
Hindawi Publishing Corporation
ISRN Software Engineering
Volume 2013, Article ID 584731, 12 pages
http://dx.doi.org/10.1155/2013/584731

Research Article
Interlinking Developer Identities within and across Open
Source Projects: The Linked Data Approach

Aftab Iqbal and Michael Hausenblas

Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland

Correspondence should be addressed to Aftab Iqbal; aftab.iqbal@deri.org

Received 17 January 2013; Accepted 13 March 2013

Academic Editors: P. Ciancarini and M. Marzolla

Copyright © 2013 A. Iqbal and M. Hausenblas. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Software developers use various software repositories in order to interact with each other or to solve related problems. These
repositories provide a rich source of information for a wide range of tasks. However, one issue to overcome in order to make
this information useful is the identification and interlinking of multiple identities of developers. In this paper, we propose a Linked
Data-based methodology to interlink and integrate multiple identities of a developer found in different software repositories of a
project as well as across repositories of multiple projects. Providing such interlinking will enable us to keep track of a developer’s
activity not only within a single project but also across multiple projects.Themethodology will be presented in general and applied
to 5 Apache projects as a case study. Further, we show that the fewmethods suggested so far are not always appropriate to overcome
the developer identification problem.

1. Introduction and Motivation

In Software Engineering, many tools with underlying reposi-
tories have been introduced to support the collaboration and
coordination in distributed software development. Research
has shown that these software repositories contain rich
amount of information about software projects. By mining
the information contained in these software repositories,
practitioners can depend less on their experience and more
on the historical data [1]. However, software repositories
are commonly used only as record-keeping repositories
and rarely for design decision processes [2]. Examples of
software repositories are [3] source control repositories, bug
repositories, archived communication, and so forth.

Developers (we will use the term “developer” to represent
the core developers, contributors, bug reporters and users of
an open source project) use these repositories to interact
with each other or to solve software-related problems. By
extracting rich information from these repositories, one can
guide decision processes in modern software development.
For example, source code and bugs are quite often discussed
on bug repositories and project mailing lists. Data in these

software repositories could be analyzed to extract bug and
source code related discussions, which could be linked to
the actual bug description and source code. This could allow
keeping track of developers discussion related to a bug or
source code in different software repositories.

Developers are required to adopt an identity for each
software repository they want to use. For example, they are
required to adopt an email address in order to send an
email to the project mailing list, adopt an ID (we will use
the term “ID” to represent different types of identities which
developers use to interact with software repositories), push
commits to the source control repository, adopt an ID to
report bugs or post comments on a bug in bug repository,
and so forth. Often developers adopt different IDs for each
software repository and sometimes multiple IDs for the
same repository [4], while interacting with these software
repositories in different context. The software repositories
are designed to help developers collaborate and coordinate
but lack the feature to manage and merge multiple IDs of a
developer specially in the case ofmailing list and bug tracking
repositories. Hence, a developer can registermultiple IDs and
use them to collaborate and coordinatewith other developers.

2 ISRN Software Engineering

ch. . .
lu. . .

ea. . .

uwe

ma. . .

ot. . .

erik

ma. . .

fern

ry. . .
bu. . .

sa. . .ho. . .

si. . .
ka. . .ja. . .dm. . .

se. . .

sh. . .
jv. . .

po. . .

bm. . .

ps. . .

sh. . .

ha. .
fj. . .

st. . .

tomi

carp

ch. . .
ek. . .

jo. . .

nyh

va. . .

ab

wh. . .

cl. . .

ro. . .

li. . .

te. . .

in. . .

lu. . .

ro. . wo. . .
gs. . .

ba. . .

pe. . .

kk. . .

to. . .

bl. . .

ni. . .
uv

th. . .

ge. . .

go. . .

mi. . .

ma. . .

er. . .

us. . . d.s

br. . .

dd. . .
J. . .

ja. . .

ry. . .

adb

jk. . .
ieb

cd. . .

DO. . .

yo. . .

uc. . .

sp. . . ep. . .hu. . .

ka. . .

bo. . .

ja. . .

is. . .

ge. . .

ji. . .

koji

er. . .

ja. . .

fa. . .

sh. . .

da. . .

ki. . .

gr. . .

lu. . .

io. . .

mi. . .

ts. . .

je. . .

so. . .

ds. . .

cm

st. . .

fr. . .

mail

al. . .

ga. . .

pe. . .

sh. . .

yu. . .

wz. . .

bi. . .

tb. . .

yliu

mk. . .

es. . .

wh. . .

si. . .

dk. . .

ni. . .

cr. . .

vi. . .
ni. . .

rob
fa. . .

mi. . .

ss. . .

sy. . .

En. . .

ga. . .

si. . .

ma. . .

ms. . .

jm. . .

ln. . .

ch. . .

do. . .

bl. . .

im. . .

be. . .

wyhw

st. . .
ca. . . sp. . .

ha. . .
jon

karl
b. . .

do

to. . .

sc. . .

da. . .

s0. . .

de. . .

eh. . . go. . .

ha. . .

aj. . .

mb. . .

drew

jack

sl. . .

su. . .

so. . .
gb. . .

st. . .

da. . .

yo. . .

jira

ys. . .

bv. . .

cu. . .

br. . .

ma. . .

re. . .
gs. . .

ja. . .

pa. . .

dg. . .

rc. . .

ch. . .

Figure 1: Different identities of a developer.

For example, Figure 1 shows a subset of the social network
graph derived from the communication occurred among
developers on the mailing list of an Apache project.

In the figure, we colored two nodes (i.e., red and blue)
showing that both email ID(s) belong to a developer X (we
shortened the labels of each node in order to keep the privacy
of developers). It is quite clear that the developer X has used
both email ID(s) to communicate with other developers on
the mailing list. Looking into the social structure of graphs
(based on both ID(s)), we see that there are few ID(s)
which are common in both graphs but most of the ID(s)
are part of different social graphs of developer X. In an
ideal scenario, either both social graphs need to be merged
into one graph or at least there should exists some sort of
information conveying that both ID(s) belong to developer
X. Without any information provided about the different
IDs used by a developer, a researcher who carries out social
network analysis research [5–7] might consider both ID(s) as
two different developers because using distinct ID(s) makes
developers appear as different entities. Furthermore, analysis

of developer’s activity [8] within a project might be difficult
if the developer is using different and multiple IDs for each
software repository.

In the specific case of open source software development,
developers are often involved in multiple projects. One of the
many reasons is that they see their contribution of time and
efforts as a gift they provide to the project community. Other
reasons could be a developer’s ability to acquire skills and
experience by participating in multiple open source projects.
Hence the development activity of a developer is distributed
not only within different software repositories of a project
but also across different projects. It is worth mentioning
that there exists an implicit connection between developer’s
activity within different software repositories of a project and
also across different projects. Therefore, we require methods
and techniques to correctly identify and relate the different
IDs of developers not only within a project but also across
different projects.

The contribution of this paper is manifolds: we propose a
simple yet effective Linked Data-based approach to identify

ISRN Software Engineering 3

and interlink multiple IDs of a developer within different
software repositories of a project as well as across software
repositories of different projects. We show how interlinking
helps in integrating developer’s development activity which is
distributed within different software repositories of a project
due to the usage of multiple IDs. Further, we show how the
interlinking enables us to keep track of developer’s activity
across different projects. Further, we compare the matching
results of our approach with other existing developer identi-
fication approaches.

The paper is structured as follows. in Section 2 we review
related work and compare it to our approach. Research
questions are outlined in Section 3. In Section 4, we present
our approach to identify and interlink multiple IDs of a
developer. We report our evaluation on 5 Apache projects
in Section 5 followed by the discussion on the results and
research questions in Section 6. Finally, we conclude and
outline future steps in Section 7.

2. Related Work

To the best of our knowledge, there are only a few published
works on identifying and relating the different IDs that
developers use to interact with software repositories of a
project. In [9], Bird et al. proposed an approach to produce
a list of <name, email> pairs by parsing the emails and
clustering them. The clustering algorithm to measure the
similarity between every pair of ID(s) is based on string
similarity between names, between emails, between names
and emails, and so forth. Two ID(s) with a similarity measure
lying below a predefined threshold value are placed into
the same cluster. The authors use different approaches to
compute the similarity measures between every pair of ID(s),
some of which we tested on our data set to validate the
effectiveness of these approaches (cf. Section 5). We also use
the string similarity approach in order to interlink the ID(s)
of a developer but our scope is broader in a sense that we are
applying the heuristics not only within a single project or a
repository but also across repositories of multiple projects.

In [4], Robles and Gonzalez-Barahona discuss the
problem of developer identification in general, but the
work lacks details about the heuristics they propose to
identify and match the different IDs of developers. This
makes it difficult to validate their approaches for solving
this problem. The authors propose a technique to build
one identity from another by extracting the “real life”
name from email addresses, such as surname@domain.com,
name.surname@domain.com, and so forth. This is an
approach based on predefined name schemes. Further,
they try to match user names obtained from CVS to email
addresses (excluding the domain after “@”). Their approach
also relies on string similarity algorithm.

In [10], Conklin presents a methodology to integrate
data about projects by way of matching projects (entities)
based on certain heuristics. The heuristics include a simple
scoring system for confidence in pairwise project matches.
The author proposes to interlink similar projects which are
listed on multiple code forges. On the contrary, in this paper

we focused on identification and interlinking multiple IDs of
a developer.

In general, the problem is related to duplicate detec-
tion. The duplicate detection frameworks provide several
techniques to effectively solve matching different entities. In
this regard, Kopcke and Rah [11] analyzed and compared 11
different duplicate detection frameworks. While research in
this area mostly refers to identifying duplicates in the same
data set, the techniques might be mapped to the case of
matching over different data sets. However, they are tailor-
made for identifying different IDs of the same developer
inside one repository. Naumann and Herschel [12] provides
a nice overview of this research direction.

In the Semantic Web domain, Volz et al. [13] proposed
an interlinking framework also known as SILK framework
which generates link between two RDF data sets based on
some string similarity measures specified by the user. Their
interlinking framework supports different string similarity
algorithms to compare if two different RDF resources are
similar or not. In a next step, we will assess to what extent we
can use the SILK framework to interlink developer identities
in the near future.

3. Research Questions

In the following, we list down few research questions which
will be addressed later (Section 6) based on interlinking
multiple IDs of a developer.

(1) RQ-1:What is the added benefits of interlinking multi-
ple IDs of a developer?Wewill investigate if developers
are using multiple IDs within a software repository
and if interlinking them will provide any added ben-
efits. We will validate this on the mailing list data set
by computing the distinct nodes which are not shared
among different social graphs of a developer using
multiple IDs. Further, we will compute the number
of bugs reported by a developer using multiple IDs.
This would show us a clear picture on the amount of
information which was not previously connected.

(2) RQ-2: What is the ratio of developer’s existence in
multiple projects?We will investigate the frequency of
developer’s participation in multiple projects. We will
evaluate if developer’s participation follow Power’s
law that is, many developers participate in few
projects and only few developers participate in many
projects.

(3) RQ-3: What are the contributions made by develop-
ers in multiple projects? As mentioned in Section 1,
developers often contribute to multiple open source
projects. Therefore, we will evaluate to what extent
our interlinking approach helps us in tracing devel-
oper’s activity across multiple projects. In particular,
we will investigate if developers are highly active in
pushing source control commits, reporting bugs, and
participating in discussions across multiple projects.

4 ISRN Software Engineering

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sioct: <http://rdfs.org/sioc/types#> .
@prefix email:

<http://simile.mit.edu/2005/06/ontologies/email#> .
@prefix :

<http://srvgal85.deri.ie/linkedfloss/email2rdf/> .
:10029029 a sioct:MailMessage ;
email:from <http://srvgal85.deri.ie/linkedfloss/ai> ;
email:subject "compilation problem" ;
email:body "while compiling the latest source i am ..."

.

<http://srvgal85.deri.ie/linkedfloss/ai> a foaf:Person ;
foaf:name "aftab iqbal" ;
foaf:mbox <mailto:ai@example.com> .
...

Listing 1: An exemplary email RDFication.

4. Our Approach

In this section, we describe our approach for identifying and
interlinking different IDs of a developer found in different
software repositories of a project as well as across repositories
of multiple projects. We considered mailing list and bug
repository data sources in this paper because developers often
use multiple IDs on these software repositories as opposed
to source control repository where access and accounts are
controlled centrally.

With “Linked Data Driven Software Development”
(LD2SD) [14], we have introduced a Linked Data-based
methodology to relate and integrate data across software
repositories explicitly and unambiguously. We propose to
use Semantic Web technologies to represent data from
different software repositories. As such, we propose to
use (Resource Description Framework) [15] RDF as the
core, target data model. Once modeled in RDF, the data
can be easily integrated, indexed and queried using the
SPARQL query (http://www.w3.org/TR/rdf-sparql-query/)
standard and associated tools. Finally, the integrated data
can be published on the Web using Linked Data principles
(http://www.w3.org/DesignIssues/LinkedData.html) allow-
ing third parties to discover and subsequently crawl the
knowledge, and also allowing to interlink with background
or other related information available remotely on the Web.
We refer the readers to [16] for details on how these standards
would be used. Instead herewe focus on the identification and
interlinking of developer ID(s) in software repositories.

As mentioned by Bird et al., most emails contain header
of the form [9]

From: "aftab iqbal" <ai@example.com>

For each email, we represent header information in
RDF using FOAF (http://www.foaf-project.org/) ontology
as shown in Listing 1 (lines 10–12) (the URIs used in
the listings are for illustration purpose only and are not
dereferenceable). We used email alias to build developer URI
(i.e., a resource in RDF) because email alias can be used to
distinguish between different developers. Further, the name

and email address are defined as property values of that
resource.

While converting mailing list data to RDF using our
customwritten scripts, we found certain developers who have
used either full or part of their names in the email header. For
example
From: "muhammad aftab iqbal" <ai@example.com>

The above two email headers reveal multiple name(s)
of the sender (i.e., aftab iqbal and muhammad aftab
iqbal). The developer URI will remain the same in
the case of the above two exemplary email headers (i.e.,
http://srvgal85.deri.ie/linkedfloss/ai) but the property values
will be changed (name in that case) as each email header
belongs to a different email. Therefore, multiple name(s) can
be easily extracted to produce a list of <name, id> pairs for
a particular developer. Each bug usually represents developer
information of the form
<assignee username="aftab.iqbal">aftab iqbal</assignee>

<reporter username="jim">jim</reporter>
We represent developer information for each bug in RDF

using FOAF ontology as shown in Listing 2 (lines 10–12).
After transforming the data into RDF, we loaded the

RDF data sets into SPARQL endpoint (http://linkedfloss
.srvgal85.deri.ie/sparql). The next step is to identify and
interlink multiple IDs of a developer. From the Listings 1 and
2, we are able to conclude that the developer (aftab iqbal)
has used different IDs (i.e., ai and aftab.iqbal) while
interacting with others on the mailing list and bug tracking
repository. We can interlink these two RDF fragments as
shown in Listing 3 using an owl:sameAs property indicating
that the developer URIs actually refer to the same entity.

By explicitly interconnecting ID(s) of a developer, we will
be able to trace developer’s activity on the mailing list as well
as bug tracking repository. However, manually identifying
and interlinking ID(s) of a developer is a time consuming task
especially when dealing with large amount of data. Hence,
one is required to devise an automatic approach for the
identification and interlinking of developer ID(s). Therefore,
in the following we will explain our simple yet effective
developer matching approach.

ISRN Software Engineering 5

@prefix baetle: <http://baetle.googlecode.com/svn/ns/#>
.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix :

<http://srvgal85.deri.ie/linkedfloss/bug2rdf/> .
:41508 a baetle:Issue;
baetle:assigned_to

<http://srvgal85.deri.ie/linkedfloss/aftab.iqbal> ;
baetle:reporter

<http://srvgal85.deri.ie/linkedfloss/jim> ;
baetle:summary "compilation issue in build 5.1" ;
baetle:hasState "Open" .

<http://srvgal85.deri.ie/linkedfloss/aftab.iqbal> a
foaf:Person ;

foaf:name "aftab iqbal" ;
foaf:accountName "aftab.iqbal" .
...

Listing 2: An exemplary bug RDFication.

@prefix owl: <http://www.w3.org/2002/07/owl#> .
<http://srvgal85.deri.ie/linkedfloss/ai> owl:sameAs

<http://srvgal85.deri.ie/linkedfloss/aftab.iqbal> .

Listing 3: An interling example.

4.1. Preliminaries. Let Authors be a list of distinct developer
URIs found in the data set:

Authors = {𝐴, 𝐵, 𝐶, 𝐷, . . .} , (1)

where

𝐴 = http : //srvgal85.deri.ie/linkedfloss/ai,

𝐵 = http : //srvgal85.deri.ie/linkedfloss/aftab.iqbal.
(2)

Let �́� and �́� be the distinct <name, id> pairs for 𝐴 and 𝐵

respectively

�́� = (
< aftab iqbal, ai@example.com >

< muhammad aftab iqbal, ai@example.com >
) ,

�́� = (< aftab iqbal, aftab.iqbal@example.com >) .

(3)

Let 𝐿 be a set which contains a collection of distinct
developer URIs along with their associated <name, id> pairs

𝐿 = (

(𝐴, �́�)

(𝐵, �́�)

(𝐶, �́�)

...

). (4)

4.2. Interlinking ID(s) within a Repository. We compared
each developer URI with every other developer URI in
set 𝐿 by comparing their respective <name, id> (where id
means excluding everything after “@”) pairs. If the match is

found thenwe established an owl:sameAs link between both
developer URIs as shown in Listing 3.The pseudocode of our
approach is shown in Algorithm 1.

4.3. Interlinking ID(s) across Projects. Let Prj
𝐴
and Prj

𝐵
(cf.

(5)) be the sets which contain the collection of distinct
developer URIs along with their associated <name, email>
pairs extracted from the repositories of project A and
project B such that

Prj
𝐴
= (

(𝐴, �́�)

(𝐵, �́�)

(𝐶, �́�)

...

),

Prj
𝐵
= (

(𝐴, �́�)

(𝐵, �́�)

(𝐶, �́�)

...

).

(5)

For each developer URI, we queried the owl:sameAs
links (if any) in order to build a comprehensive list of <name,
email> pairs. Later, we compared each developer URI in set
Prj
𝐴
with every developer URI in set Prj

𝐵
by comparing their

respective <name, email> pairs. If the match is found then
we established an owl:sameAs link between both developer
URIs (cf. Listing 3).Thepseudocode of our approach is shown
in Algorithm 2.

6 ISRN Software Engineering

𝑙𝑠𝑡𝑈𝑅𝐼 ← 𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑑𝑒V𝑒𝑙𝑜𝑝𝑒𝑟𝑈𝑅𝐼𝑠

for 𝑖 ← 0 to 𝑙𝑠𝑡𝑈𝑅𝐼.𝑠𝑖𝑧𝑒()

do{𝑙𝑠𝑡 ← 𝑔𝑒𝑡 𝑖𝑑(𝑠) 𝑎𝑛𝑑 𝑛𝑎𝑚𝑒(𝑠) 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑤𝑖𝑡ℎ 𝑙𝑠𝑡𝑈𝑅𝐼[𝑖]

ℎ𝑠ℎ𝑀𝑎𝑝 : 𝑎𝑑𝑑(𝑑𝑒𝑣𝑈𝑅𝐼[𝑖], 𝑙𝑠𝑡)

comment: match each developer URI with every other developer URI in
comment: the list based on the <name,id> pairs
for 𝑖 ← 0 to ℎ𝑠ℎ𝑀𝑎𝑝.𝑠𝑖𝑧𝑒()

do

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑖𝑑1 ← ℎ𝑠ℎ𝑀𝑎𝑝.𝑔𝑒𝑡𝐾𝑒𝑦(𝑖)

𝑙𝑠𝑡1 ← ℎ𝑠ℎ𝑀𝑎𝑝.𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒(𝑖𝑑1)

for 𝑗 ← 𝑖 + 1 to ℎ𝑠ℎ𝑀𝑎𝑝.𝑠𝑖𝑧𝑒()

do
{
{
{
{

{
{
{
{

{

𝑖𝑑2 ← ℎ𝑠ℎ𝑀𝑎𝑝.𝑔𝑒𝑡𝐾𝑒𝑦(𝑗)

𝑙𝑠𝑡2 ← ℎ𝑠ℎ𝑀𝑎𝑝.𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒(𝑖𝑑2)

if 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑙𝑠𝑡1, 𝑙𝑠𝑡2)

then {𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑒𝐴𝑠𝐿𝑖𝑛𝑘(𝑖𝑑1, 𝑖𝑑2)

Algorithm 1: ID LINKING IN A REPOSITORY().

𝑝𝑟𝑗 𝐴 ← 𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑑𝑒V𝑒𝑙𝑜𝑝𝑒𝑟𝑈𝑅𝐼𝑠 𝑓𝑟𝑜𝑚𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝐴

𝑝𝑟𝑗 𝐵 ← 𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑑𝑒V𝑒𝑙𝑜𝑝𝑒𝑟𝑈𝑅𝐼𝑠 𝑓𝑟𝑜𝑚𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝐵

for 𝑖 ← 0 to 𝑝𝑟𝑗 𝐴.𝑠𝑖𝑧𝑒()

do

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑙𝑠𝑡𝐼𝐷 ← 𝑔𝑒𝑡𝑆𝑎𝑚𝑒𝐴𝑠𝐿𝑖𝑛𝑘𝑠(𝑝𝑟𝑗 𝐴[𝑖])

for 𝑗 ← 0 to 𝑙𝑠𝑡𝐼𝐷.𝑠𝑖𝑧𝑒()

do{𝑙𝑠𝑡 ← 𝑔𝑒𝑡 𝑒𝑚𝑎𝑖𝑙(𝑠) 𝑎𝑛𝑑 𝑛𝑎𝑚𝑒(𝑠) 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑤𝑖𝑡ℎ 𝑙𝑠𝑡𝐼𝐷[𝑗]

𝑙𝑠𝑡𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑(𝑙𝑠𝑡)

ℎ𝑠ℎ𝑀𝑎𝑝 𝐴.𝑎𝑑𝑑(𝑝𝑟𝑗 𝐴[𝑖], 𝑙𝑠𝑡𝑃𝑎𝑖𝑟𝑠)

for 𝑖 ← 0 to 𝑝𝑟𝑗 𝐵.𝑠𝑖𝑧𝑒()

do

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑙𝑠𝑡𝐼𝐷 ← 𝑔𝑒𝑡𝑆𝑎𝑚𝑒𝐴𝑠𝐿𝑖𝑛𝑘𝑠(𝑝𝑟𝑗 𝐵[𝑖])

for 𝑗 ← 0 to 𝑙𝑠𝑡𝐼𝐷.𝑠𝑖𝑧𝑒()

do{𝑙𝑠𝑡 ← 𝑔𝑒𝑡 𝑒𝑚𝑎𝑖𝑙(𝑠) 𝑎𝑛𝑑 𝑛𝑎𝑚𝑒(𝑠) 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑤𝑖𝑡ℎ 𝑙𝑠𝑡𝐼𝐷[𝑗]

𝑙𝑠𝑡𝑃𝑎𝑖𝑟𝑠.𝑎𝑑𝑑(𝑙𝑠𝑡)

ℎ𝑠ℎ𝑀𝑎𝑝 𝐵.𝑎𝑑𝑑(𝑝𝑟𝑗 𝐵[𝑖], 𝑙𝑠𝑡𝑃𝑎𝑖𝑟𝑠)

comment: match each developer URI of project A with every developer URI
comment: in project B based on the <name,email> pairs
for 𝑖 ← 0 to ℎ𝑠ℎ𝑀𝑎𝑝 𝐴.𝑠𝑖𝑧𝑒()

do

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑖𝑑1 ← ℎ𝑠ℎ𝑀𝑎𝑝 𝐴.𝑔𝑒𝑡𝐾𝑒𝑦(𝑖)

𝑙𝑠𝑡1 ← ℎ𝑠ℎ𝑀𝑎𝑝 𝐴.𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒(𝑖𝑑1)

for 𝑗 ← 0 to ℎ𝑠ℎ𝑀𝑎𝑝 𝐵.𝑠𝑖𝑧𝑒()

do
{
{
{
{

{
{
{
{

{

𝑖𝑑2 ← ℎ𝑠ℎ𝑀𝑎𝑝 𝐵.𝑔𝑒𝑡𝐾𝑒𝑦(𝑗)

𝑙𝑠𝑡2 ← ℎ𝑠ℎ𝑀𝑎𝑝 𝐵.𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒(𝑖𝑑2)

if 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑙𝑠𝑡1, 𝑙𝑠𝑡2)

then {𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑒𝐴𝑠𝐿𝑖𝑛𝑘(𝑖𝑑1, 𝑖𝑑2)

Algorithm 2: ID LINKING ACROSS PROJECTS().

The outcome of our above described matching
approach(es) is a set of RDF files in N-TRIPLES (http://www
.w3.org/2001/sw/RDFCore/ntriples/) format which contains
the developer URIs having owl:sameAs links between
them (e.g., see Listing 3). The RDF files were later loaded
into the SPARQL endpoint so that it can be used to query
development activity of a developer within and across
projects.

5. Evaluation

Before we discuss the results of our matching approach(es),
we describe the Apache projects selected for evaluation. We
gathered data from software repositories of 5 Apache projects
(c.f Table 1). The reason of choosing Apache projects is that
the repositories of these projects are on the Web and are
available to download (i.e., mailing list archives, bugs, etc.).

ISRN Software Engineering 7

Table 1: Apache projects data range.

Apache projects Date range
Apache Ant [17] 2000–2012
Apache Hadoop [18] 2006–2012
Apache Logging [19] 2001–2012
Apache Lucene [20] 2001–2012
Apache Maven [21] 2003–2012

Table 2: Matching email ID(s) within a project.

Apache projects No. of developers ID(s) found links
Apache Ant 2,469 453 320
Apache Hadoop 1,260 189 118
Apache Logging 988 105 76
Apache Lucene 1,506 208 158
Apache Maven 1,886 340 246

Table 3: Matching bug repository ID(s) within a project.

Apache projects No. of developers ID(s) found links
Apache Ant 3,927 143 76
Apache Hadoop 1,219 14 7
Apache Logging 1,131 42 21
Apache Lucene 981 27 15
Apache Maven 1,577 41 22

We selected data from the beginning of each Apache project
to date as listed in Table 1.

5.1. Interlinking ID(s) within a Repository. We applied our
interlinking approach (cf. Algorithm 1) on the mailing list
and bug tracking repositories separately in order to iden-
tify and interlink multiple IDs of a developer within a
repository. During the matching phase, we found cer-
tain IDs which were more generic and multiple develop-
ers in each project were associated to those ID(s). We
excluded those ID(s) during the matching phase. Example of
those ID(s) are jakarta, jakarta-ant, lists, ant-dev,
dev, ant, apache, general, hadoop, nutch-dev, log4j,
log4j-dev, java-dev, lucene, and so forth. The outcome
of our interlinking approach is listed in Tables 2 and 3 where
the "links" column tells the total number of owl:sameAs
links established between ID(s), and the "ID(s) found"
column tells the distinct ID(s) found with a match.

From Tables 2 and 3, it is quite obvious that the usage of
multiple IDs is mostly common on the mailing list than the
bug tracking repository except the special case of Apache
ANT project. However, it is still important to identify and
interlink multiple IDs of a developer in every software
repository. The same interlinking approach can be used
to match developer ID(s) across different repositories (i.e.,
matching mailing list and bug tracking repository developer
ID(s)) of a project.

Table 4: Matching email ID(s) across projects.

Project A
(no. of
developers)

Project B
(no. of
developers)

Mailing list
Name and email Name/email
ID(s)
found Links ID(s)

found Links

Apache Ant
(2469)

Apache Hadoop
(1260) 24 12 59 43

Apache Ant
(2469)

Apache Logging
(988) 153 77 232 151

Apache Ant
(2469)

Apache Lucene
(1506) 75 38 129 92

Apache Ant
(2469)

Apache Maven
(1886) 198 100 365 254

Apache Hadoop
(1260)

Apache Logging
(988) 2 1 6 3

Apache Hadoop
(1260)

Apache Lucene
(1506) 86 43 121 82

Apache Hadoop
(1260)

Apache Maven
(1886) 34 17 48 29

Apache Logging
(988)

Apache Lucene
(1506) 40 20 68 41

Apache Logging
(988)

Apache Maven
(1886) 96 51 156 103

Apache Lucene
(1506)

Apache Maven
(1886) 92 46 134 81

5.2. Interlinking ID(s) across Projects. In order to identify and
interlink ID(s) of a developer across different projects, we
applied our interlinking approach (cf. Algorithm 2) to the bug
tracking and mailing list repositories of the Apache projects
separately. We considered two ID(s) to be similar if either
the <name, email> pairs of both ID(s) matched or if only
the name or email address of the ID(s) matched. During
the evaluation, we found match for certain developers who
have used single word name (e.g., chris, brian, J, etc.). As it is
difficult to differentiate if the developers are the same (based
on a single word name), we only considered a match if the
developer name consists of at-least two words (i.e., name and
surname).The results of our cross project matching approach
based onmailing list and bug tracking repositories are shown
in Tables 4 and 5.

The results show that matching based on either name
or email address generates more links comparing to the
<name, email> approach. Also, there are good number of
developers whose ID(s) are found in multiple projects. The
most prominent among them are the developers of Apache
ANT and Apache Maven project. The reasons behind it
could be the technical dependencies between both projects
(e.g., using project components) or the interest of developers
working on similar kind/category of projects.

5.3. Comparison of Developer Identification Approaches. In
this section, we apply few methods suggested so far (see
Section 2) on our data set in order to validate the effectiveness
of these methods comparing to our approach.We applied the

8 ISRN Software Engineering

Table 5: Matching bug repository ID(s) across projects.

Project A
(no. of
developers)

Project B
(no. of
developers)

Bug tracking system

Name and email Name/email

ID(s)
found Links ID(s)

found Links

Apache Ant
(3927)

Apache Hadoop
(1219) 20 10 68 35

Apache Ant
(3927)

Apache Logging
(1131) 242 121 363 197

Apache Ant
(3927)

Apache Lucene
(981) 24 12 61 34

Apache Ant
(3927)

Apache Maven
(1577) 74 37 261 143

Apache Hadoop
(1219)

Apache Logging
(1131) 2 1 19 10

Apache Hadoop
(1219)

Apache Lucene
(981) 44 22 45 23

Apache Hadoop
(1219)

Apache Maven
(1577) 20 10 20 10

Apache Logging
(1131)

Apache Lucene
(981) 4 2 16 8

Apache Logging
(1131)

Apache Maven
(1577) 32 16 98 52

Apache Lucene
(981)

Apache Maven
(1577) 16 8 27 14

methods only on the mailing list data set because we found
the usage of multiple IDs more on the mailing list comparing
to the bug repository data set. In order to identify multi-
ple IDs of a developer, we computed similarities between
developer names and email addresses or between two email
addresses using Levenshtein edit distance [22] algorithm, as
suggested by Bird et al. in [9]. The match(es) is care those
developers with the lowest edit distance. Clearly, there is no
sense in allowing arbitrary large distance values so we tested
the methods by setting three different threshold values:

(1) the maximal length of both strings,
(2) the minimal length of both strings,
(3) a fixed threshold value of 4.

In order to identify the similarity between names and
emails (i.e., Name-Email approach), we matched email
addresses (excluding everything after “@”) and developer
names by doing a pairwise comparison. Besides names and
emails, it is very likely that the emails are textually similar to
each other if they belong to the same developer.Thus, we also
computed the pairwise similarities between email addresses
(i.e., Email-Email approach) and determined match(es) for
one email by choosing those with the lowest edit distance.
Later, we validate the match(es) produced by each method
and discard thewrongmatch(es).The results of bothmethods
comparing to our method is shown in Figure 2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Ap
ac

he
 A

nt

Ap
ac

he
 H

ad
oo

p

Ap
ac

he
 L

og
gi

ng

Ap
ac

he
 L

uc
en

e

Ap
ac

he
 M

av
en

ID
(s

) m
at

ch
ed

Our approach
Name-email (minimum)
Name-email (maximum)
Name-email (fix threshold)

Email-email (minimum)
Email-email (maximum)
Email-email (fix threshold)

Figure 2: Comparison of different matching approaches.

The figure shows that our approach identifies more
ID(s) comparing to other existing approaches. Although
combination of existing approaches with our approachmight
produce even better matching results but this is not in the
current scope of this paper.

6. Discussion

In this section, we discuss the research questions (cf.
Section 3) based on the results we achieved through interlink-
ing multiple IDs of a developer.

RQ-1: What is the added benefits of interlinking multiple
IDs of a developer?

In order to evaluate the added benefits of interlinking
multiple IDs of a developer, we calculated the difference
in the social graphs constructed from the mailing list data
set and the number of bugs reported by a developer whose
multiple IDs were not interlinked.Wewanted to find out how
much of the developer’s development activity is not explicitly
interconnected due to the usage of multiple IDs within a
software repository.

We calculated the difference between social graphs of a
developer who has multiple ID(s) for each Apache project.
The social graphs were constructed by analyzing the reply
structure of the email threads. The difference between two
social graphs belonging to the same developer was calculated
by computing the number of nodes (i.e., ID) which are part of
one social graph of a developer and are missing in the other
social graph of that particular developer. This would reveal
distinct nodes which are part of different social graphs of a
developer and lack a common connection (as motivated in
Figure 1). We sorted the results and plotted it in the form of a
chart as shown in Figure 3.

ISRN Software Engineering 9

0

150

300

450

 0 50 100 150 200 250

So
ci

al
 re

la
tio

n

Developers

Apache Ant

(a)

0

60

120

180

 0 20 40 60 80 100
Developers

Apache Hadoop

So
ci

al
 re

la
tio

n

(b)

0

85

170

 0 10 20 30 40 50 60

Apache Logging

So
ci

al
 re

la
tio

n

Developers

(c)

0

90

180

270

 0 20 40 60 80 100 120 140
Developers

Apache Lucene

So
ci

al
 re

la
tio

n

(d)

0

210

420

630

 0 50 100 150 200

Apache Maven

So
ci

al
 re

la
tio

n

Developers

(e)

Figure 3: Social relation difference.

The charts plotted show a potential difference in the social
graphs of a developer who has multiple IDs. For example, in
Apache Maven project (cf. Figure 3), we found a developer
whose multiple social graphs had a difference of 613 nodes.
This means that there are 613 nodes which are not shared
among his multiple social graphs. We further computed the
number of bugs reported by a developer using multiple IDs
and plotted the results in the form of chart as shown in
Figure 4. We stacked up the bugs reported by a developer
using multiple IDs to show the total number of bugs he/she
reported.

The results depicted in Figures 3 and 4 show that
establishing owl:sameAs links between multiple IDs of a
developer helps in better integration of data sources from the
research (i.e., carrying out social network analysis) as well as
the software development point of view (i.e., tracing devel-
oper activity in a repository). However, based on the small
number of Apache projects we selected for this study, the
bugs reporting activity using multiple IDs is not significant
comparing to the mailing list’s social graph differences but
we believe that one might find significant differences if it is
applied to a large number of open source projects.

RQ-2:What is the ratio of developer’s existence in multiple
projects?

Based on the evaluation data from 5 Apache projects, we
queried owl:sameAs links of each developer across different
Apache projects under consideration. Later, we counted the
number of projects forwhich a developer has an owl:sameAs
link and plotted the results as shown in Figure 5.

The chart shows that developer’s participation inmultiple
projects follow Power’s law because of the large number of
developer’s participation in 2 Apache projects in contrast to
participation in 3, 4, or 5 Apache projects. For each Apache
project, we found a small subset of developers participating
in at-least 4 Apache projects. It shows us a great tendency of
developer’s participation inmultiple projects. It further opens
up new research challenges in order to access, evaluate, and
analyze developer’s behavior while contributing to multiple
projects in a given period of time.

RQ-3: What are the contributions made by developers in
multiple projects?

In order to trace developer’s activity across multiple
projects, we queried and retrieved owl:sameAs links of each
developer. Later, we computed the development activity of
only those developers who participated in multiple projects.
In Figure 6, we have summarized the development activity of
few developers who contributed to or participated in at-least
2 Apache projects.

10 ISRN Software Engineering

 0
 10
 20
 30
 40
 50
 60
 70
 80

Bu
gs

 re
po

rt
ed

Developers

Apache Ant

0 10 20 30 40 50 60 70

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80

Developers

Apache Hadoop

Bu
gs

 re
po

rt
ed

0 1 2 3 4 5 6 7 8

(b)

Developers

 0

 5

 10

 15

 20
Apache Logging

Bu
gs

 re
po

rt
ed

0 5 10 15 20

(c)

 0
 10
 20
 30
 40
 50

Apache Lucene

Bu
gs

 re
po

rt
ed

0 2 4 6 8 10 12 14
Developers

(d)

Developers
0 5 10 15 20

 0
 10
 20
 30
 40
 50
 60
 70

Apache Maven

Bu
gs

 re
po

rt
ed

IDA
IDB
IDC

(e)

Figure 4: Bugs reported difference.

The figure shows that only few developers have source
control commit rights on multiple projects while most devel-
opers have commit rights on a single project. Further, the
results show that developers are mostly active in exchanging
emails and participating in bugs related discussions compar-
ing to bugs reporting while contributing to multiple projects.
There is a possibility that the developers contributed to the
source code of multiple projects by submitting source code
patches to the mailing list or bug tracking repository. We
opt out this particular study as it requires interlinking source
code authorship to the developers which is not in the current
scope of this paper.

Based on the results, we believe that if the samemethodol-
ogy is applied to a large number of open source projects then
we will see a significant amount of developer’s activity across
multiple projects.

7. Conclusion

We have motivated and proposed a simple yet effective
approach to identify and interlink developer ID(s) within

different software repositories of a project as well as across
different projects. We have shown that explicitly estab-
lishing the interconnection (i.e., Linked Data approach)
between multiple IDs of a developer helps in integrat-
ing, querying,and tracking developer activities in software
repositories of a single project as well as across multiple
projects.

We plan to combine existing developer identification
methods with our methodology which might help in
improving the interlinking approach, yielding higher qual-
ity and quantity links for developer ID(s). We further
plan to integrate other potential developer-related open
source repositories (i.e., analytical services like Ohloh, code
forges, etc.) as discussed elsewhere [23]. We also plan to
include more Apache projects and establish cross-project
interlinking among developer ID(s). Based on that, we
will study the social behavior of developers who had
contributed to different projects in a given period of
time. We believe that this will give new insights into the
social and technical aspects of open source software devel-
opers.

ISRN Software Engineering 11

 0

 50

 100

 150

 200

 250

 300

Ap
ac

he
 A

nt

Ap
ac

he
 H

ad
oo

p

Ap
ac

he
 L

og
gi

ng

Ap
ac

he
 L

uc
en

e

Ap
ac

he
 M

av
en

N
o.

 o
f d

ev
elo

pe
rs

2 projects
3 projects

4 projects
5 projects

Figure 5: Developer’s existence in multiple Apache projects.

 0

 2000

 4000

 6000

 8000

 10000

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ap
ac

he
_A

nt
Ap

ac
he

_H
ad

oo
p

Ap
ac

he
_L

og
gi

ng
Ap

ac
he

_L
uc

en
e

Ap
ac

he
_M

av
en

Ac
tiv

ity
 le

ve
l

Commits
Bugs reported

Bug comments
Emails

dev 7dev 6dev 5dev 4dev 3dev 2dev 1

Figure 6: Developer’s contribution in different Apache projects.

Acknowledgment

Thework presented in this paper has been funded by Science
Foundation Ireland under Grant no. SFI/08/CE/I1380 (Lion-
2).

References

[1] A. E.Hassan, “The road ahead formining software repositories,”
in Proceedings of the 16th Frontiers of Software Maintenance
(FoSM ’08), pp. 48–57, October 2008.

[2] S. Diehl, H. C. Gall, and A. E. Hassan, “Guest editors introduc-
tion: special issue on mining software repositories,” Empirical

Software Engineering, vol. 14, no. 3, pp. 257–261, 2009.
[3] A. E. Hassan, A. Mockus, R. C. Holt, and P. M. Johnson,

“Guest editors’ introduction: special issue on mining software
repositories,” IEEETransactions on Software Engineering, vol. 31,
no. 6, pp. 426–428, 2005.

[4] G. Robles and J. M. Gonzalez-Barahona, “Developer identi-
fication methods for integrated data from various sources,”
SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–5,
2005.

[5] S. F. De Sousa, M. A. Balieiro, J. M. Dos, and C. R. B. DeSouza,
“Multiple social networks analysis of FLOSS projects using
Sargas,” in Proceedings of the 42nd Annual Hawaii International
Conference on System Sciences (HICSS ’09), January 2009.

[6] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
failures with developer networks and social network analysis,”
in Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering (SIGSOFT ’08),
pp. 13–23, ACM, New York, NY, USA, November 2008.

[7] G. Madey, V. Freeh, and R. Tynan, “The open source software
development phenomenon: an analysis based on social network
theory,” in Proceedings of the Americas Conference on Informa-
tion Systems (AMCIS ’02), pp. 1806–1813, 2002.

[8] S. Christley and G. Madey, “Analysis of activity in the Open
Source Software development community,” in Proceedings of the
40thAnnualHawaii International Conference on System Sciences
(HICSS ’07), IEEE Computer Society, Washington, DC, USA,
January 2007.

[9] C. Bird, A.Gourley, P. Devanbu,M.Gertz, andA. Swaminathan,
“Mining email social networks,” in Proceedings of the Interna-
tional Workshop on Mining Software Repositories (MSR ’06), pp.
137–143, 2006.

[10] M. Conklin, “Project entity matching across FLOSS reposito-
ries,” IFIP International Federation for Information Processing,
vol. 234, pp. 45–57, 2007.

[11] H. Kopcke and E. Rahm, “Frameworks for entity matching: a
comparison,” Data & Knowledge Engineering, vol. 69, no. 2, pp.
197–210, 2010.

[12] F. Naumann and M. Herschel, “An introduction to duplicate
detection,” Synthesis Lectures on Data Management, vol. 2, no.
1, pp. 1–87, 2010.

[13] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Silk a link
discovery framework for the web of data,” in Proceedings of
the 2nd Workshop about Linked Data on the Web (LDOW ’09),
Madrid, Spain, 2009.

[14] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello,
“LD2SD: linked data driven software development,” in Proceed-
ings of the 21st International Conference on Software Engineering
and Knowledge Engineering (SEKE ’09), pp. 240–245, July 2009.

[15] G. Klyne, J. J. Carroll, and B. McBride, “Resource Description
Framework (RDF): Concepts and Abstract Syntax),” W3C Rec-
ommendation 10 February 2004, RDF Core Working Group,
2004.

[16] T. Heath and C. Bizer, “Linked data: evolving the web into
a global data space,” Synthesis Lectures on the Semantic Web:
Theory and Technology, vol. 1, no. 1, pp. 1–136, 2011.

[17] http://ant.apache.org/.
[18] http://hadoop.apache.org/.
[19] http://logging.apache.org/.
[20] http://lucene.apache.org/.
[21] http://maven.apache.org/.

12 ISRN Software Engineering

[22] E. Ukkonen, “Algorithms for approximate string matching,”
Information and Control, vol. 64, no. 1–3, pp. 100–118, 1985.

[23] A. Iqbal and M. Hausenblas, “Integrating developer-related
information across open source repositories,” in Proceedings of
the IEEE 13th International Conference on Information Reuse
and Integration (IRI ’12), 2012.

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Applied
Computational
Intelligence and Soft
Computing

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Computer Graphics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Advances in 

 Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2009

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

ISRN
Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Human-Computer
Interaction

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Machine Vision

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Communications
and Networking

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

