
Four Interesting Ways in Which History Can Teach Us About Software

Michael Godfrey Xinyi Dong Cory Kapser Lijie Zou
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Ontario, CANADA
email: {migod,xdong,cjkapser,lzou}@uwaterloo.ca

Abstract

In this position paper, we outline four kinds of studies
that we have undertaken in trying to understand various as-
pects of a software system’s evolutionary history. In each
instance, the studies have involved detailed examination of
real software systems based on “facts” extracted from var-
ious kinds of source artifact repositories, as well as the de-
velopment of accompanying tools to aid in the extraction,
abstraction, and comprehension processes. We briefly dis-
cuss the goals, results, and methodology of each approach.

1. Introduction

This position paper describes four broad approaches to
studying software system evolution that yield different per-
spectives on how and why a system has evolved. These
approaches are:

• coarsely-grained longitudinal case studies of growth
and evolution,

• finely-grained case studies of origin analysis between
consecutive versions of a system,

• case studies of code cloning within families of related
systems, and

• tracking how build architectures and software
manufacturing-related artifacts change over time.

Each of the above approaches involves three basic steps:

1. extraction of raw “facts” from various kinds of source
artifact repositories,

2. automated, semi-automated, and manual analysis tech-
niques performed on the facts, and

3. tool-supported exploration, navigation, and visualiza-
tion to aid in comprehension.

We note that there is sufficient space in this position
paper only to outline our results and methodologies. The
reader is referred to listed references for more details.

2. Longitudinal case studies of growth

2.1. Goals and Results

Previously, we have studied growth and evolution of sev-
eral open source software systems, including the Linux op-
erating system [2]. Our original goal was to track how the
growth patterns of large open source systems compared to
previous studies on (non-open source) industrial systems;
in particular, we wished to determine if Lehman’s Laws
of Evolution [8], which had been derived based on stud-
ies of (closed source) industrial software systems, also held
for open source systems. We found that they did not hold
in several instances; perhaps the most surprising result was
that the Linux kernel continued to grow at a geometric rate
even after surpassing two million lines of code (2 MLOC)
(Fig.1). Lehman’s empirical model predicts slowing growth
as a software system becomes “large”.1

2.2. Methodology

For these studies, we analyzed the source code of the
Linux operating system in a semi-automated manner. This
involved manually downloading and unpacking 96 versions
of the kernel source code “tarball”, running a set of hand-
crafted bash and awk scripts over them to measure their

1Lehman has personally acknowledged that this study does indeed con-
tradict some of his laws, and has said that he will need to reformulate them
to take into account the various phenomena of open source software devel-
opment.

58



Figure 1. Growth of the compressed tar file
distribution for the Linux kernel source re-
lease; measuring size as lines-of-code, num-
ber of modules, etc.showed roughly the same
geometric growth pattern [2].

size in various ways and at various levels of abstraction, and
then analyzing and exploring the results within a spread-
sheet.
At the time the study was done, we did not have access to

(or know of) a “live” CVS repository that could have aided
in automating the analysis tasks. The size of the Linux ker-
nel source itself (over 2 MLOC) and its relative fragility
(it can be difficult to configure, build, and compile in an
automated way) limited the amount and kinds of analysis
we were able to perform. Its fragility meant that we could
not reliably use our preferred static analysis tools to get a
more sophisticated understanding of its complexity, and its
size meant that we could not easily store more than a few
unpacked kernels at a time on the file system. Effectively,
we “boiled the ocean” of source code down to sets of num-
bers that could be stored inside a few spreadsheets, and used
those as the basis for our analysis.

3. Case studies of Origin Analysis

3.1. Goals and Results

A particular problem for program comprehension is ac-
curately modelling the ontology of a system’s components.
That is, the identity of a component is often equated with
the name of the containing file or programming language
entity (possibly together with its location within, say, a di-
rectory hierarchy). If a component is renamed or moved,
it is considered that the old component has died and a new
one has been born. However, as a system is redesigned and
refactored over time, it is fairly common for components to
be renamed, moved to another container, and merged into
or split from other components. While the name/location-
based identity assumption has the advantages of being sim-
ple and easy to implement in a tool, a lot of useful knowl-

edge about the system can be lost if the system has under-
gone internal change and refactoring.
We have therefore sought to develop a set of techniques

for performing what we call origin analysis, as well as a
supporting tool called Beagle [11, 12]. That is, when con-
fronted with a set of programming language entities that ap-
pear to be new to a particular version of a software system,
we try to determine which of these components really are
new and which are in fact derived from entities in the previ-
ous version of the system.
Origin analysis continues to be an ongoing area of re-

search for us, but we have already performed two detailed
case studies. The first explored the incidence of moving and
renaming of functions within the GCC compiler suite [11];
Table 1 shows the results of applying origin analysis of the
parser subsystem of version 1.0 of the EGCS variant of
GCC. This subsystem does not exist in the previous evolu-
tionary ancestor (GCC version 2.7.2.3), yet we were able
to determine that approximately 46% of the 848 functions
originated from various places within the ancestor. The sec-
ond case study, which is not detailed here, examined the
incidence of merging and splitting in the PostgreSQL rela-
tional database [12].

File # Func # New # Old Overall
c-aux-info.c 9 0 9 Mostly Old
fold-const.c 44 15 29 Mostly Old

objc/objc-act.c 167 17 150 Mostly Old
c-lang.c 16 14 2 Mostly New

cp/decl2.c 57 50 7 Mostly New
cp/errfn.c 9 9 0 Mostly New
cp/except.c 25 20 5 Mostly New
cp/method.c 30 26 4 Mostly New

cp/pt.c 59 57 2 Mostly New
except.c 55 52 3 Mostly New
c-decl.c 70 29 41 Half-Half

cp/class.c 61 31 30 Half-Half
cp/decl.c 134 84 50 Half-Half
cp/error.c 31 16 15 Half-Half
cp/search.c 81 40 41 Half-Half

Table 1. Summary of origin analysis results
for the (apparently) all new parser subsystem
of the EGCS 1.0 compiler relative to its imme-
diate evolutionary ancestor (GCC 2.7.2.3).

3.2. Methodology

Origin analysis is comprised of two basic techniques:
entity analysis and relationship analysis. Entity analysis,
which is similar to software clone detection, attempts to
match entities of the two system versions based on simi-
larity of the entities themselves. We have implemented this
as a metrics-based “fingerprint” [7]. A set of metric values
(e.g., cyclomatic complexity, fan-in/out) for functions are

59



precomputed on system check-in by the commercial tool
Understand for C++, and the results are stored in a rela-
tional database. At querying time, the candidates with the
closest Euclidean distance to the metric tuple of the target
entity are returned.
Relationship analysis is based on the assumption that if

an entity is moved or renamed, there is a high likelihood
that it will still engage in many of the same relationships
with the same entities as before (e.g., calls, called-by, inher-
its, uses-var). Various relations are extracted and recorded
at system check-in by the cppx fact extractor for C/C++
systems [9], and stored in a relational database. At query-
ing time, the candidates that have the most similar relational
images (e.g., call the same functions) are returned.2
Effectively, origin analysis reduces the source code down

to sets of numerical values and abstracted facts about the
software entities and their inter-relationships; we store this
information in a relational database, and use a graphical tool
to perform directed queries to help establish the most likely
“origin” of software entities that appear to be “new”.

4. Case studies of code cloning

4.1. Goals and Results

While algorithms and tools for code duplication detec-
tion (i.e., “clone detection”) have been well studied by the
research community, there has been relatively little inves-
tigation into what types of clones might exist and how of-
ten and in what context they occur within industrial soft-
ware systems. We feel that these questions are important
as they can help us to develop criteria to evaluate the effec-
tiveness of current detection techniques, and provide insight
into how these tools might be improved.
Recently, we performed a case study on the incidence of

code cloning within the file system component of the Linux
operating system [6]. Our initial goal was to investigate how
code duplication occurred in a well known industrial soft-
ware system, and we began to classify the types of clones
we found.
Our study led to several broad observations about

cloning within the candidate system, and to hypotheses
about cloning in general. For example, we found that files
that belonged to the same subsystem (in this case, a partic-
ular file system implementation, such as ext3) often had
many instances of cloning within them. Overall, we found
that 78% of clone-pairs occurred within the same subsys-
tem; this led us to hypothesize that some degree of system
structure might be determinable based on the clone relation-
ships. We also found that subsystems that share higher-
than-average amounts of code duplication between them

2Relationship analysis is also key to detecting merging and splitting,
but the details are more subtle [12].

were often in a relationship of one being derived from the
other, or the creation of one was heavily based on the other.
In Figure 2, we have labelled three points in the graph where
the subsystems were in such a relationship.

Figure 2. Number of clone pairs between file
systems (excluding themselves).

We also observed that clones that existed between files in
the same subsystem were usually function clones (accord-
ing to the definition in the next section), whereas clones be-
tween files in different subsystems were usually not func-
tion clones. This is another indication that information
about system structure may reside within the cloning rela-
tionship. We hypothesize that cloning activity may provide
strong clues about file relationships.
Finally, we found that clones between files of different

subsystems were often the “remains” of functions that had
been cloned, but had been changed substantially enough
that they could no longer be easily found as function clones.
This insight has led us to consider a new vein of investiga-
tion; we plan to use change data from CVS repositories to
profile how function clones change over time. Our analysis
will address discovering which developers tend to introduce
cloned code in a software system, who makes changes that
drive them to become different, and if bug fixes are consis-
tently made across all clone instances.

4.2. Methodology

To detect clones, we used both parameterized string
matching [5, 4] and metrics-based string matching [1].3
For brevity we will not describe these techniques here; the
reader is referred to the cited references. After the initial
extraction, we found that the tools returned a total of 5000

3We used the CCFinder tool to perform parameterized string matching
[5]; we implemented our own metrics-based tool, following the design of
others [1, 7].

60



clone pairs; of these, we determined through inspection that
1996 of these pairs were clearly false-positives and so were
removed.
In the study, we identified five types of clones: func-

tion clones, initialization clones, finalization clones, cloned
blocks, and cloned blocks within the same function. For
the first four clone types, we further subdivided each group
into clones in the same file, the same subsystem, and dif-
ferent subsystems. Function clones were functions where
a minimum of 60% of the code of each function was dupli-
cated between the two; a function clone can be composed of
several smaller clone pairs. Initialization clones are pieces
of source code at the beginning of a function that allocate
space for and initialize variables; these clones must start in
the first five lines of the function and end within the first
half of the function. Analogously, finalization clones are
pieces of source code which deallocate space and massage
data for returning; these clones must start in the last half of
the function and end in the last five lines of the function.
Cloned blocks of code are segments of code that do not fall
into any of the other types of clone
After categorization, and for any other empirical results

we have presented, we performed manual inspection of a
large percentage of the clone pairs in the given study to en-
sure that they were within the criteria that we specified and
that they were accurately found as clones.

5. Longitudinal case studies of software
manufacturing-related artifacts

5.1. Goals and Results

Software manufacturing— that is, the creation of soft-
ware deliverables from source artifacts — is an important
part of industrial software development. Large software
systems often have complex subparts that engage in subtle
relationships with the underlying technologies from which
they are built; consequently, many such systems have com-
plex and interesting architectural properties that can only be
understood in the context of the various phases of system
construction [10]. We consider that modelling and extract-
ing build-time architectural properties of such systems are
key to the software comprehension process, and so we have
begun studying characteristics of development and mainte-
nance activities that are related to software manufacturing
(SM).
Recently, we have begun a project to study the mainte-

nance effort of six open source projects4 from a software
manufacturing perspective (Table 2). We have attempted
to measure the maintenance effort of SM-related artifacts

4We note that one of the systems studied —Apache Ant —also hap-
pens to be a system building tool.

for each project along three dimensions: the authorship, the
size of the changes, and the frequency of the changes.

Project Period # fi les # CVS # authors Build tools
studied records used
from

midworld 05/2002 199 1,677 8 SCons
mycore 07/2001 343 2,116 12 Ant
Apache Ant 01/2000 1,791 28,888 32 Ant
kepler 08/2003 412 1,129 6 Ant+Make
PostgreSQL 07/1996 2,093 59,815 22 Make
GCC 08/1997 17,378 150,423 204 Make

Table 2. Case study project information.

The results of the study suggest that the development and
maintenance of SM-related artifacts is a significant activity
during software evolution. For example, we found over-
all that more than half of the project developers contributed
changes to the SM-related artifacts (Table 3). This may
indicate that changes to the source artifacts often require
changes to the SM-related files. In all but one of the systems
we studied, SM-related files changed much more than often
than the other kinds of source files. Overall, changes to the
SM-related files accounted for non-trivial percentages of to-
tal system changes, from 3–10% depending on the project.

Project # authors # authors who changed Percentage
SM artifacts

midworld 8 5 62.50%
mycore 12 7 58.33%
Apache Ant 32 26 81.25%
kepler 6 4 66.67%
PostgreSQL 22 15 68.18%
GCC 204 154 75.49%

Table 3. Author involvement in SM activities.
As more evidence of the significance of the evolution

of SM-related artifacts, we found several versions of sys-
tems where insertions and deletions of lines in SM-related
artifacts accounted for up to 30% of the total insertion and
deletion of lines in the system (Table 4).

Project LOC of SM fi les Changed LOC in SM fi les Peak
/ total LOC / total changed LOC

Apache Ant 0.70% 1.59% 11.92%
PostgreSQL 2.33% 3.70% 24.99%
GCC 4.64% 20.05% 30.24%

Table 4. LOC and changed LOC in SM files.

In an attempt to find causes of the changes to the build
system, we calculated the correlation of number of changes
to SM-related artifacts to the number of times the file count
changed. For half of our case studies, we found correlation
stronger than 0.7. We found that none of systems showed a
strong correlation to the size of the changes in SM-related
artifacts and change in file counts.

61



5.2. Methodology

For our study, we chose six open source software sys-
tems that used CVS as their versioning system. This al-
lowed us to analyze the CVS logs — particularly of those
artifacts that are related to SM — and perform statistical
analysis on the data. The first step was to separate the
SM-related artifacts from other source artifacts. The SM-
related artifacts includes configuration scripts and system
description files, such as Makefiles, Ant build.xml
files, and SConscripts. We considered each CVS “com-
mit” record to be one change, and the number of lines in
each CVS commit to be the size of the change. By exam-
ining the size and frequency of changes in SM-related arti-
facts and source artifacts, we are able to address questions
such as:

1. How much effort is put into SM-related artifacts?

2. What is the relation between evolution of SM-related
artifacts and evolution software system as a whole?

A paper detailing the results of this study is under devel-
opment.

6. Summary and challenges

This position paper has outlined four approaches to
studying software systems using historical data extracted
from various kinds of source artifacts. In each case, we per-
formed automated analysis of the artifacts, then used vari-
ous intermediate tools (such as grok [3], awk, and bash
scripts) to created abstracted views that can be explored,
navigated, and visualized for program comprehension pur-
poses.
We conclude by noting that performing evolutionary

studies of software systems presents several challenges that
must be addressed by researchers in the field:

• Scale— In our experience, existing analysis tools of-
ten function “at the bleeding edge” of what is practical
with respect to internal (and external) storage and pro-
cessing. A typical static analysis performed on a single
version of a system often produces voluminous detail
and is computationally intensive; performing the same
analysis across multiple versions of a system requires
that scale issues be addressed seriously.

• Automation — Again, in our experience many soft-
ware analysis tools require significant user interven-
tion to extract accurate facts. This problem is exac-
erbated over multiple versions, and as new problems
arise and have to be dealt with.

• Artifact linkage and analysis granularity — The
canonical version control repository system, CVS, typ-
ically stores only source code, which it treats as plain
text. A sophisticated tool for exploring software sys-
tem evolution requires easy access not only to the
“facts” and statistics about the source code that result
from the analysis tools, but also to the source code en-
tities themselves; CVS simply does not understand the
notion of “method” or “function” embedded within a
file.

References

[1] G. Antoniol, U. Villano, E. Merlo, , and M. D. Penta. Ana-
lyzing cloning evolution in the Linux kernel. In Information
and Software Technology 44(13), 2002.

[2] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In Proc. of 2000 Intl. Conference on
Software Maintenance (ICSM-00), San Jose, California, Oc-
tober 2000.

[3] R. C. Holt. An introduction to the Grok language. Avail-
able at http://plg.uwaterloo.ca/˜holt/papers/grok-intro.html,
2002.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. A token-based code
clone detection tool: CCFinder and its empirical evaluation.
Technical report, Osaka University, 2000.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. In Transactions on Software Engineering
8(7), pages 654–670. IEEE Computer Society Press, 2002.

[6] C. J. Kapser and M. W. Godfrey. Toward a taxonomy for
source code cloning: A case study. In Presented at First Intl.
Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA-03), Amsterdam, September 2003.

[7] K. Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Proc. of
1997 Working Conference on Reverse Engineering (WCRE-
97), Amsterdam, Netherlands, October 1997.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W.M. Turski. Metrics and laws of software evolution—The
nineties view. In Proc. of the Fourth Intl. Software Metrics
Symposium (Metrics-97), Albuquerque, NM, 1997.

[9] A.Malton and T. Dean. The CPPX homepage: A fact extrac-
tor for C++. Website. http://www.swag.uwaterloo.ca/˜cppx.

[10] Q. Tu and M. W. Godfrey. The build-time software archi-
tectural view. In Proc. of 2001 Intl. Conference on Software
Maintenance (ICSM-01), Florence, Italy, October 2001.

[11] Q. Tu and M. W. Godfrey. An integrated approach for study-
ing software architectural evolution. In Proc. of 2002 Intl.
Workshop on Program Comprehension (IWPC-02), Paris,
France, June 2002.

[12] L. Zou and M. W. Godfrey. Detecting merging and splitting
using origin analysis. In Proc. of 2003 Working Conference
on Reverse Engineering (WCRE-03), Victoria, BC, Novem-
ber 2003.

62


