
Mining Version Control Systems for FACs
(Frequently Applied Changes)

Filip Van Rysselberghe and Serge Demeyer
Lab On Re-Engineering
University Of Antwerp
Middelheimlaan 1

filip.vanrysselberghe@ua.ac.be

Abstract

Today, programmers are forced to maintain a software
system based on their gut feeling and experience. This pa-
per makes an attempt to turn the software maintenance craft
into a more disciplined activity, by mining for frequently ap-
plied changes in a version control system. Next to some ini-
tial results, we show how this technique allows to recover
and study successful maintenance strategies, adopted for
the redesign of long–lived systems.

1. Introduction

As stated by Lehman’s 1st law of software evolution,
a system has to undergo continuous change in order to
remain satisfactory for its stakeholders [8]. Adding new
features, correcting faults and accommodating for new
changes, are generally considered the prime reasons for
these changes [12].
Unfortunately, the changes applied during maintenance

are seldom documented. Even for refactorings –currently
the best known approach towards a systematic catalogue of
maintenance tasks–, there is no indication which refactoring
is most suitable for a certain situation. This observation can
easily be illustrated by looking through Fowler [4], which
is considered standard work on the subject and counting
the number of conditional sentences. Knowledge on which
changes are most appropriate for an occurring problem or
situation is therefore private to experienced software main-
tainers.
By making this knowledge general, software mainte-

nance can be improved and lose its status of ad hoc dis-
cipline. In order to meet this goal, we propose a technique
analogue to the idea of frequently asked questions or FAQs.
These FAQs are summaries of frequent questions and cor-
responding answers to reduce the continual posting of the

same basic question. Analogue, we propose to identify fre-
quently applied changes (FACs) since these changes record
general solutions to frequent and recurring problems.
To detect such frequently applied changes, a technique

based on clone detection is used. Due to their central po-
sition in modern development processes and their ability to
record a project’s entire change history, versioning systems
contain a wealth of change information. Therefore the data
for the detection process is provided by a versioning system.
In the remainder of this paper we will introduce the tech-

nique, evaluate it and position it in a broader context. The
first section is reserved for introducing the technique (sec-
tion 2). Afterwards, the results of an initial case study to
evaluate the technique are discussed in section 3. Section
4 on the other hand, explores how the resulting change sets
can be used to study software maintenance. Our future di-
rections are discussed in section 5. The last section (6) dis-
cusses related work.

2. The Technique

With our technique we want to focus on how a system
changed during its maintenance. Therefore we are inter-
ested in systems which are able to tell which changes were
made. Typically, version or change management systems
offer this functionality.
Such versioning systems like CVS, ClearCase and

SourceSafe, can be considered as a large source code repos-
itory containing all the versions of a program. However in-
ternally, most versioning systems store the entire source of
one version only. CVS for example, stores the last version
entirely since that is the most likely version to be checked
out for additional editing. Other versions are re–constructed
by means of delta’s, relative to the one complete version.
For CVS, these delta’s record which lines have to be added,
deleted or changed in order to get a previous version. Since
these delta’s record which changes were made, we can ex-

48



tract change information from a versioning system.
In practice, extracting change information from a ver-

sioning system is not difficult as we found out by our ini-
tial study. For this study we targeted the CVS versioning
system since it is used for many successful open–source
projects, providing a lot of changes to study. Using proper
CVS commands, change information can be extracted and
afterwards processed. We combined the “cvs log” and “cvs
diff” commands to extract change data like the difference in
code before and after the change, the date and time of the
change, the file involved etc. Since this basic change data
is stored in about any versioning system, other versioning
systems than CVS can be used as well.
Being able to extract change information from a ver-

sioning system is only part of the technique. Processing
the changes in order to locate frequently applied changes
is therefore the second step in our technique. However,
first, we define a frequently applied change as a change to
the code which occurs multiple times in the evolution of
a system. Since a source code level is targeted, two ap-
plied changes are equal if there is a similarity relation be-
tween the delta of both changes. Locating frequently ap-
plied changes therefore corresponds to identifying sets of
similar code fragments.
A possible approach to locate identical and similar code

fragments is by using clone detection techniques. Clone de-
tection techniques are developed to identify duplicated or
cloned code fragments within a program since duplication
may hinder the program’s evolution. Over the years differ-
ent techniques are proposed to locate clones or fragments
which share the same code but may differ in the naming of
identifiers. Ducasse for example, proposes a detection tech-
nique to locate clones containing a certain amount of iden-
tical lines [2]. Baker on the other hand focusses on code
fragments in which identifiers, which are likely to change
during the duplication process, may differ as long as there
is a one to one mapping between the identifiers [1]. Since
these techniques are developed to locate similar code frag-
ments in a scalable way, we use them to identify frequently
applied changes.
By using clone detection techniques on the changes ex-

tracted from the versioning system, we are therefore able to
identify frequently applied changes.
In our initial study, we started by extracting from the

repository all changes made during the lifetime of a product.
For each change the corresponding delta, which consists of
the code before and after the change, was added to one, gen-
eral text-file. This text–file was later analyzed by Kamiya’s
clone detection tool CCFinder [7] to locate recurring, simi-
lar changes. Since a similar change recurs a couple of times
in the change history, it correspond to a frequently applied
change or FAC.

3. Evaluating the technique

To evaluate the technique, we applied it to study a suc-
cessful open–source system called Tomcat. After more than
three years of development, Tomcat is considered the stan-
dard Java servlet container. Ever since the beginning, par-
ticipating developers can contribute to the project by access-
ing a central CVS versioning system. Therefore the CVS
system contains a wealth of maintenance information un-
der the form of changes. Combined with the knowledge
that the project experienced some major redesign phases,
Tomcat shows an interesting case to explore the techniques
possibilities.

3.1. Finding refactorings using clone detection

In a previous study, we showed how clone detection can
be used to detect refactorings between two versions [11].
We observed how scalability hinders the application of this
technique since comparing all successive versions of a large
system is not feasible. The scalability problem was a direct
result of comparing whole systems rather than the changes
made between two versions. Since the technique proposed
in this paper focusses on the changes, it does not suffer this
problem, yet is able to detect similar refactorings.

3.2. Finding FACs

The goal of our initial study was to explore the kind of
frequent change sets that can be formed when a parameter-
ized clone detection technique as CCFinder is used [7]. Due
to their focus on the detection of similar code fragments, pa-
rameterized clone detection techniques are expected to pro-
duce the most suitable FACs.
CCFinder is a token based detection technique which

searches a specially constructed tree for maximal matches.
Due to its token based nature, the detection process is not
influenced by the code layout. Crucial in its detection pro-
cess is the definition of a length threshold. This threshold
defines the minimal number of tokens that should match be-
fore a token sequence is considered a match. Matches which
fail to meet the length threshold, are not considered match-
ing fragments. Increasing the threshold, therefore makes
the detection of both positive as false matches less likely.
In our study, the impact of this parameter was taken into
account by exploring various thresholds. Based on the vi-
sual representation of the detected matches, we manually
verified the relation between repeatedly found changes. For
these matching changes make up a set of frequently applied
changes.
The sets of identical changes, constructed with a high

threshold value, are small sets of long changes which are
almost identical. Accidentally matching, long changes are

49



less likely when a high threshold value is used. Therefore
the changes which are identified as (frequently) recurring
changes are related to each other by a copy relation. As we
observed in the initial study, there are three possible causes
for such relation to exist:

• A first reason is the introduction of duplicated code.
Based on former experience, the maintainer applies a
previously used solution in a different location. In our
study, we for example noticed how the same excep-
tion handling code was introduced in different places.
However, the maintainers were aware of the problems
related to duplicating code since a few versions later,
the duplicated statements were replaced by a function.

• Repositioning a code fragment is a second cause for
the introduction of copy related changes. Moving code
from one class to another results in deleting and adding
the same piece of code at various locations. In our
study, we for example observed how an utility function
of RequestUtil was moved into the Parameter class.

• Temporarily adding a code fragment, is the last cause
we observed. We noticed how many of the fragments
added in one version, are deleted later, causing a copy
relation between the addition and delete. As figure 1
illustrates, many similarities between add and delete
changes exist.

Figure 1. As each dot in the plot corresponds
to a similarity between an add and a delete
change of at least 40 tokens, it illustrates the
relation between both categories

High threshold values therefore allow the identification
of recurring, product specific changes. By establishing the
motivation behind these changes more general maintenance
conclusions can be derived. For example we might learn
why code is duplicated or when a temporary solution can
be suitable. Also note that we used a simple comparison
scheme, comparing any part of the delta, with any other
delta. A comparison scheme in which only the pre-change

code of delta’s is compared, would not find many of these
copy related changes. For high threshold values, it is there-
fore better to use a simple comparison scheme which just
compares anything.
Low threshold values on the other hand, lead to the iden-

tification of frequently applied, generic changes. Due to
the reduced impact of the threshold on accidental matches,
more changes which are only accidentally syntactically
identical, are detected. This leads to sets of frequently ap-
plied changes which correspond to low level code changes
as e.g. changing a function call or changing a variable. In
our case study, we for example had a set of package defini-
tion changes, while another set bundled an extensive set of
import statement changes. However before low threshold
detection can be used in practice, two problems should be
solved.
When no special precautions are taken, different kinds

of generic changes are identified as one frequently applied
change. Since clone detection only demands that the syntac-
tical structure of two fragments matches, changes sharing an
identical structure, yet differing in semantics, are wrongly
classified as identical changes. Figure 2 which serves as an
example, illustrates how renames of function calls and vari-
ables are structurally identical. This problem can be solved
by taking more specific change information into considera-
tion.

IDENTIFIER "." IDENTIFIER "()"

IDENTIFIER "." IDENTIFIER "()"

top.getPosition()top.getPosition()

top.getCoordinate() upperLeftCorner.getPosition()

Figure 2. This figure shows how two generic
changes can be identical from a syntactical
perspective. In this example, renaming a
function–call (left) and renaming a variable
(right) share the same structure (above), how-
ever differ semantically. In the syntactic rep-
resentation, non-terminals are quoted.

A similar problem was caused because many changes
contain similar sub-units which match with each other. In
our simple evaluation setting, all changes were added to
one text-file which was afterwards analyzed for the pres-
ence of similarities. However this allows a statement, part
of a larger change, to match a statement of an other change.
To avoid this problem, the comparison of changes has to be

50



done in a more intelligent way. Identical changes are then
no longer changes which just share a similarity, but changes
in which both the code before the change as the one after the
change are similar. In case of a low threshold detection pro-
cess, more care has to be taken when comparing changes.
The frequently applied changes are however more generic
and can be used to automatically find generic maintenance
strategies.

4. Study of frequent changes

Finding frequently applied changes on itself does not
solve any maintenance issues. Each frequently applied
change is rather a building block to identify generic mainte-
nance strategies. Based on the kind of sets formed, different
approaches can be taken.
Frequently applied changes identified with a high thresh-

old and are therefore specific to one product, can be used
as a starting point to study the motivation and success of a
change. Afterwards this study may be generalized in a (set
of) general rule. The motivation behind the removal of a
recently added code fragment in a product, may teach us
for example, why a change may fail in general. Similarly,
studying the duplication of a solution, may point us to gen-
eral problems or teach us how duplication grows, which in
turn allows us to improve design patterns to cope with this
duplication. However, due to their tight product coupling,
these high threshold FACs can be used to improve and un-
derstand the current product as well.
The generic FACs found with a low threshold on the

other hand, can be used to derive maintenance strategies
automatically. In such automatic process, FACs are used
as building blocks in a data mining process to identify fre-
quent change patterns. All changes, classified according
to their change set, are added to a kind of change trans-
action database. After composing such change database, a
data mining process searches for frequent change patterns.
However we can not just search all the changes for recur-
ring patterns since change strategies are composed of both
generic changes and relations between them. Therefore re-
lated changes, for example two changes which share an
identical code fragment or because one change introduces
a function used by the other, are considered as one change
transaction. By comparing these various change transac-
tions, recurring patterns are identified. These change pat-
terns allow us to find generic maintenance operations like
the refactorings that are currently described in literature [4].
By evaluating the situation in which these maintenance op-
erations are used, we also might identify when and why they
should be applied.
In turn, these maintenance operations can be considered

as frequently applied changes and used to identify even
higher level change strategies. One possibility is to rede-

fine the data mining process to these higher level FACs. In
this redefined process, a transaction groups all the change
patterns applied in one version. Change patterns identified
by such process may show us how a generic problem situ-
ation is removed by performing a sequence of lower level
maintenance operations. Software maintainers can use this
knowledge when handling a similar problem.
An other possibility is to relate changes with bug reports

as proposed by Fischer [3]. By combining this information,
frequently occurring bugs as well as their solutions may be
identified. Consider for example a case where many bug re-
ports are related to changes belonging to the “change loop
condition” FAC. This would empirically show that looping
conditions tend to lead to errors and therefore should be
thoroughly tested. Similarly changes could be linked with
maintenance reports or feature requests, to identify requests
with similar solutions. This would not only allow main-
tainers to apply requests faster, but also helps designers to
anticipate changes better.
Frequently applied changes, allow us to start with a set of

small, generic changes and incrementally build up a whole
set of maintenance operations which enrich our current soft-
ware maintenance knowledge with wide-spread operations
and techniques.

5. Future Directions

In the immediate future, we want to further explore the
technique, introduced in this paper. This includes further
evaluation of the suitability of various clone detection tech-
niques and clone detection in general. For example, we
want to study how the low threshold related problems (3.2)
can be reduced or even removed.
Next to improving the technique through evaluation, we

will apply it to study software evolution. In this context, we
plan to evaluate the techniques and ideas presented in sec-
tion 4. By means of these techniques, we want to investigate
various projects to come to general maintenance strategies.

6. Related Work

To our knowledge, little effort has been spent to com-
pose sets of frequently occurring changes and use those to
study software maintenance. One could argue that a runtime
change classification scheme as the one by Gustavsson [5],
fits this context too since the items in such classification
correspond to sets of changes. However FACs work on dif-
ferent levels and work from an exploratory perspective. Fur-
thermore, the technique allows to automatically categorize
changes based on any classification scheme.
In the context of studying changes, work has been done

to identify the motivation for a change [12]. The goal was

51



verifying whether a change was made to fix a problem,
prepare for future change or to insert new user function-
ality. Related with this work, Mockus used word frequency
analysis of log messages to not only identify the purpose
of changes, but relate it to change size and time between
changes as well. Mockus and De Hondt, who both studied
change log information, state that a textual description of
a change is necessary to understand the real motivation be-
hind a change [10, 6]. Our technique, does not differ from
this point of view. Change information should be linked
with other maintenance information to fully understand the
motivation behind these strategies.
Concerning the detection of patterns using data mining,

there is some relation to Michail [9] who detects reuse pat-
terns based on a data mining approach. We propose a sim-
ilar approach to detect change patterns over different ver-
sions.

References

[1] B. S. Baker. Parameterized duplication in strings: Algo-
rithms and an application to software maintenance. SIAM J.
Computing, 26(5):1343–1362, October 1997.

[2] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In H. Yang
and L. White, editors, Proceedings of Int. Conf. on Software
Maintenance (ICSM), pages 109–118. IEEE Computer So-
ciety, September 1999.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings Int. Conf. on Software Maintenance
(ICSM), pages 23–32. IEEE Computer Society, September
2003.

[4] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] J. Gustavsson. A classification of unanticipated runtime
software changes in java. In Proceedings Int. Conf. on Soft-
ware Maintenance (ICSM), pages 4–12. IEEE Computer So-
ciety, September 2003.

[6] K. D. Hondt and P. Steyaert. Exploiting classification for
software evolution. In ECOOP 2000 Workshop on Objects
and Classification, 2000.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multi-linguistic token-based code clone detectionsystem for
large scale source code. IEEE Trans. Software Engineering,
28(7):654–670, July 2002.

[8] M. M. Lehman and L. A. Belady. Program evolution: pro-
cesses of software change. Academic Press Professional,
Inc., 1985.

[9] A. Michail. Data mining library reuse patterns using gen-
eralized association rules. In Proceedings of the 22nd Int.
Conf. on Software Engineering, pages 167–176. ACM Press,
2000.

[10] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proceedings Int. Conf.
on Software Maintenance (ICSM), pages 120–130. IEEE
Computer Society, October 2000.

[11] F. V. Rysselberghe and S. Demeyer. Reconstruction of
successful software evolution using clone detection. In
M. W. G. Tommi Mikkonen and M. Saeki, editors, Proceed-
ings Int. Workshop on principles of software evolution (IW-
PSE), pages 126–130. IEEE Computer Society, September
2003.

[12] E. B. Swanson. The dimensions of maintenance. In Pro-
ceedings of the 2nd Conf. On Software Engineering, pages
492–497, 1976.

52


