Tracking Concept Drift of Software Projects Using Defect Pediction Quality

Jayalath Ekanayake Jonas Tappolét Harald C. Galt, Abraham Bernstein
*Dynamic and Distributed Systems GroupSoftware Evolution and Architecture Lab
Department of Informatics, University of Zurich

{jayalath, tappolet, gall, bernstej@ifi.uzh.ch

Abstract expected number of bugs and their bug-fixing effort. But bug
prediction can also be helpful in a qualitative way whenever
Defect prediction is an important task in the mining of the defect location is predicted: testing efforts can then b
software repositories, but the quality of predictions eari accomplished with a focus on the predicted bug locations.
strongly within and across software projects. In this paperAll of the above mentioned approaches use the history data
we investigate the reasons why the prediction quality is s@f a software project to predict defects in the next release.
fluctuating due to the altering nature of the bug (or defect)Features (or variables) are extracted from the raw dateselhe
fixing process. Therefore, we adopt the notion afomcept features (from the learning period) are then used together
drift, which denotes that the defect prediction model haswith the goal valuesife.,bug or no bug) to learn a prediction
become unsuitable as set of influencing features has chang@dodel. To evaluate such a model, it is fed with data from
— usually due to a change in the underlying bug generatioranother time period and the predicted values are compared
process (i.e., the concept). We explore four open sourceith the observed ones facilitating an accuracy measure.
projects (Eclipse, OpenOffice, Netbeans and Mozilla) and The common downside of these approaches is their
construct file-level and project-level features for each oftemporally coarse evaluations. Usually, a bug prediction
them from their respectiv€VS and Bugzilla repositories. algorithm is evaluated, in terms of accuracy, in only one
We then use this data to build defect prediction models andr several different points in time. Such selective (insula
visualize the prediction quality along the time axis. Theseanalyses make generalizations of the prediction methods
visualizations allow us to identify concept drifts and — as adifficult: it postulates that the evolution of a project ansl i
consequence — phases of stability and instability expdessedata is more or less stable over time.
in the level of defect prediction quality. Further, we idént In our approach we hypothesize that a project passes sev-
those project features, which are influencing the defeceral alternating phases of stability and instability. &toslity
prediction quality using both a tree induction-algorithmd can be seen as a sudden change of influencing factors. These
a linear regression model. Our experiments uncover thafactors can be of various kind such as a changing number
software systems are subject to considerable concepsdriftof developers, the use of a new development tool or even
in their evolution history. Specifically, we observe that th political or economical events (financial crisis, presiign
change in number of authors editing a file and the numbeelections)etc.
of defects fixed by them contribute to a project's concept As a consequence, the concepe.(the bug generation
drift and therefore influence the defect prediction quality process) we are trying to learn changes, resulting in a
Our findings suggest that project managers using defegphenomenon calledoncept drift[6]. Obviously, concept
prediction models for decision making should be aware ofdrifts can invalidate a learned bug prediction model and lea
the actual phase of stability or instability due to a potaehti to less accurate predictions as time progresses. Our goal is

concept drift. to identify and locate concept drifts that affect the accura
of defect prediction algorithms. For that reasoar measure
1. Introduction for stability and instability of the concept is the qualit§ o

the defect predictionin a stable phase, the history data is a
In mining software repositories, many different ap- good predictor for future bugs; analogously, in an unstable
proaches have been developed to predict the number arhase, the prediction quality will significantly decreasel a
location of future bugs in source code.d.,[1], [2], [3], become unreliable for effort and resource allocation.
[4], [5]). Such predictions can help a project manager to Our approach can be summarized as follows. To uncover
quantitatively plan and steer the project according to thestable and unstable phases we apply our bug prediction
algorithm continuously over time to the data. We provide

Partial support for Jayalath Ekanayake provided by IRQUEBEdwf the the algorithm with different temporally sampled featurtsse
Sabaragamuwa University of Sri Lanka

Partial support for Jonas Tappolet provided by Swiss Natlo8cience that reflect a changln_g Iength_ O_f hls_tory data available.
Foundation award number 200021-112330 Hence, for each possible prediction time we evaluate the

quality of bug prediction models learned from every possibl models. We see most of these features frequently used by
(consecutive) period in its past. For example, in month 35ur prediction models in stable periods of the projects but
of a given project we use data from the past 34 monthsiot in instable periods.

to conduct 34 different bug prediction runs each leading Nagappanet al. [8] presented a method to predict the
its own accuracy value. This method allows us to visualizedefect density based on code churn metrics. They concluded
concept drifts and show that there are indeed phases inthat source files with a high activity rate in the past will
project where a bug prediction is almost useless (with mspe likely have more defects than source files with a low
to accuracy) and, hence, a project manager should not relctivity rate. We also added this particular feature setuio o
on it. Furthermore, this approach allows us to identify theprediction models. But none of these features seemed to be
influencing features that have the potential to serve ay earlof significant influence to a possible explanationcohcept
indicators for upcoming concept drifts. drift.

The remainder of the paper is organized as follows: After Ostrandet al. [5] used a regression model to predict the
discussing some related work in Section 2, we describe thimcation and number of faults in large industrial software
experimental setup in Section 3, followed by a discussiorsystems. Their predictors for the regression model were
of experiments and results. We close with limitations of ourbased on the code length of the current release and the
study, some possible avenues of future work, and concludinfault / modification history of the file from previous release

remarks. Although we don’t use source code metrics in our study, we
extensively use fault / modification histories.
2. Related Work Knab et al. [9] predicted defect densities in source code

files using decision tree learners. This approach is quite
A number of researchers have used the historical data afimilar to our approach. However, they predicted the number
software projects for different kinds of prediction models of problems reported. In our models, we predict defect
To the best of our knowledge, there is no prior work inves-locations. They used both product and process metrics and
tigating possibleoncept driftin software projects. However, revealed that process metrics are more significant than prod
we here discuss several studies about defect prediction andct metrics for fault predictions. The model and features,
as well, related work exploringoncept driftin different with the exception of the product features, are quite simila
domains. to our work. However, they evaluated the model only in very
Bernsteinet al. [1] used Eclipse’s history of product few points in time.
metrics to predict defects. However, the learned model is Zimmermannet al. [10] proposed a statistical model to
not evaluated in a temporally continuous way. Instead, onlypredict the location and the number of bugs. They used a
a couple of discontiguous points in time are consideredlogistic regression model to predict the location of bugs
Since this is our previous work, we use a similar approackand a linear regression model to predict the number of
to predict the defects in the current experiments as well. bugs. Further they heavily used product metrics such as
Khoshgoftaaret al. [3] used a history of process metrics McCabe’s Cyclomatic Complexigs predictors rather than
to predict software reliability and to prove that the numberprocess metrics. In our study, we use decision tree models
of past modifications of a source file is a significant predicto to predict the location of bugs. Furthermore, we fully rely
for its future faults. We also use similar set of features foron process metrics.
our work. Kim et al. [11] assumed that faults do not occur in
Mockuset al. [7] studied a large software system to testisolation, but rather in bursts of several related faults.
the hypothesis that evolution data can be used to determinEhey basically considered any location recently changed or
the changes of the software systems and to understand anecently added together with the known bug is likely to be
predict the state of software projects. buggy. We also use some similar metrics sucklemnceBug
Graveset al.[2] developed statistical models to determine in our prediction models.
which features of a module’s change history were the Brooks et al. [12] described in their famous book that
best predictors for future faults. They developed a modehdding people to a late project makes it even later. Even our
calledweighted time damp modalhich predicted the fault study shows that the number of authors is influencing the
potential by using changes made to the module in the passtability of the projects.
We use similar features but we predict the location of the Tsymbal [6] provided a survey aroncept driftresearch in
defect. many domains. He argued that in the real world concepts are
Hassanet al. [4] developed a set of heuristics which often not stable but changing over time. He showed typical
highlights the most susceptible subsystems to have a faulexamples such as weather prediction rules and customer
The heuristics are based on the subsystems that were magsteferences. Furthermore, he mentioned that underlyitey da
frequently and most recently fixed. We also compute somelistribution may change as well. Also he observed the
of the features that represent the above heuristics for ounodels built on old data to be inconsistent with new data

and, therefore, regular updating of these models is negessa For all files we exported the history information within
Harries et al. [13] explored concept drift in financial the investigated time frames from each proje®sgzilla
time series by using machine learning algorithms. We use andCVSto a MySQLdatabase. We then used these data to
similar approach but with software history data to identify compute all the features as listed in Table 2. Note that we
the concept drift. computed the features on the file level and for each of the
Widmer et al. [14] uncovered from daily experience that available time frames (1, 2, 3, ... months) backwards from
the meaning of many concepts heavily depend on implicithe prediction (target) point in time.
context. Changes in that context can cause radical changesMost features’ names are self-explanatory but some may
the concept. We argue that the same effect can be observeded some additional context: Thet i vi t yRat e repre-
in software systems. sents how many activities (revisions) took place per month.
Kenmeiet al.[15] showed that the further you go in time We includegr ownPer Mont h, which describes the evolu-
the worst will be the prediction, which is also supported bytion of the overall project as a feature (in terms of lines
our results. of code).chanceRevi si on and chanceBug features
As a closing remark for this section we like to point describe the probability of having a revision and a bug
out that the idea otoncept driftper se is not new to the in future akin toBug Cache[11]. We compute those two
research community. However, software projects have nevdeatures using the formuls/2’ , wherei represents how far
been subject to such analyses, which is a gap we try to clodgack (in months) the latest revision or bug occurred from the

in this work. prediction time point. If the latest revision or bug occmce
is far from the prediction time point, thans large and the
3. Experimental Setup overall probability of having a bug (or revision) in the near

future is low. Hence, these variables model the assumption
In this section we succinctly introduce the overall ex- thatfflltes V\f['rt]h rectehnt bugs arj more |Ike|)|/|;(_)|_ hlal_/.e bugs in
perimental setup. We present the data used, its acquisitiotrlﬂle u urf han others I(_see [4Di ne(%)edr dol tl cr;ets fi
method, and the measures used to evaluate the quality of tHEPrESENTS Now many lines were added or deieted 1o hix a

bug in relation to the total number of lines added / deleted.

results. 0 . .
This indicates how much work is currently being done for
fixing bugs in relation to other activities (such as adding ne

3.1. The Data: CVS and Bugzilla for Eclipse, Net- features).

beans, Mozilla, and Open Office

_ 3.2. Performance Measures
The data for the experiments was extracted from the four

open source software projects Eclipse, Netbeans, Mozilla For most of our experiments we used class probability
and Open Office. We collected the information provided byestimation (CPE) models. In our case the CPE model is
CVS and Bugzilla systems for each of the projects. Thea simple decision tree, which computes the probability
reason behind selecting these four projects is their longjistribution of a given instance over the two possible @ass
development historyX6 years) that is essential for this kind hasBug and hasNoBug. Typically, one then chooses a
of analysis to ensure the gathering of multiple developmientcut-off threshold to determine the actual predicted class,
cycles and their possibly associated drifts. For class$ifioa which in turn can be used to derive a confusion matrix
we use only issues which are marked as defects in the bugnd accuracy. The problem of the accuracy as a measure is
database. We understand authorship in terms of the perseRat it does not relate the prediction to the prior probapili
who brought the changed code into the versioning systendistribution of the classes. This is especially problemati
rather than the developer who actually wrote the code. Thisnh heavily skewed distributions such as the one we have
is a necessary simplification since we do not consider th¢the ratio between defective files and non-defective ones
content of files which would shed some light on the realis, depending on the project about 1:20 and approximately
authorship. Table 1 shows an overview of the observationemaining this ratio in all samples). Therefore, we used the
periods and the number of files considered in this work. receiver operating characteristics (ROC) and the arearunde
the ROC curve (AUC), which relate the true-positive rate

EL‘I’iJsSCé ':2'[)55 ﬁ?k:e '-Z%Séf&'fgge #ggig to the false-positive rate resulting in a measure insemsiti
Mozilla 2001-01-31 | 2008-02-29 | 1896 to the prior (or distribution) [16]. An AUC close to 1.0 is
Netbeans 2001-01-31 | 2007-06-30 | 38301 a good, one close to 0.5 represents a random prediction
Open Office | 2001-01-31 | 2008-04-30 | 1847 ualit
Total 51,992 quairy. . : . .
: : For the regression experiments we use linear regression
Table 1. Considered data sources and time spans. models. The linear regression is a form of regression aisalys

in which the relationship between one or more independent

Name

Description

revision
activityRate

gr ownPer Mont h

t ot al Li neOperati ons

| i neOper ati onRRevi si on
chanceRevi si on

| i neAdded

I'i neDel et ed

bl ocker Fi xes
enhancenent Fi xes
critical Fi xes
maj or Fi xes

m nor Fi xes

nor nal Fi xes
trivial Fi xes

bl ocker Report ed
enhancenent Report ed
critical Reported
maj or Report ed

m nor Report ed
nor mal Report ed
trivial Reported
pl-fixes
p2-fixes
p3-fixes
p4-fixes
p5-fixes
pl-reported
p2-reported
p3-reported
p4-reported
p5-reported

| i neAdded

I'i neDel et ed

t ot al Li neOper ati onsl

chanceBug

| i neOper ati onl RbugFi xes

| i neCperati onl RTot al Li nes|
I'i feTi neBl ocker
lifeTineCritical

I'i feTi neMaj or

I'i feTi neM nor

I'i feTi meNor nal
IifeTimeTrivial

Number of revisions

Number of revisions per month
Project grown per month

Total number of line added an
deleted

Number of line added and delete
per revision

likelihood of a revision in the targe!
period computed using,/2¢

of lines added

of lines deleted

of blocker type bugs fixed

of enhancement requests fixed
of critical type bugs fixed

of major type bugs fixed

of minor type bugs fixed

of normal type bugs fixed

of trivial type bugs fixed

of blocker type bugs reported
of enhancement requests report
of critical type bugs reported

of major type bugs reported

of minor type bugs reported

of normal type bugs reported
of trivial type bugs reported

of priority one bugs fixed

of priority two bugs fixed

of priority three bugs fixed

of priority four bugs fixed

of priority five bugs fixed

of priority one bugs reported

of priority two bugs reported

of priority three bugs reported
of priority four bugs reported

of priority five bugs reported

of lines added to fix bugs

of lines deleted to fix bugs
Total number of lines operated t
fix bugs

Likelihood of a bug in the target
period computed using/2*
Average number of lines operate|
to fix a bug

of lines operated to fix bugs rel

ative to total line operated
Average (avg.) lifetime of blocker
type bugs

avg. lifetime of critical type bugs
avg. lifetime of major type bugs
avg. lifetime of minor type bugs
avg. lifetime of normal type bugs
avg. lifetime of trivial type bugs

4. Experiments: Showing the influence of Con-
cept Drift

" In this section we provide empirical evidence regarding

d the existence otoncept driftin our four projects. We first
show that the defect prediction quality changes over time.
Then, in the second experiment we expand on this finding
of variability and clearly visualize the periods of statyili
versus change indicating the existence of concept drife Th
third subsection attempts to identify the features relef@n
detectingconcept drift In other words we try to distill early-
warning signs that (i) can be used to caution the usage of
results from a bug-prediction model and (i) might help to
unearth the causes for the concept drift.

*94.1. Defect prediction quality varies over time

The goal of this experiment is to show that the defect
prediction quality varies over time. To that end we employ
our features to learn a bug-prediction CPE model for each
project. Specifically, we employ Weka’s [17] J48 decision
tree learner (a re-implementation of C4.5 [18]). To illasér
the large variation of prediction quality over time we trdh
on data preceding the target month (called the training
period), predicted the number of bugs in the target month (or
target period), and computed the AUC as a prediction quality
measure. For example, if the initial target period is Februa
2008, then the initial learning period is January, 2008. We
» then expanded the training period backwards in time by
adding additional data (e.g., from December 2007) from the
project’s history. Depending on the length of the obseovati
d period for a project we could look back up to 74 months for
Eclipse and Netbeans, 82 months for Mozilla, and 85 for
Open Office. Next, we repeat the procedure by moving the
target period one month back and use the preceding periods
as training periods. We then visualize the prediction dyali
(AUC) of each model over time using a heat map (Figure 1
represents Eclipse. We had to omit the other three figures due
to space considerations. However, they also exhibit simila
characteristics as Eclipse). In the figure the X-axis inwisa

hasBug

Indicates the existence of a bu
(Target Feature)

g

the target period and the Y-axis the length of the training

Table 2. File features

variables and another variable, called the dependentilaria

period (in terms of number of months in past considered).
Firstly, it is interesting to observe that in Figure 1, in som
periods the model obtains high AUC while others are not.
Also, we can see that in some prediction periods, initiddby t
prediction quality is not so impressive but after expanding
the learning period up to certain months back the model
recovers the prediction quality. However, we can see in some

is modeled by a least squares function, called a linear segrecases that further expansion of learning period from that
sion equation. This function is a linear combination of onepoint could cause degradation of prediction quality. bastl
or more model parameters, called regression coefficiergs. Wit is interesting to observe that once a model has attained
report Pearson correlation, root mean squared error (RMSE# certain accuracy adding additional older informatiorl wil
and mean absolute error (MAE) to measure the performanaeot destroy it. This indicates that the latest, predictivier-

of the regression models.

mation is dominating in prediction [4]. The above features

can also be observed in the other three projects.
Summarizing, we clearly show that the defect prediction
quality varies over time. This indicates that evaluating a
model on one target period or only a few time points is not
sufficient. Actually, choosing an optimal target and leagni
periods can convert a bad prediction model into a usable one
and vice versa.

Number of months looked back from prediction

paete s | i o | L |
JuOT May02 Mar03 Jan04 Novd4 Sep05 Jul06 May0?
Target prediction time

Figure 1. Eclipse: Historical heat-map with the point of
highest AUC highlighted

4.2. Finding periods of stability and drift

So far we have seen that the prediction quality clearly
varies over time. But are there clear periods of stabilitgt an
drift (or change)? To clearly differentiate periods of #iab
and drift we slightly adapted our experiment as follows.
Rather than training from the month directly preceding the
target period and varying the length of training period we
maintain the training period length constant (at 2 months)
and move this time window into the past of the project. For
example, if the initial target period is February 2008, then
the initial training period is December 07 and January 08,
followed by a period from November 07 and December 07
etc.[4], [1]. We use a 2-month learning window because the
typical release cycle of the considered projects is usiatity
10 weeks. In addition, our previous work [1] has showed that
2 months of history data attains higher prediction quaiifg.
use Weka’s J48 decision tree and we measure the prediction
quality using AUC as our first experiment. Again we assign
a color for each AUC value and represent it in the heat maps
(Figures 2, 3, 4, and 5). Note that whilst the X-axis of these
graphs shows the target period as before, the Y-axis has a
different meaning: it represents the more recent of the two
months used for building the model. Hence, the higher in
the figure we are looking the older is the two-month period
compared to the target. Values on the diagonal (bottom left
to top right) from each other represent predictions of the
model trained on the same period.

) @ S o @ ~
> =3 S =] 3 =]

=)

Distance in months between target and 2-month learning period

Julol May02 Mar03 Jan0O4 Nov04 Sep05 Juloé May07

Target prediction time

Figure 2. 2-month Heat-map: Eclipse

@ ~ @
=] =] =]

o
=]

IN) @
=] =3

=

Distance in months between target and 2-month learning period
IS
S

May01 Mar02 Jan03 Nov03 Sep04 Jul05 May06 Mar07 Jan08

Target prediction time

Figure 3. 2-month Heat-map: Mozilla

) @ S o @ ~
> =] S =] 3 =]

=)

Distance in months between target and 2-month learning period

Julol May02 Mar03 Jan0O4 Nov04 Sep05 Juloé May07

Target prediction time

Figure 4. 2-month Heat-map: Netbeans

set. We then tracked if these variables get picked for a

Jul01 May02 Mar03 Jan04 Nov04 Sep05 Jul06 May07 Mar08
Target prediction time

50 ‘ ! prediction model by the algorithm. Figure 6(b) shows that
1 . . .

g 1 09 random variables mostly get included in the model when the

£ iJ = Mo AUC is near 0.5i(e., close to random). Only a few models

Ze0) 1-: ,:I i, inside the triangles contain random variables. Due to space

. ‘_'l_ﬁ". 08 considerations we had to omit the similar figures for the

: L SR | other projects.

=] L} 05

g0] b [

$ i. -] i i 04

2% i 1 Mt ..!l i Il 03 % gﬂ“ B Premcm;nmoaelsmmmmng i

gzo o+ I % i : . e I

c 1t ik 02 i E 4 \

5 ¥ ; EW ésu e ‘

510 n 01 z L e 1

2 Al i % B

8 Ju01 May02 Mar03 Jan04 Nov4 Sep5 Jul06 May07
Target prediction time

Figure 5. 2-month Heat-map: Open Office

(a) Naive prediction model ofb) Usage and position of random

. . . Eclipse data variables (Eclipse
Figure 2 clearly shows different triangle-shapes (red P (Eclipse)

color). One triangle starts from April 2002 and continue toFigure 6. Experiments to exclude the possibility of the

July 2003. In this time period the defect prediction qualty triangles being an epiphenomenon of the data or the
stable at an impressive AUE 0.8. But suddenly, in August prediction algorithm.

2003, the defect prediction quality drops to almost random

(AUC = 0.5). Hence, the above period is so stable that even Summarizing, the model clearly exhibits periods of sta-
models learned on older data (in the summer of 2003 théility and periods of drift. The causes of the drifts — be they
model trains on data that is older than a year!) have exdellerobservable in our features or not — are not obvious from
predictive power. This stability results in the triangleapk the graphs and will be investigated in the next subsection.
as the old training (along the upper left boundary/diagonalAnother interesting observation in the heat-maps is the
of the triangle) remains predictive. Also we can observe inheight of the triangle-shapes. It indicates the length of
all figures that further we go into the past the predictionthe stable period. Note, that the height varies both within
quality drops down to almost random:(0.5); proves the and between projects. Hence, an universal optimal training
statementhe further you go in time the worst will be the period length can not be determined but is highly dependent
prediction[15]. More formally, from April 2002 to July 2003 on the current stable period. Finally, this finding clearly
the concepti(e.,rules underlying the bug generation processindicates that decision makers in software project shoald b
and described partially by our features) remains condistercautious to base their decisions on a defect prediction mode
and, hence, the defect prediction quality is stable. Du@Nhilst they might be useful in periods of stability they
to the concept drift in August 2003, the defect predictionshould be ignored in periods of drift. In the next experiment
quality drops down. In January 2004 the project seems teve investigate if these periods can be identified from the
recover some stability and generate another, but slighly | features we gathered to serve as early warning indicators
pronounced triangle until November 2004. We can observevith regard to the usage of defect prediction models.

the similar effects in NetBeans with much shorter periods of

stability and Open Office. In Mozilla this effect seems to be4.3. Predicting periods of stability and drift

less pronounced maybe as we are really dealing with a set of

subprojects. To illustrate that the triangle shapes areanot In the last experiment we show that defect prediction
epiphenomenon of the data or the prediction algorithm, wanodels exhibit periods of stability and drift. But can we
also graphed the result of a naive model that simply assumeasicover features that can be used to predict the kind of
that the defects of the learning period will be carried ower t period that a software project is in to serve as indicatotl wi
the target period. As Figure 6(a) clearly shows for Eclipseregard to the usage of defect prediction models? To that end
most predictions attained in this manner are random,(we learned a regression model to predict the AUC of the bug
AUC = 0.5; green in the figure) and do not exhibit the prediction model according to the following proceduresEir
triangle shapes. To prove that the triangles indeed viseiali we computed the AUC of the bug prediction model based
phenomenon of the underlying data rather than the predictioon the learning period in the two months before the target
process itself, we added 10 random variables to our featurgeriod in exactly the same way as in the previous subsection.

Second, since the AUC is a project-level feature of the (Fceg:;rtzm) Coeff'c'ergjg% g.-(\)/gloue
prediction model we needed project level features to learn | revision ~0.0001 0.000
the prediction model. Thus, we computed a series of project | bugFixes , 0.0001 0.000
level features that are listed in Table 7 for each targebpleri gﬂﬂgﬂggmgmgﬁzned :8‘88(1)3 8'838
Third, since (i) the AUC prediction model used a 2 months | pi-fixes 0.0004 0.000
training period and (ii) we are interested in changes betwee | p2-fixes 0.0003 0.000
the training and the target period we transformed the featur Eigigz 8'88(1)2 8'838
by taking the average of the two training months(; = p5-fixes ~0.0016 0.000
average(feature;_1, feature,_o)) and subtracting it from p3-reported 0.0007 0.000
the value of the target month=(feature; — avg,). Fourth p4-reported 0-0005 0.001
. L . . p5-reported 0.001 0.000
and last, we build a traditional linear regression model | LineOperationsIRbugFixes 0.0011 0.000
predicting the AUC from these transformed features. The | LineOperiRTolLines —0.2478 0.000
resulting regression models are shown in Tables 3, 4, 5, and L24thor —0.0007 0.001
6. Note that if a regression coefficient is large compared to Table 4. Mozilla: Regression Model
its standard error, then it is probably different from zerbe
P-value of each coefficient indicates whether the coefficien
is significantly different from zero such that if it is lessath Feature Coefficient P-value
or equal to 0.05, then those variables significantly conteib gﬁgr:;éeigt) _8'3325 8'888
to the model, else there is no significant contribution of enhancementFixes —0.0022 0.015
those variables. The performance of the models is measured | patchFixes —0.002 0.01
in terms of their Pearson correlation, mean absolute error genarf;:]ii';fnmeportej :8'88311 8'888
(MAE), and root mean square error (RMSE) as in Table patchReported 0.0001 0.024
8. Note that all models have a strong correlation between p2-fixes 0.0005 0.004
the predicted and actual values of AUC. Furthermore, the | P2Teported 0.0025 0.038
! p4-reported 0.0022 0.000
small MAE and RMSE reflect the good performance of our p5-reported 0.0035 0.000
regression models. LineOperlRTolLines —0.0491 0.000
author —0.0008 0.103

Feature Coefficient P-value Table 5. Open Office: Regression Model
(Constant) 0.67 0.000

enhancementFixes 0.0002 0.000

enhancementReported 0.0001 0.004

pl-fixes —0.0013 0.000 Feature Coefficient P-value
p3-fixes —0.0002 0.000 (Constant) 0.602 0.000
p5-fixes —0.043 0.001 enhancementFixes 0.00027 0.000
pl-reported 0.0015 0.000 patchFixes 0.004 0.000
p2-reported 0.0001 0.000 featureReported —0.0006 0.000
p3-reported —0.0001 0.023 p4-fixes —0.0001 0.035
p4-reported —0.0005 0.000 p5-fixes 0.0024 0.000
p5-reported —0.005 0.000 pl-reported —0.0001 0.000
LineOperationsIRbugFixes —0.001 0.000 LineOperIRTolLines 0.026 0.102
LineOperIRTolLines —0.1127 0.000 author —0.0007 0.000
author —0.0065 0.000

Table 6. Netbeans: Regression Model
Table 3. Eclipse: Regression Model

In all regression models the change in thember of they contribute about 1% to the model providing at least a
authorsfeature has a negative impact for the AUC. l.e. if qualitative indication.
the number of authors in the target period is larger than thénother interesting feature of the models is
number of authors in the learning period then the defecti neQpel RTot L: number of lines added / removed
prediction quality goes down. Hence, the addition of newto fix bugs relative to total number of lines operated. This
authors to a project will reduce the applicability of the feature reflects the fraction of work performed to fix bugs
defect prediction model learned without those authorsrelative to total work done. In all of these models this facto
Adding new authors could be a cause for concept drifthas high impact on the models, since it has the highest
reminiscing the “don’t add people to a late project” advicecoefficient. In Eclipse, Mozilla, and Open Office, this facto
from Fred Brooks’ Critical Man Month [12]. The regression contributes negatively to the model, while in Netbeans
coefficients foraut hor in all four models are relatively it contributes positively. The higher this value, the more
small, but since the AUC moves in the range0o$ — 1.0 bugs are fixed in the next version, the lower the more new

Name Description . . .
Tevision Number of Tevisions To test this proposition we computeq the fractlon of Wo_rk
gr ownPer Mont h Project grown per month done by the authors, who are not in the learning period
total Li neCperations golta: gumbET of line added and put in target period, to fix bugs. Figure 7 graphs the result
elete . .
bugFi xes Total number of bugs fixed in ever for one tar_get period (the others_ are omitted d_ue tp space
type considerations), where the X-axis represents time into the
bugReported Total number of bugs reported i past from the target period and the Y-axis represents the
every type - - -
enhancement Fi xes Number of enhancement requests fraction of bug flxmg_ performed by new a.uthors. The figure
fixed clearly shows that in Eclipse and Mozilla most of bugs
enhancement Report ed Numberdof enhancement requests gre fixed by those authors, who are not in the learning
Reporte
p1-fixes # of priority one bugs fixed period and th_e fraction contlnuous_ly increases the further
p2-fixes # of priority two bugs fixed we look back into past. In Open Office the fraction of work
pi-;!xes zOI pf!Of!ttz ;hfeebbugsf.flxgd done by new authors drastically varies and is probably
p4-11 Xes Of priori our bugs fixe . . e
D5-f i xes # of priority five bugs fixed not meanlr_]gful due t(_) a significantly smaller number
pl-reported # of priority one bugs reported of transactions (commits) per month. For Netbeans the
pg- r eporte(cji 20; priority t\é\lo bubgs repoﬁedd fraction of work done by new authors to fix bugs is initially
p3-reporte of priority three bugs reporte : o -
p4- r epor t ed # of priority four bugs reported very small and does never rise above about 50% W|th_a
p5-report ed # of priority five bugs reported mean well below 40%. Also, the number for Netbeans is
: i negg?esl J ZOI :!nes gdldiddt(: fl;(_ bggs relatively constant indicating some stability in its demdr
I ne ete or lines deleted to 1ix bugs .]
t ot al Li neOper ati onsl Total lines operated to fix bugs base. _Hence’,mOStly experienced a_uthors Seem to be fixing
I i neQper at i onl RbugFi xes Average number of lines operated bugs increasing the models prediction quality as those
))) to fix a bug | authors behavior is already known in the learning period.
I i neOperati onl RTot al Li nes| Number of lines operated to fi
bugs relative to total line operatec Line Cperation for Issues by NewAuthors
|'i feTinel ssues Average lifetime of all types bugs]
|'i feTi neEnhancenents Average lifetime of enhancement T
type bugs
aut hor s Total number of authors w |l
wor k|l oad Average work done by an author
[AUC | Area under ROC curve (Target) |

06 [

Table 7. Project features

04

Fraction of work done by new authors for fixing Issues

Project pearson correlationn MAE | RMSE
Eclipse 0.59 0.046 | 0.061 ‘
Mozilla 0.57 0.045 | 0.057 0z 1
Netbeans 0.65 0.041| 0.056
Open Office 0.55 0.066 | 0.083
0 ‘ ‘ ‘
Table 8. Performance of the regression models o 0 ®» » o @ ® D ® @

Morthin Past

Figure 7. Work done by new authors to fix bugs

features are introduced. Hence, if the coefficient is negati Note that the featurenhancenent Fi xes is occupied
as in Eclipse, Mozilla, and Open Office, then more newpy all four regression models. However, this feature is not
features are added than bugs fixed presumably leading teonsistent since in Open Office and Mozilla it contributes
some stability with regards to bugs. Further we can supportegatively while in Netbeans and Eclipse it is positive.
for the above statement since the Netbeans project has thherefore, it is difficult to figure out the behavior of this
smallest bug fixing rate per file (0.32) compared to thefeature in the context of software engineering.
other three projects (Eclipse: 0.43, Mozilla: 3.36 and Opersummarizing, we observed that rising the number of authors
Office: 0.94). editing the project could cause the drop of the defect
prediction quality. We also saw that more work done to fix
One important issue to note is that whilst bugs relative to the other activities as well causes a rémtuct
Li neOpel RTot L contributes strongly to the Netbeans of the defect prediction quality. Therefore, the behavibr o
model, it does not do so significantlp = 10.2%). One these two features could be considered as an early warning
could, therefore, hypothesize that in Netbeans, in contrassignal forconcept drift
to the other projects, most bugs are fixed by experiencefxploring author fluctuations The above observations en-
authors whose behavior is well captured by the modelcouraged us to further investigate the relationships betwe

author fluctuation, bug fixing activity, and stable versuft dr
periods. To that end we identified tipping points from stable
to drift periods in each of the projects and graphed the
normalized change in number of authors and normalized
change in bug fixing activity for the months preceding the
onset of the drift and some months into the drift. Consider
Figure 2 as an example, the “stable” months leading up
to the tipping month of August 2003 and including the
“drifting” month of October 2003. The value for the authors
are computed as shown below.

#G’Uthmonth - #GUthmonth—l
ZtEmonths |#auth, — #auth,_1|

In words, the difference between the number of authors
(#auth) of the month and its preceding month normalized
by the sum of the differences of all the months considered
in the graph. The value for changes in bug fixes is computed
analogously. The rationale for the normalization is to make
the figures somewhat comparable across different projects
and time-frames.

Figures 8, 9, 10, 11, and 12 show a selection of the resulting
figures, which are titled by the “tipping” month.

Eclipse: Drift Starts August-2003

o e
g 001 14 /\ o ug Fix
% 0.005 \ Val / \ . AN
E 0 ‘Q . /\ \,‘\ [N r\'\ f‘\k/ \/‘
E 0.005 ‘E L/E/.é Oﬁz]\/i\ \5/ : % \g
2 g BE> § %/ M \Vi © 3

-0.015

Month

Figure 8. Eclipse: Drift starts in August 2003

Netbeans: Drift Starts April-2006

0.05
—&— Author

‘+Bug Fix‘ ﬂ

0.04
0.03

0.02

0.01

|
|

|

Normalized Difference

N N\ A/‘\”\‘(-
AR et s NS

o e E 8 =g ZRE
g¥g ¥ & & & & £U/%

-0.02

-0.03
Month

Figure 9. Netbeans: Drift starts in April 2006

0.02
0.015
0.01
0.005

-0.005
-0.01
-0.015

Normalized Difference
IS

-0.02

Netbeans: Drift Starts Decemeber-2004

—e—Author ||
7\‘+BugFix
\ |
S A
3 3\3/3 W BNE\aE s N als
EEENFENEFEE N
It " Vi

Month

Figure 10. Netbeans: Drift starts december 2004

Open Office : Drift Starts May- 2004

0.05
0.04 ‘+Aulhor

§ 0.03 —=—Bug Fix

é 0.02 i

& 001 2 B

IR A T W, W S VP a W T

S B VAR VT E W RN | M

g 00 g =) 2y 2 T aE

5 -0.02 B & Sv—= & :

F] @ Y l
-0.03

-0.04

Month

Figure 11. Open Office: Drift starts in May 2004

Normalized Difference

Open Office: Drift Starts November- 2007

o
N}

o
o

—e— Author
—=—Bug Fix 7

o

/

o
=)
o

-
N V.

el

=

-dag

lU'\"I"JI

go-inr
-Ae|

o
o
o

o
90-Aen ly

L20-uep
L(-des
80-uer

9q

80-eIN

o

Month

Figure 12. Open Office: Drift starts in November 2007

neither of these observations is unique to the tipping plstio
Considering Eclipse (Figure 83,9.,we find that normalized
author differential tips 3 times: in January 03, April 03dan
preceding the drift in July 03. The same can be said for the
normalized bug differential. Hence, we cannot argue that
these factors can be used exclusively to predict periods of
drift, but together they can serve as a basis for developing
such an early warning indicator.
Summarizing, this third experiment shows that the pre-

diction of drift periods seems to be possible and pursuing
All five figures show a relative drop in authors before or early warning indicators for drifts seems to be a promising
in the “tipping“ month mostly followed by an increase in endeavor. In addition, the results highlight that author /
authors during the drift. We also find that in most casesdeveloper fluctuations as well as changes in the amount
the relative amount of work done for bug fixing increasesof work expended to fix bugs in relation to adding new
massively in the first month of the drift. Unfortunately, features seem toorrelatewith changes in prediction quality.

From a software engineering standpoint these correlationg4] A. Hassan and R. Holt, “The top ten list: dynamic fault pre
can definitely be explained and would uphold some time-

honored principles.

5. Conclusions and Future Work

This paper investigated the notion @dncept driftin data

from software projects. We were specifically interested in [6] A. Tsymbal, “The problem of concept drift: Definitions

(5]

drifts of the concept “bug generation process” as it would

impact defect prediction algorithms. Using data from four

open source projects we found that the quality of defect

prediction approaches indeed varies significantly oveetim
We, furthermore, found that the quality of the prediction

clearly follows periods of stability and drift, indicatirthat
concept driftis indeed an important factor to considahen
investigating defect prediction. As a consequettoe pbenefit

[7]

(8]

of bug prediction in general must be seen as volatile over

time and, therefore, should be used cautiously

In a further experiment we attempted to uncover the [g]

underlying causes afoncept driftin a software project. We
observed that number of authors editing the project isgisin
right before, or during aoncept drift This reinforces the
well-known software engineering rule “adding manpower to

10]

a late software project makes it later’[12]. We also saw
a relationship between the changes of the proportion of
work done to fix bugs and other activities and the defect

prediction quality. Unfortunately, both those correlaso

were not observed uniformly in connection witoncept

(11]

drift and can only serve as a start to elicit early warning

indicators forconcept driftand, hence, the reduced quality
of existing defect prediction models. We plan to further

investigate the question about the causesaicept drift

(12]

in software projects. In the ideal case it would be possible

to identify the influential factors that hold for software

projects in general. Whatever the outcome of our futurg13]

investigations, we can safely say that the notiorcaficept

drift seems to have a profound influence in the empirical

investigation of software evolution.

References

[1] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving
defect prediction using temporal features and non lineal
models,” in Proceedings of the International Workshop on

Principles of Software Evolutior2007.

[2] T.L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predigt
fault incidence using software change histolgEE Trans-

actions on Software Engineeringol. 26, no. 7, pp. 653-661,

2000.

[3] T. Khoshgoftaar, E. Allen, N. Goel, A. Nandi, and J. Mc-
Mullan, “Detection of software modules with high debug code
churn in a very large legacy system,”mroceedings of the 7th

International Symposium on Software Reliability Engitmagr
1996.

(14]

[15]

(16]

(17]

(18]

diction,” in Proceedings of the 21st International Conference
on Software Maintenanc&005.

T. Ostrand, E. Weyuker, and R. Bell, “Predicting the looca
and number of faults in large software systeniEEE Trans-
actions on Software Engineeringol. 31, no. 4, pp. 340-355,
2005.

and related work,” Department of Computer Science Trinity
College, Tech. Rep., 2004.

A. Mockus and L. Votta, “Identifying reasons for softvear
changes using historic databases,” Rmoceedings of the
International Conference on Software Maintengn2e00.

N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” Rmoceedings of
the 27th international conference on Software engineering
ACM, 2005.

P. Knab, M. Pinzger, and A. Bernstein, “Predicting deéfec
densities in source code files with decision tree learnéms,”
Proceedings of the 2006 international workshop on mining
software repositories ACM, 2006.

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting
defects for eclipse,” irProceedings of the 3rd International
Workshop on Predictor Models in Software Engineering
IEEE Computer Society, 2007.

S. Kim, T. Zimmermann, E. J. W. Jr, and A. Zeller, “Predic
ing faults from cached history,” ifProceedings of the 29th
international conference on Software Engineering|EEE
Computer Society, 2007.

F. P. Brooks and F. Phillip§he mythical man-month: essays
on software engineering Addison-Wesley Reading, MA,
1995.

M. Harries and K. Horn, “Detecting concept drift in findal
time series prediction using symbolic machine learning,”
in Proceedings of the 8th Austrailian Joint Conference on
Artificial Intelligence World Scientific Publishing, 1995.

G. Widmer and M. Kubat, “Effective learning in dynamic
environments by explicit context tracking,” Proceedings of
the European Conference on Machine Learni§93.

B. Kenmei, G. Antoniol, and M. D. Penta, “Trend analysis
and issue prediction in Large-Scale open source systems,” i
Proceedings of the 12th European Conference on Software
Maintenance and Reengineering008.

F. Provost and T. Fawcett, “Robust classification fopiatise
environments,'Machine Learningvol. 42, no. 3, 2001.

I. H. Witten and E. FrankData Mining: Practical Machine
Learning Tools and TechniquesMorgan Kaufmann, 2005.

J. R. QuinlanC4.5: programs for machine learningMorgan
Kaufmann Publishers Inc., 1993.

