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Abstract

Defect prediction is an important task in the mining of
software repositories, but the quality of predictions varies
strongly within and across software projects. In this paper
we investigate the reasons why the prediction quality is so
fluctuating due to the altering nature of the bug (or defect)
fixing process. Therefore, we adopt the notion of aconcept
drift, which denotes that the defect prediction model has
become unsuitable as set of influencing features has changed
– usually due to a change in the underlying bug generation
process (i.e., the concept). We explore four open source
projects (Eclipse, OpenOffice, Netbeans and Mozilla) and
construct file-level and project-level features for each of
them from their respectiveCVS and Bugzilla repositories.
We then use this data to build defect prediction models and
visualize the prediction quality along the time axis. These
visualizations allow us to identify concept drifts and – as a
consequence – phases of stability and instability expressed
in the level of defect prediction quality. Further, we identify
those project features, which are influencing the defect
prediction quality using both a tree induction-algorithm and
a linear regression model. Our experiments uncover that
software systems are subject to considerable concept drifts
in their evolution history. Specifically, we observe that the
change in number of authors editing a file and the number
of defects fixed by them contribute to a project’s concept
drift and therefore influence the defect prediction quality.
Our findings suggest that project managers using defect
prediction models for decision making should be aware of
the actual phase of stability or instability due to a potential
concept drift.

1. Introduction

In mining software repositories, many different ap-
proaches have been developed to predict the number and
location of future bugs in source code (e.g., [1], [2], [3],
[4], [5]). Such predictions can help a project manager to
quantitatively plan and steer the project according to the
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expected number of bugs and their bug-fixing effort. But bug
prediction can also be helpful in a qualitative way whenever
the defect location is predicted: testing efforts can then be
accomplished with a focus on the predicted bug locations.
All of the above mentioned approaches use the history data
of a software project to predict defects in the next release.
Features (or variables) are extracted from the raw data. These
features (from the learning period) are then used together
with the goal values (i.e.,bug or no bug) to learn a prediction
model. To evaluate such a model, it is fed with data from
another time period and the predicted values are compared
with the observed ones facilitating an accuracy measure.

The common downside of these approaches is their
temporally coarse evaluations. Usually, a bug prediction
algorithm is evaluated, in terms of accuracy, in only one
or several different points in time. Such selective (insular)
analyses make generalizations of the prediction methods
difficult: it postulates that the evolution of a project and its
data is more or less stable over time.

In our approach we hypothesize that a project passes sev-
eral alternating phases of stability and instability. Instability
can be seen as a sudden change of influencing factors. These
factors can be of various kind such as a changing number
of developers, the use of a new development tool or even
political or economical events (financial crisis, presidential
elections)etc.

As a consequence, the concept (i.e., the bug generation
process) we are trying to learn changes, resulting in a
phenomenon calledconcept drift [6]. Obviously, concept
drifts can invalidate a learned bug prediction model and lead
to less accurate predictions as time progresses. Our goal is
to identify and locate concept drifts that affect the accuracy
of defect prediction algorithms. For that reason,our measure
for stability and instability of the concept is the quality of
the defect prediction. In a stable phase, the history data is a
good predictor for future bugs; analogously, in an unstable
phase, the prediction quality will significantly decrease and
become unreliable for effort and resource allocation.

Our approach can be summarized as follows. To uncover
stable and unstable phases we apply our bug prediction
algorithm continuously over time to the data. We provide
the algorithm with different temporally sampled feature sets
that reflect a changing length of history data available.
Hence, for each possible prediction time we evaluate the



quality of bug prediction models learned from every possible
(consecutive) period in its past. For example, in month 35
of a given project we use data from the past 34 months
to conduct 34 different bug prediction runs each leading
its own accuracy value. This method allows us to visualize
concept drifts and show that there are indeed phases in a
project where a bug prediction is almost useless (with respect
to accuracy) and, hence, a project manager should not rely
on it. Furthermore, this approach allows us to identify the
influencing features that have the potential to serve as early
indicators for upcoming concept drifts.

The remainder of the paper is organized as follows: After
discussing some related work in Section 2, we describe the
experimental setup in Section 3, followed by a discussion
of experiments and results. We close with limitations of our
study, some possible avenues of future work, and concluding
remarks.

2. Related Work

A number of researchers have used the historical data of
software projects for different kinds of prediction models.
To the best of our knowledge, there is no prior work inves-
tigating possibleconcept driftin software projects. However,
we here discuss several studies about defect prediction and,
as well, related work exploringconcept drift in different
domains.

Bernstein et al. [1] used Eclipse’s history of product
metrics to predict defects. However, the learned model is
not evaluated in a temporally continuous way. Instead, only
a couple of discontiguous points in time are considered.
Since this is our previous work, we use a similar approach
to predict the defects in the current experiments as well.

Khoshgoftaaret al. [3] used a history of process metrics
to predict software reliability and to prove that the number
of past modifications of a source file is a significant predictor
for its future faults. We also use similar set of features for
our work.

Mockuset al. [7] studied a large software system to test
the hypothesis that evolution data can be used to determine
the changes of the software systems and to understand and
predict the state of software projects.

Graveset al. [2] developed statistical models to determine
which features of a module’s change history were the
best predictors for future faults. They developed a model
calledweighted time damp modelwhich predicted the fault
potential by using changes made to the module in the past.
We use similar features but we predict the location of the
defect.

Hassanet al. [4] developed a set of heuristics which
highlights the most susceptible subsystems to have a fault.
The heuristics are based on the subsystems that were most
frequently and most recently fixed. We also compute some
of the features that represent the above heuristics for our

models. We see most of these features frequently used by
our prediction models in stable periods of the projects but
not in instable periods.

Nagappanet al. [8] presented a method to predict the
defect density based on code churn metrics. They concluded
that source files with a high activity rate in the past will
likely have more defects than source files with a low
activity rate. We also added this particular feature set to our
prediction models. But none of these features seemed to be
of significant influence to a possible explanation ofconcept
drift.

Ostrandet al. [5] used a regression model to predict the
location and number of faults in large industrial software
systems. Their predictors for the regression model were
based on the code length of the current release and the
fault / modification history of the file from previous releases.
Although we don’t use source code metrics in our study, we
extensively use fault / modification histories.

Knab et al. [9] predicted defect densities in source code
files using decision tree learners. This approach is quite
similar to our approach. However, they predicted the number
of problems reported. In our models, we predict defect
locations. They used both product and process metrics and
revealed that process metrics are more significant than prod-
uct metrics for fault predictions. The model and features,
with the exception of the product features, are quite similar
to our work. However, they evaluated the model only in very
few points in time.

Zimmermannet al. [10] proposed a statistical model to
predict the location and the number of bugs. They used a
logistic regression model to predict the location of bugs
and a linear regression model to predict the number of
bugs. Further they heavily used product metrics such as
McCabe’s Cyclomatic Complexityas predictors rather than
process metrics. In our study, we use decision tree models
to predict the location of bugs. Furthermore, we fully rely
on process metrics.

Kim et al. [11] assumed that faults do not occur in
isolation, but rather in bursts of several related faults.
They basically considered any location recently changed or
recently added together with the known bug is likely to be
buggy. We also use some similar metrics such aschanceBug
in our prediction models.

Brooks et al. [12] described in their famous book that
adding people to a late project makes it even later. Even our
study shows that the number of authors is influencing the
stability of the projects.

Tsymbal [6] provided a survey onconcept driftresearch in
many domains. He argued that in the real world concepts are
often not stable but changing over time. He showed typical
examples such as weather prediction rules and customer
preferences. Furthermore, he mentioned that underlying data
distribution may change as well. Also he observed the
models built on old data to be inconsistent with new data



and, therefore, regular updating of these models is necessary.
Harries et al. [13] explored concept drift in financial

time series by using machine learning algorithms. We use a
similar approach but with software history data to identify
the concept drift.

Widmer et al. [14] uncovered from daily experience that
the meaning of many concepts heavily depend on implicit
context. Changes in that context can cause radical changes in
the concept. We argue that the same effect can be observed
in software systems.

Kenmeiet al. [15] showed that the further you go in time
the worst will be the prediction, which is also supported by
our results.

As a closing remark for this section we like to point
out that the idea ofconcept driftper se is not new to the
research community. However, software projects have never
been subject to such analyses, which is a gap we try to close
in this work.

3. Experimental Setup

In this section we succinctly introduce the overall ex-
perimental setup. We present the data used, its acquisition
method, and the measures used to evaluate the quality of the
results.

3.1. The Data: CVS and Bugzilla for Eclipse, Net-
beans, Mozilla, and Open Office

The data for the experiments was extracted from the four
open source software projects Eclipse, Netbeans, Mozilla
and Open Office. We collected the information provided by
CVS and Bugzilla systems for each of the projects. The
reason behind selecting these four projects is their long
development history (>6 years) that is essential for this kind
of analysis to ensure the gathering of multiple developments
cycles and their possibly associated drifts. For classification,
we use only issues which are marked as defects in the bug
database. We understand authorship in terms of the person
who brought the changed code into the versioning system
rather than the developer who actually wrote the code. This
is a necessary simplification since we do not consider the
content of files which would shed some light on the real
authorship. Table 1 shows an overview of the observation
periods and the number of files considered in this work.

Project First Release Last Release #Files
Eclipse 2001-01-31 2007-06-30 9948
Mozilla 2001-01-31 2008-02-29 1896
Netbeans 2001-01-31 2007-06-30 38301
Open Office 2001-01-31 2008-04-30 1847
Total 51,992

Table 1. Considered data sources and time spans.

For all files we exported the history information within
the investigated time frames from each project’sBugzilla
andCVSto a MySQLdatabase. We then used these data to
compute all the features as listed in Table 2. Note that we
computed the features on the file level and for each of the
available time frames (1, 2, 3, ... months) backwards from
the prediction (target) point in time.
Most features’ names are self-explanatory but some may
need some additional context: TheactivityRate repre-
sents how many activities (revisions) took place per month.
We includegrownPerMonth, which describes the evolu-
tion of the overall project as a feature (in terms of lines
of code). chanceRevision and chanceBug features
describe the probability of having a revision and a bug
in future akin toBug Cache[11]. We compute those two
features using the formula1/2i , wherei represents how far
back (in months) the latest revision or bug occurred from the
prediction time point. If the latest revision or bug occurrence
is far from the prediction time point, theni is large and the
overall probability of having a bug (or revision) in the near
future is low. Hence, these variables model the assumption
that files with recent bugs are more likely to have bugs in
the future than others (see [4]).LineOperIRTolLines
represents how many lines were added or deleted to fix a
bug in relation to the total number of lines added / deleted.
This indicates how much work is currently being done for
fixing bugs in relation to other activities (such as adding new
features).

3.2. Performance Measures

For most of our experiments we used class probability
estimation (CPE) models. In our case the CPE model is
a simple decision tree, which computes the probability
distribution of a given instance over the two possible classes:
hasBug and hasNoBug. Typically, one then chooses a
cut-off threshold to determine the actual predicted class,
which in turn can be used to derive a confusion matrix
and accuracy. The problem of the accuracy as a measure is
that it does not relate the prediction to the prior probability
distribution of the classes. This is especially problematic
in heavily skewed distributions such as the one we have
(the ratio between defective files and non-defective ones
is, depending on the project about 1:20 and approximately
remaining this ratio in all samples). Therefore, we used the
receiver operating characteristics (ROC) and the area under
the ROC curve (AUC), which relate the true-positive rate
to the false-positive rate resulting in a measure insensitive
to the prior (or distribution) [16]. An AUC close to 1.0 is
a good, one close to 0.5 represents a random prediction
quality.
For the regression experiments we use linear regression
models. The linear regression is a form of regression analysis
in which the relationship between one or more independent



Name Description
revision Number of revisions
activityRate Number of revisions per month
grownPerMonth Project grown per month
totalLineOperations Total number of line added and

deleted
lineOperationRRevision Number of line added and deleted

per revision
chanceRevision likelihood of a revision in the target

period computed using1/2i

lineAdded # of lines added
lineDeleted # of lines deleted
blockerFixes # of blocker type bugs fixed
enhancementFixes # of enhancement requests fixed
criticalFixes # of critical type bugs fixed
majorFixes # of major type bugs fixed
minorFixes # of minor type bugs fixed
normalFixes # of normal type bugs fixed
trivialFixes # of trivial type bugs fixed
blockerReported # of blocker type bugs reported
enhancementReported # of enhancement requests reported
criticalReported # of critical type bugs reported
majorReported # of major type bugs reported
minorReported # of minor type bugs reported
normalReported # of normal type bugs reported
trivialReported # of trivial type bugs reported
p1-fixes # of priority one bugs fixed
p2-fixes # of priority two bugs fixed
p3-fixes # of priority three bugs fixed
p4-fixes # of priority four bugs fixed
p5-fixes # of priority five bugs fixed
p1-reported # of priority one bugs reported
p2-reported # of priority two bugs reported
p3-reported # of priority three bugs reported
p4-reported # of priority four bugs reported
p5-reported # of priority five bugs reported
lineAddedI # of lines added to fix bugs
lineDeletedI # of lines deleted to fix bugs
totalLineOperationsI Total number of lines operated to

fix bugs
chanceBug Likelihood of a bug in the target

period computed using1/2i

lineOperationIRbugFixes Average number of lines operated
to fix a bug

lineOperationIRTotalLines # of lines operated to fix bugs rel-
ative to total line operated

lifeTimeBlocker Average (avg.) lifetime of blocker
type bugs

lifeTimeCritical avg. lifetime of critical type bugs
lifeTimeMajor avg. lifetime of major type bugs
lifeTimeMinor avg. lifetime of minor type bugs
lifeTimeNormal avg. lifetime of normal type bugs
lifeTimeTrivial avg. lifetime of trivial type bugs

hasBug Indicates the existence of a bug
(Target Feature)

Table 2. File features

variables and another variable, called the dependent variable,
is modeled by a least squares function, called a linear regres-
sion equation. This function is a linear combination of one
or more model parameters, called regression coefficients. We
report Pearson correlation, root mean squared error (RMSE),
and mean absolute error (MAE) to measure the performance
of the regression models.

4. Experiments: Showing the influence of Con-
cept Drift

In this section we provide empirical evidence regarding
the existence ofconcept driftin our four projects. We first
show that the defect prediction quality changes over time.
Then, in the second experiment we expand on this finding
of variability and clearly visualize the periods of stability
versus change indicating the existence of concept drift. The
third subsection attempts to identify the features relevant for
detectingconcept drift. In other words we try to distill early-
warning signs that (i) can be used to caution the usage of
results from a bug-prediction model and (ii) might help to
unearth the causes for the concept drift.

4.1. Defect prediction quality varies over time

The goal of this experiment is to show that the defect
prediction quality varies over time. To that end we employ
our features to learn a bug-prediction CPE model for each
project. Specifically, we employ Weka’s [17] J48 decision
tree learner (a re-implementation of C4.5 [18]). To illustrate
the large variation of prediction quality over time we trained
on data preceding the target month (called the training
period), predicted the number of bugs in the target month (or
target period), and computed the AUC as a prediction quality
measure. For example, if the initial target period is February,
2008, then the initial learning period is January, 2008. We
then expanded the training period backwards in time by
adding additional data (e.g., from December 2007) from the
project’s history. Depending on the length of the observation
period for a project we could look back up to 74 months for
Eclipse and Netbeans, 82 months for Mozilla, and 85 for
Open Office. Next, we repeat the procedure by moving the
target period one month back and use the preceding periods
as training periods. We then visualize the prediction quality
(AUC) of each model over time using a heat map (Figure 1
represents Eclipse. We had to omit the other three figures due
to space considerations. However, they also exhibit similar
characteristics as Eclipse). In the figure the X-axis indicates
the target period and the Y-axis the length of the training
period (in terms of number of months in past considered).
Firstly, it is interesting to observe that in Figure 1, in some
periods the model obtains high AUC while others are not.
Also, we can see that in some prediction periods, initially the
prediction quality is not so impressive but after expanding
the learning period up to certain months back the model
recovers the prediction quality. However, we can see in some
cases that further expansion of learning period from that
point could cause degradation of prediction quality. Lastly,
it is interesting to observe that once a model has attained
a certain accuracy adding additional older information will
not destroy it. This indicates that the latest, predictive infor-
mation is dominating in prediction [4]. The above features



can also be observed in the other three projects.
Summarizing, we clearly show that the defect prediction
quality varies over time. This indicates that evaluating a
model on one target period or only a few time points is not
sufficient. Actually, choosing an optimal target and learning
periods can convert a bad prediction model into a usable one
and vice versa.

Figure 1. Eclipse: Historical heat-map with the point of
highest AUC highlighted

4.2. Finding periods of stability and drift

So far we have seen that the prediction quality clearly
varies over time. But are there clear periods of stability and
drift (or change)? To clearly differentiate periods of stability
and drift we slightly adapted our experiment as follows.
Rather than training from the month directly preceding the
target period and varying the length of training period we
maintain the training period length constant (at 2 months)
and move this time window into the past of the project. For
example, if the initial target period is February 2008, then
the initial training period is December 07 and January 08,
followed by a period from November 07 and December 07
etc. [4], [1]. We use a 2-month learning window because the
typical release cycle of the considered projects is usually8 to
10 weeks. In addition, our previous work [1] has showed that
2 months of history data attains higher prediction quality.We
use Weka’s J48 decision tree and we measure the prediction
quality using AUC as our first experiment. Again we assign
a color for each AUC value and represent it in the heat maps
( Figures 2, 3, 4, and 5). Note that whilst the X-axis of these
graphs shows the target period as before, the Y-axis has a
different meaning: it represents the more recent of the two
months used for building the model. Hence, the higher in
the figure we are looking the older is the two-month period
compared to the target. Values on the diagonal (bottom left
to top right) from each other represent predictions of the
model trained on the same period.

Figure 2. 2-month Heat-map: Eclipse

Figure 3. 2-month Heat-map: Mozilla

Figure 4. 2-month Heat-map: Netbeans



Figure 5. 2-month Heat-map: Open Office

Figure 2 clearly shows different triangle-shapes (red
color). One triangle starts from April 2002 and continue to
July 2003. In this time period the defect prediction qualityis
stable at an impressive AUC> 0.8. But suddenly, in August
2003, the defect prediction quality drops to almost random
(AUC ≈ 0.5). Hence, the above period is so stable that even
models learned on older data (in the summer of 2003 the
model trains on data that is older than a year!) have excellent
predictive power. This stability results in the triangle shape
as the old training (along the upper left boundary/diagonal
of the triangle) remains predictive. Also we can observe in
all figures that further we go into the past the prediction
quality drops down to almost random (≈ 0.5); proves the
statementthe further you go in time the worst will be the
prediction[15]. More formally, from April 2002 to July 2003
the concept (i.e., rules underlying the bug generation process
and described partially by our features) remains consistent
and, hence, the defect prediction quality is stable. Due
to the concept drift in August 2003, the defect prediction
quality drops down. In January 2004 the project seems to
recover some stability and generate another, but slightly less
pronounced triangle until November 2004. We can observe
the similar effects in NetBeans with much shorter periods of
stability and Open Office. In Mozilla this effect seems to be
less pronounced maybe as we are really dealing with a set of
subprojects. To illustrate that the triangle shapes are notan
epiphenomenon of the data or the prediction algorithm, we
also graphed the result of a naı̈ve model that simply assumes
that the defects of the learning period will be carried over to
the target period. As Figure 6(a) clearly shows for Eclipse,
most predictions attained in this manner are random (i.e.,
AUC ≈ 0.5; green in the figure) and do not exhibit the
triangle shapes. To prove that the triangles indeed visualize a
phenomenon of the underlying data rather than the prediction
process itself, we added 10 random variables to our feature

set. We then tracked if these variables get picked for a
prediction model by the algorithm. Figure 6(b) shows that
random variables mostly get included in the model when the
AUC is near 0.5 (i.e., close to random). Only a few models
inside the triangles contain random variables. Due to space
considerations we had to omit the similar figures for the
other projects.

(a) Naı̈ve prediction model on
Eclipse data

(b) Usage and position of random
variables (Eclipse)

Figure 6. Experiments to exclude the possibility of the
triangles being an epiphenomenon of the data or the
prediction algorithm.

Summarizing, the model clearly exhibits periods of sta-
bility and periods of drift. The causes of the drifts – be they
observable in our features or not – are not obvious from
the graphs and will be investigated in the next subsection.
Another interesting observation in the heat-maps is the
height of the triangle-shapes. It indicates the length of
the stable period. Note, that the height varies both within
and between projects. Hence, an universal optimal training
period length can not be determined but is highly dependent
on the current stable period. Finally, this finding clearly
indicates that decision makers in software project should be
cautious to base their decisions on a defect prediction model.
Whilst they might be useful in periods of stability they
should be ignored in periods of drift. In the next experiment
we investigate if these periods can be identified from the
features we gathered to serve as early warning indicators
with regard to the usage of defect prediction models.

4.3. Predicting periods of stability and drift

In the last experiment we show that defect prediction
models exhibit periods of stability and drift. But can we
uncover features that can be used to predict the kind of
period that a software project is in to serve as indicators with
regard to the usage of defect prediction models? To that end
we learned a regression model to predict the AUC of the bug
prediction model according to the following procedure: First,
we computed the AUC of the bug prediction model based
on the learning period in the two months before the target
period in exactly the same way as in the previous subsection.



Second, since the AUC is a project-level feature of the
prediction model we needed project level features to learn
the prediction model. Thus, we computed a series of project
level features that are listed in Table 7 for each target period.
Third, since (i) the AUC prediction model used a 2 months
training period and (ii) we are interested in changes between
the training and the target period we transformed the features
by taking the average of the two training months (avgt =
average(featuret−1, featuret−2)) and subtracting it from
the value of the target month (= featuret − avgt). Fourth
and last, we build a traditional linear regression model
predicting the AUC from these transformed features. The
resulting regression models are shown in Tables 3, 4, 5, and
6. Note that if a regression coefficient is large compared to
its standard error, then it is probably different from zero.The
P-value of each coefficient indicates whether the coefficient
is significantly different from zero such that if it is less than
or equal to 0.05, then those variables significantly contribute
to the model, else there is no significant contribution of
those variables. The performance of the models is measured
in terms of their Pearson correlation, mean absolute error
(MAE), and root mean square error (RMSE) as in Table
8. Note that all models have a strong correlation between
the predicted and actual values of AUC. Furthermore, the
small MAE and RMSE reflect the good performance of our
regression models.

Feature Coefficient P-value
(Constant) 0.67 0.000
enhancementFixes 0.0002 0.000
enhancementReported 0.0001 0.004
p1-fixes −0.0013 0.000
p3-fixes −0.0002 0.000
p5-fixes −0.043 0.001
p1-reported 0.0015 0.000
p2-reported 0.0001 0.000
p3-reported −0.0001 0.023
p4-reported −0.0005 0.000
p5-reported −0.005 0.000
LineOperationsIRbugFixes −0.001 0.000
LineOperIRTolLines −0.1127 0.000
author −0.0065 0.000

Table 3. Eclipse: Regression Model

In all regression models the change in thenumber of
authors feature has a negative impact for the AUC. I.e. if
the number of authors in the target period is larger than the
number of authors in the learning period then the defect
prediction quality goes down. Hence, the addition of new
authors to a project will reduce the applicability of the
defect prediction model learned without those authors.
Adding new authors could be a cause for concept drift
reminiscing the “don’t add people to a late project” advice
from Fred Brooks’ Critical Man Month [12]. The regression
coefficients forauthor in all four models are relatively
small, but since the AUC moves in the range of0.5 − 1.0

Feature Coefficient P-value
(Constant) 0.7333 0.000
revision −0.0001 0.000
bugFixes 0.0001 0.000
enhancementFixes −0.0012 0.000
enhancementReported −0.0004 0.000
p1-fixes 0.0004 0.000
p2-fixes 0.0003 0.000
p3-fixes 0.0003 0.000
p4-fixes 0.0012 0.000
p5-fixes −0.0016 0.000
p3-reported 0.0007 0.000
p4-reported 0.0005 0.001
p5-reported 0.001 0.000
LineOperationsIRbugFixes 0.0011 0.000
LineOperIRTolLines −0.2478 0.000
author −0.0007 0.001

Table 4. Mozilla: Regression Model

Feature Coefficient P-value
(Constant) 0.67 0.000
bugFixes −0.0025 0.000
enhancementFixes −0.0022 0.015
patchFixes −0.002 0.01
featureFixes −0.0024 0.000
enhancementReported −0.0001 0.000
patchReported 0.0001 0.024
p2-fixes 0.0005 0.004
p2-reported 0.0025 0.038
p4-reported 0.0022 0.000
p5-reported 0.0035 0.000
LineOperIRTolLines −0.0491 0.000
author −0.0008 0.103

Table 5. Open Office: Regression Model

Feature Coefficient P-value
(Constant) 0.602 0.000
enhancementFixes 0.00027 0.000
patchFixes 0.004 0.000
featureReported −0.0006 0.000
p4-fixes −0.0001 0.035
p5-fixes 0.0024 0.000
p1-reported −0.0001 0.000
LineOperIRTolLines 0.026 0.102
author −0.0007 0.000

Table 6. Netbeans: Regression Model

they contribute about 1% to the model providing at least a
qualitative indication.
Another interesting feature of the models is
LineOpeIRTotL: number of lines added / removed
to fix bugs relative to total number of lines operated. This
feature reflects the fraction of work performed to fix bugs
relative to total work done. In all of these models this factor
has high impact on the models, since it has the highest
coefficient. In Eclipse, Mozilla, and Open Office, this factor
contributes negatively to the model, while in Netbeans
it contributes positively. The higher this value, the more
bugs are fixed in the next version, the lower the more new



Name Description
revision Number of revisions
grownPerMonth Project grown per month
totalLineOperations Total number of line added and

deleted
bugFixes Total number of bugs fixed in every

type
bugReported Total number of bugs reported in

every type
enhancementFixes Number of enhancement requests

fixed
enhancementReported Number of enhancement requests

Reported
p1-fixes # of priority one bugs fixed
p2-fixes # of priority two bugs fixed
p3-fixes # of priority three bugs fixed
p4-fixes # of priority four bugs fixed
p5-fixes # of priority five bugs fixed
p1-reported # of priority one bugs reported
p2-reported # of priority two bugs reported
p3-reported # of priority three bugs reported
p4-reported # of priority four bugs reported
p5-reported # of priority five bugs reported
lineAddedI # of lines added to fix bugs
lineDeletedI # of lines deleted to fix bugs
totalLineOperationsI Total lines operated to fix bugs
lineOperationIRbugFixes Average number of lines operated

to fix a bug
lineOperationIRTotalLines Number of lines operated to fix

bugs relative to total line operated
lifeTimeIssues Average lifetime of all types bugs
lifeTimeEnhancements Average lifetime of enhancement

type bugs
authors Total number of authors
workload Average work done by an author

AUC Area under ROC curve (Target)

Table 7. Project features

Project pearson correlation MAE RMSE
Eclipse 0.59 0.046 0.061
Mozilla 0.57 0.045 0.057
Netbeans 0.65 0.041 0.056
Open Office 0.55 0.066 0.083

Table 8. Performance of the regression models

features are introduced. Hence, if the coefficient is negative
as in Eclipse, Mozilla, and Open Office, then more new
features are added than bugs fixed presumably leading to
some stability with regards to bugs. Further we can support
for the above statement since the Netbeans project has the
smallest bug fixing rate per file (0.32) compared to the
other three projects (Eclipse: 0.43, Mozilla: 3.36 and Open
Office: 0.94).

One important issue to note is that whilst
LineOpeIRTotL contributes strongly to the Netbeans
model, it does not do so significantly (p = 10.2%). One
could, therefore, hypothesize that in Netbeans, in contrast
to the other projects, most bugs are fixed by experienced
authors whose behavior is well captured by the model.

To test this proposition we computed the fraction of work
done by the authors, who are not in the learning period
but in target period, to fix bugs. Figure 7 graphs the result
for one target period (the others are omitted due to space
considerations), where the X-axis represents time into the
past from the target period and the Y-axis represents the
fraction of bug fixing performed by new authors. The figure
clearly shows that in Eclipse and Mozilla most of bugs
are fixed by those authors, who are not in the learning
period and the fraction continuously increases the further
we look back into past. In Open Office the fraction of work
done by new authors drastically varies and is probably
not meaningful due to a significantly smaller number
of transactions (commits) per month. For Netbeans the
fraction of work done by new authors to fix bugs is initially
very small and does never rise above about 50% with a
mean well below 40%. Also, the number for Netbeans is
relatively constant indicating some stability in its developer
base. Hence, mostly experienced authors seem to be fixing
bugs increasing the models prediction quality as those
authors behavior is already known in the learning period.
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Figure 7. Work done by new authors to fix bugs

Note that the featureenhancementFixes is occupied
by all four regression models. However, this feature is not
consistent since in Open Office and Mozilla it contributes
negatively while in Netbeans and Eclipse it is positive.
Therefore, it is difficult to figure out the behavior of this
feature in the context of software engineering.
Summarizing, we observed that rising the number of authors
editing the project could cause the drop of the defect
prediction quality. We also saw that more work done to fix
bugs relative to the other activities as well causes a reduction
of the defect prediction quality. Therefore, the behavior of
these two features could be considered as an early warning
signal forconcept drift.
Exploring author fluctuations: The above observations en-
couraged us to further investigate the relationships between



author fluctuation, bug fixing activity, and stable versus drift
periods. To that end we identified tipping points from stable
to drift periods in each of the projects and graphed the
normalized change in number of authors and normalized
change in bug fixing activity for the months preceding the
onset of the drift and some months into the drift. Consider
Figure 2 as an example, the “stable” months leading up
to the tipping month of August 2003 and including the
“drifting” month of October 2003. The value for the authors
are computed as shown below.

#authmonth − #authmonth−1∑
t∈months

|#autht − #autht−1|

In words, the difference between the number of authors
(#auth) of the month and its preceding month normalized
by the sum of the differences of all the months considered
in the graph. The value for changes in bug fixes is computed
analogously. The rationale for the normalization is to make
the figures somewhat comparable across different projects
and time-frames.
Figures 8, 9, 10, 11, and 12 show a selection of the resulting
figures, which are titled by the “tipping” month.

Eclipse: Drift Starts August-2003
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Figure 8. Eclipse: Drift starts in August 2003

Netbeans: Drift Starts April-2006
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Figure 9. Netbeans: Drift starts in April 2006

All five figures show a relative drop in authors before or
in the “tipping“ month mostly followed by an increase in
authors during the drift. We also find that in most cases,
the relative amount of work done for bug fixing increases
massively in the first month of the drift. Unfortunately,

Netbeans: Drift Starts Decemeber-2004
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Figure 10. Netbeans: Drift starts december 2004

Open Office : Drift Starts May- 2004
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Figure 11. Open Office: Drift starts in May 2004

Open Office: Drift Starts November- 2007
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Figure 12. Open Office: Drift starts in November 2007

neither of these observations is unique to the tipping periods.
Considering Eclipse (Figure 8),e.g.,we find that normalized
author differential tips 3 times: in January 03, April 03, and
preceding the drift in July 03. The same can be said for the
normalized bug differential. Hence, we cannot argue that
these factors can be used exclusively to predict periods of
drift, but together they can serve as a basis for developing
such an early warning indicator.

Summarizing, this third experiment shows that the pre-
diction of drift periods seems to be possible and pursuing
early warning indicators for drifts seems to be a promising
endeavor. In addition, the results highlight that author /
developer fluctuations as well as changes in the amount
of work expended to fix bugs in relation to adding new
features seem tocorrelatewith changes in prediction quality.



From a software engineering standpoint these correlations
can definitely be explained and would uphold some time-
honored principles.

5. Conclusions and Future Work

This paper investigated the notion ofconcept driftin data
from software projects. We were specifically interested in
drifts of the concept “bug generation process” as it would
impact defect prediction algorithms. Using data from four
open source projects we found that the quality of defect
prediction approaches indeed varies significantly over time.
We, furthermore, found that the quality of the prediction
clearly follows periods of stability and drift, indicatingthat
concept driftis indeed an important factor to considerwhen
investigating defect prediction. As a consequence,the benefit
of bug prediction in general must be seen as volatile over
time and, therefore, should be used cautiously.

In a further experiment we attempted to uncover the
underlying causes ofconcept driftin a software project. We
observed that number of authors editing the project is rising
right before, or during aconcept drift. This reinforces the
well-known software engineering rule “adding manpower to
a late software project makes it later”[12]. We also saw
a relationship between the changes of the proportion of
work done to fix bugs and other activities and the defect
prediction quality. Unfortunately, both those correlations
were not observed uniformly in connection withconcept
drift and can only serve as a start to elicit early warning
indicators forconcept driftand, hence, the reduced quality
of existing defect prediction models. We plan to further
investigate the question about the causes ofconcept drift
in software projects. In the ideal case it would be possible
to identify the influential factors that hold for software
projects in general. Whatever the outcome of our future
investigations, we can safely say that the notion ofconcept
drift seems to have a profound influence in the empirical
investigation of software evolution.
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