
research. We found that considering data quality concerns is
crucial for research in empirical software engineering. In this
paper, we extend this work and show why practitioners –
software engineers and software project managers – should
care about the quality of their processes and data.

Specifically, we analyzed two research questions and de-
fined several research hypotheses. To test these hypotheses,
we extracted and integrated software engineering process data
from six widely-used OSS and two CSS projects as presented
in previous work [14]. Using these datasets, we calculated
data quality and characteristics measures [5] for each week
and project. We then calculated Kendall tau rank correlations
based on this measures. Later we extended our calculations
with time-shifted correlations to analyze the data for time-
shifting effects.

In particular, we showed that data quality and characteristics
issues affect each other. For instance, the proportion of empty
commit messages in Eclipse correlate with bug report quality.
In addition, we showed, that the more active a community in
its communication – such as the discussion and commenting
bug reports – the better the linking rate provided by the
developers. We also showed that product quality – measured
by number of bugs reported – is affected by process data
quality. Again, the proportion of empty messages leads to

curious findings in Eclipse. These findings have the potential
to prompt practitioners to increase the quality of their software
process and its associated data quality.

Nonetheless, we were only able to support some of our
hypotheses. Therefore, this work can only be a first step in
analyzing interrelationship between process (data) quality and
software product quality. In future work, we want to extend
this study and analyze subsets of bug datasets. For instance,
we hypothesize that only bugs with a high severity correlate
with process measures, because trivial bugs are not affected by
process quality. In addition, we plan to verify process quality
correlations for other definitions of product quality and define
new quality and characteristics measures for other aspects of
software engineering.

Furthermore, we plan to extend our study on other CSS
datasets to get a deeper insight into the quality and charac-
teristics of CSS process data and their correlations to product
quality.

ACKNOWLEDGMENT

This work was partially supported by Zurich Cantonal Bank
(Bachmann) and Swiss National Science Foundation award
number 200021-112330 (Bernstein). The closed source data
used in this work was provided by the Zurich Cantonal Bank.

REFERENCES

[1] M.-T. J. Ostrand, F.-E. J. Weyuker, and R. M. Bell, “Predicting the loca-
tion and number of faults in large software systems,” IEEE Transactions
on Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[2] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in MSR ’05: Proceedings of the 2005 International Workshop on
Mining Software Repositories. New York, NY, USA: ACM, 2005.

[3] H. Joshi, C. Zhang, S. Ramaswamy, and C. Bayrak, “Local and global
recency weighting approach to bug prediction,” in MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software Repositories.
Washington, DC, USA: IEEE Computer Society, 2007.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving defect predic-
tion using temporal features and non linear models,” in IWPSE ’07:
Proceedings of the International Workshop on Principles of Software
Evolution. Dubrovnik, Croatia: IEEE Computer Society Press, Septem-
ber 2007, pp. 11–18.

[5] A. Bachmann and A. Bernstein, “Software process data quality and
characteristics - a historical view on open and closed source projects,”
in IWPSE-Evol’09: Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, Amsterdam, The Netherlands,
August 2009, pp. 119–128.

[6] E. Aune, A. Bachmann, A. Bernstein, C. Bird, and P. Devanbu, “Looking
back on prediction: A retrospective evaluation of bug-prediction tech-
niques,” Student Research Forum at SIGSOFT/FSE 16, November 2008.

[7] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced? bias in bug-fix datasets,” in ESEC/FSE
’09: Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering on European software engineering
conference and foundations of software engineering, Amsterdam, The
Netherlands, August 2009, pp. 121–130.

[8] M. Fischer, M. Pinzger, and H. C. Gall, “Populating a release history
database from version control and bug tracking systems,” in ICSM ’03:
Proceedings of the International Conference on Software Maintenance.
Amsterdam, Netherlands: IEEE Computer Society Press, September
2003, pp. 23–32.

[9] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug
report data for feature tracking,” in WCRE ’03: Proceedings of the 10th
Working Conference on Reverse Engineering. Victoria, B.C., Canada:
IEEE Computer Society Press, November 2003, pp. 90–99.

[10] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 408–418.

[11] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “If your bug
database could talk...” in ISESE ’06: Proceedings of the 5th International
Symposium on Empirical Software Engineering. Volume II: Short Papers
and Posters, Rio de Janeiro, Brazil, September 2006, pp. 18–20.

[12] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in PROMISE ’07: Proceedings of the Third International
Workshop on Predictor Models in Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007.

[13] T. Zimmermann and P. Weissgerber, “Preprocessing cvs data for fine-
grained analysis,” in MSR ’04: Proceeding of the 1st International
Workshop on Mining Software Repositories (MSR), Edinburgh, UK,
2004.

[14] A. Bachmann and A. Bernstein, “Data retrieval, processing and linking
for software process data analysis,” Dynamic and Distributed Informa-
tion Systems Group, Department of Informatics, University of Zurich,
Technical Report IFI-2009.0003, May 2009, http://www.ifi.uzh.ch/ddis/
people/adrian-bachmann/pdq/.

[15] N. Bettenburg, S. Just, A. Schroeter, C. Weiss, R. Premraj, and T. Zim-
mermann, “Quality of bug reports in eclipse,” in eTX ’07: In Proceedings
of the 2007 OOPSLA Workshop on Eclipse Technology eXchange,
Montreal, Quebec, Canada, October 2007, pp. 21–25.

[16] N. Bettenburg, S. Just, A. Schroeter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” Saarland University,
Saarbrücken, Germany, Tech. Rep., September 2007.

[17] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug
reports considered harmful... really?” in ICSM ’08: Proceedings of the
International Conference on Software Maintenance, October 2008, pp.
337–345.

[18] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE07:
Proceedings of the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), Atlanta, Georgia, USA, November
2007, pp. 34–43.

[19] A. G. Koru and J. Tian, “Defect handling in medium and large open
source projects,” IEEE Software, vol. 21, no. 4, pp. 54–61, 2004.

[20] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller, “Open-source
change logs,” Empirical Software Engineering, vol. 9, no. 3, pp. 197–
210, 2004.

[21] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-
source and closed-source software products,” IEEE Transactions on
Software Engineering, vol. 30, no. 4, pp. 246–256, 2004.

[22] L. Yu and K. Chen, “Evaluating the post-delivery fault reporting
and correction process in closed-source and open-source software,” in
ICSEW ’07: Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops, Fifth International Workshop on Software
Quality (WoSQ’07). Washington, DC, USA: IEEE Computer Society,
2007.

[23] G. A. Liebchen and M. Shepperd, “Data sets and data quality in software
engineering,” in PROMISE ’08: Proceedings of the 4th International
Workshop on Predictor Models in Software Engineering. New York,
NY, USA: ACM, 2008, pp. 39–44.

[24] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Addison Wesley, September 2002.

[25] N. Ashrafi, “The impact of software process improvement on quality:
in theory and practice,” Information Management, vol. 40, no. 7, pp.
677–690, 2003.

[26] D. E. Harter and S. A. Slaughter, “Process maturity and software quality:
a field study,” in ICIS ’00: Proceedings of the twenty first international
conference on Information systems. Atlanta, GA, USA: Association
for Information Systems, 2000, pp. 407–411.

[27] J. P. Cavano and J. A. McCall, “A framework for the measurement
of software quality,” in Proceedings of the software quality assurance
workshop on Functional and performance issues, 1978, pp. 133–139.

[28] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, June 1938.

[29] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
New Jersey: Lawrence Erlbaum Associates, Inc., 1988.

[30] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein, “Tracking
concept drift of software projects using defect prediction quality,” in
MSR ’09: Proceedings of the Sixth IEEE Working Conference on Mining
Software Repositories. IEEE Computer Society, May 2009.

http://www.ifi.uzh.ch/ddis/people/adrian-bachmann/pdq/
http://www.ifi.uzh.ch/ddis/people/adrian-bachmann/pdq/

	Introduction
	Related Work
	Process Data Extraction and Integration
	Quality in Software Engineering
	Data Quality Effects on Empirical Software Engineering

	Evaluation Methods and Theory
	Measurement of Process Quality
	Measurement of Software Product Quality
	Evaluation of Correlations in Process and Product Quality
	Time-Shifted Correlations
	Correlations and Causality

	Used Datasets
	Research Hypotheses and Results
	Interplay of Data Quality and Data Characteristics
	Influence of Process Quality on Product Quality

	Threats to Validity
	Discussion and Conclusions
	References

