
Micro Pattern Evolution

Sunghun Kim
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA

hunkim@cs.ucsc.edu

Kai Pan
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA

pankai@cs.ucsc.edu

E. James Whitehead, Jr.
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA

ejw@cs.ucsc.edu

ABSTRACT

When analyzing the evolution history of a software project, we
wish to develop results that generalize across projects. One

approach is to analyze design patterns, permitting characteristics
of the evolution to be associated with patterns, instead of source
code. Traditional design patterns are generally not amenable to
reliable automatic extraction from source code, yet automation
is crucial for scalable evolution analysis. Instead, we analyze
“micro pattern” evolution; patterns whose abstraction level is
closer to source code, and designed to be automatically
extractable from Java source code or bytecode. We perform

micro-pattern evolution analysis on three open source projects,
ArgoUML, Columba, and jEdit to identify micro pattern
frequencies, common kinds of pattern evolution, and bug-prone
patterns. In all analyzed projects, we found that the micro
patterns of Java classes do not change often. Common bug-
prone pattern evolution kinds are ‘Pool ! Pool’, ‘Implementor

! NONE’, and ‘Sampler ! Sampler’. Among all pattern

evolution kinds, ‘Box’, ‘CompoundBox’, ‘Pool’,
‘CommonState’, and ‘Outline’ micro patterns have high bug
rates, but they have low frequencies and a small number of
changes. The pattern evolution kinds that are bug-prone are
somewhat similar across projects. The bug-prone pattern
evolution kinds of two different periods of the same project are
almost identical.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and

reengineering, D.2.8 [Software Engineering]: Metrics –
Product metrics, K.6.3 [Management of Computing and

Information Systems]: Software Management – Software

maintenance

General Terms

Algorithms, Measurement, Experimentation

1. INTRODUCTION
Software evolution research examines the development history
of a software project to learn facts about the software, and better
understand its qualities. After examining the history of many
different software projects, ideally we would like to be able to
make claims like, if we observe evolution pattern X, then the
consequences for one or more software qualities are Y and Z.

Most software repository mining research examines software by
subdividing it into parts using physical distinctions, such as
modules, directories, files, and methods. Researchers examine
the evolution of these physical elements, and then correlate
various software properties with traits of the observed evolution.
For example, researchers have examined revision histories to
determine correlations between changes and bugs [13]. Though

there has been much success in correlating software properties
with the evolution of physical elements within a project, the
ability to apply these results to other projects has been limited.
This is due to the use of the software’s existing physical
distinctions, which limits the applicability of results to just a
single project. Knowing something about the evolution of the
methods in a specific Java class does not typically provide any
insight into other classes, since different classes have different
source code.

To make more generalizable observations requires some means
for abstracting away from the physical elements into abstract

categories. These categories need to be concrete enough to
capture important aspects of the behavior of the software, yet
sufficiently general that one can observe the same abstract
categories across multiple projects. The classic software design
patterns [6] fit this description, and suggest the possibility that
we can deeply understand the evolutionary behavior of specific
design patterns. To perform such analysis in a scalable way, we
need an automated mechanism for extracting software design
patterns from source code. Unfortunately, to date there is no

accurate mechanism for identifying design patterns in code, with
existing approaches suffering from large amounts of false
positives or false negatives.

Recent work by Gil and Maman has introduced the concept of
micro patterns [7], which are “Java class-level traceable
patterns.” These are more fine-grained design patterns than the
classic patterns, and have been designed to always be
automatically extractable from source code (or bytecode). Micro
patterns express more fine-grained design idioms than classic
patterns. For our purposes, what is important is that we now
have a reliable, automatic way to extract a set of general design

abstractions from Java projects. This now allows us to explore
whether evolution characteristics can be correlated with the
abstractions inherent in these micro patterns, and make
generalizable conclusions about specific evolution patterns.

In this paper we analyze the micro pattern evolution of three
open source projects, ArgoUML, Columba, and JEdit, shown in
Table 1. Our goal in doing so is to examine whether there are
any correlations between the evolution of micro patterns and the
likelihood of having bugs. Ideally we wish to identify micro
pattern evolution kinds that are consistently fault prone across
projects, and hence allow us to make general conclusions about
this kind of evolution that have broad applicability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

40

Table 1. Analyzed projects, ArgoUML, Columba, and jEdit. # of revisions is the number of revisions we analyzed. # of class changes
indicates the number of corresponding source code (Java) changes. # of bug changes indicates the number of changes that introduce bugs

identified by mining change logs and SCM history [13]. % of bug rate is the rate of bug-introducing changes over all changes.

Project Software type Period # of revision # of class changes # of bug class changes % of bug rate

ArgoUML UML design tool 01/2002 ~ 03/2003 1,262 4,179 1,245 29.8
Columba Email Client 11/2002 ~ 01/2006 1,652 11,138 1,604 14.4
jEdit Editor 09/2001 ~ 01/2006 1,449 5,526 2,456 44.5

After examining the micro pattern evolution history of the three
open source projects, we found that micro patterns do not
typically change when a class file changes. For example, the
most common pattern evolution kinds are ‘Limited Self !

Limited Self’, ‘Implementor ! Implementor’, and ‘Sink !

Sink’ (these micro patterns are briefly described in Section 2). In
all these cases the micro pattern is the same before and after the
class change. Only 4-6% of class file changes cause micro
pattern changes, examples being ‘Implementor ! NONE’ and

‘Stateless ! RestrictedCreation’.

For each project we identified the micro pattern kinds that were
most bug-prone. We additionally found the most bug-prone
pattern evolution kinds of the three projects, and found that they
are somewhat similar. Furthermore, we observed that the bug-

prone evolution kinds for two different periods of the same
project are almost identical. For example, micro pattern
evolution kinds such as ‘Pool ! Pool’, ‘Implementor !

NONE’, and ‘Sampler ! Sampler’ are bug-prone in jEdit. We

found that ‘Box’, ‘CompoundBox’, ‘Pool’, ‘CommonState’, and
‘Outline’ micro patterns have high bug rates, but they have low
frequencies and a small number of changes. In contrast,

‘Overrider’ and ‘Sink’ micro patterns have relatively lower bug
rates.

We anticipate that these findings can be used by software quality
engineers to identify areas of a software project that are more
bug-prone, and apply more testing and verification resources to
those areas. We could also make software developers aware that
they are working on a bug-prone pattern, or kind of pattern
transition, and thereby encourage more defensive coding and

more extensive unit testing.

In the remainder of the paper, we explain micro patterns
(Section 2) and describe our experimental setup (Section 3).
Following are results from our experiments (Section 4), along
with discussion of the results (Section 5). Rounding off the
paper, we end with related work (Section 6) and conclusions
(Section 7).

2. JAVA MICRO PATTERNS
Micro patterns capture idioms of Java programming languages
such as the use of inheritance, immutability, data wrapping, data
management, and modularity [7]. Micro patterns include Box,
Compound Box, Sampler, Canopy, Immutable, Implementor,
Pseudo Class, Pool, Restricted Creation, Overrider, Sink,
Stateless, Common State, Outline, Function Pointer, Function

Object, Joiner, Designator, Record, Taxonomy, PureType,
Augmented Type, Extender, Data Manager, Trait, Cobol Like,
State Machine Recursive, and Limited Self [7]. While the reader
is strongly encouraged to examine [7] for a detailed description,
we describe a few micro patterns here to provide a flavor of
these patterns:

Pool: A class has only final static fields and no methods.

Box: A class has exactly one instance field, which can be
modified by methods in the class.

Sampler: A class that has at least one public constructor and at
least one static field whose type is the same as that of the class.

Limited Self: Suppose class ‘foo’ is a subclass of class ‘bar’. If
‘foo’ does not introduce any new fields, and all self method calls
in ‘foo’ are calls to methods in ‘bar’, then ‘foo’ is a Limited Self
pattern class.

Recursive: A class that has at least one field whose type is the
same as that of the class. For example, java.util.LinkedList is a
recursive pattern class.

Sink: a class whose declared methods do not call instance
methods or static methods.

Implementor: a non-abstract class such that all of its public
classes are implementation of its super abstract class.

We use micro patterns for our pattern change analysis for three
reasons: (1) they are traceable, (2) they are close to the source
code, (3) and they capture non-trivial design idioms of the Java
language.

3. EXPERIMENT SETUP
In this section, we describe the data used in our study and
explain how it was extracted. We use the Kenyon [3]
infrastructure to automatically extract project revisions and class

changes from the SCM repositories for ArgoUML, Columba,
and jEdit. Bug-introducing changes are identified by mining
change logs and project history data using techniques described
in [13]. Micro patterns are extracted using a pattern extraction
tool developed by Gil and Maman [7], after compiling each
revision.

3.1 Micro Pattern Extraction
We extract software histories including all revisions and all files

from SCM systems such as CVS [2] using the Kenyon
infrastructure [3]. After checking out each project revisions, we
compile the revision and generate a jar file. We feed the jar file
into the micro pattern extraction tool [7]. The tool automatically
reads all class files in the jar file and extracts the pattern(s)
matched by each class file. We persistently store these extracted
micro patterns for each Java class file for all revisions of all
three projects.

3.2 Pattern Changes and Bug Changes
Now we have the micro patterns for all Java class files
(corresponding Java source files) of each revision. Using the
standard diff tool, we can easily identify Java class file changes.
To determine bug-introducing changes, we mine SCM change
logs and project history data [13]. We then observe the micro
pattern changes in each Java class file and compute bug
introduction rates for these changes.

41

For example, consider the change history for the file ‘foo.java’
(foo.class) as shown in Figure 1. The change log at revision 6
(Rev 6) states “Fixed issue #355”, which indicates that it is a fix
change. It means the file at revision 5 has one or more
problematic lines, which are fixed in revision 6 by changing the

problematic lines. When were the problematic lines added in the
first place? SCM systems such as CVS [2] and Subversion [1]
provide an annotation feature that shows information about
when each line of a file was modified, and by whom. Using
SCM annotation, we can find out when the problematic lines
were initially added. Suppose the problematic lines were added
in revision 3. This means the file at revision 2 does not have the
problematic lines, so they were added in the change between

revision 2 and 3. This change introduced a bug into the software,
and hence we call it a bug-introducing change.

Figure 1. Example of pattern evolution kinds and a bug-

introducing change.

The micro patterns for each revision are shown in Figure 1. As
an example, the pattern evolution kind for ‘foo.class’ between
revisions 1 and 2 is ‘NONE ! NONE’. In Figure 1, we see the

following micro pattern evolution kinds: ‘NONE ! NONE’ (1

time), ‘NONE ! Canopy’ (1 time), ‘Canopy ! Canopy’ (2

times), and ‘Canopy ! Limited Self’ (1 time). We count the

number of bug-introducing changes and compute the bug
introduction rate for each micro pattern evolution kind. For
example, the bug-introducing change count of the ‘NONE !

Canopy’ kind is 1, and occurs 1 time, so it has a 100% bug
introduction rate. General categories of pattern evolution kinds
are described in Table 2.

Table 2. Categories of pattern evolution kinds

Category Description

Pattern unchanged
Pattern remains the same after a class
change. E.g. Canopy ! Canopy

Change to

other pattern

Pattern changes to other patterns. E.g.

Stateless ! RestrictedCreation

Losing pattern
Pattern changes to NONE. E.g.
LimitedSelf ! NONE

Pattern

changes

Adding

pattern

Pattern changes from NONE. E.g.

NONE ! Stateless

When we compute the bug introduction rates of micro pattern
evolution kinds, we filter out the total count if it is less than 10
(outliers). If a micro pattern evolution kind occurs less than 10
times, we believe it is hard to make general conclusions about its

bug introduction rate, and it is possible that a small number of
bugs can affect the bug introduction rate substantially.

4. RESULTS
We first present micro pattern frequencies of a project snapshot

(the latest revision). We next show the list of micro pattern
evolution kinds, their counts, and ratios. The bug-prone micro
pattern evolution kinds are shown using contour graphs. We
compare common bug-prone evolution kinds of three projects

and two periods of the same project. Finally, we compare
frequencies, the number of changes, and bug rates of each micro
pattern.

Table 3. Java micro pattern frequencies of analyzed

projects. The * marked patterns do not exist or are rare in the
analyzed projects; we exclude them in further analysis.

 Micro Patterns ArgoUML (%) Columba (%) jEdit (%)

Box 1 3 2

Compound Box 1 2 6

Sampler 1 2 1

Canopy 8 10 22

Immutable 3 5 10

Implementor 28 31 32

*Pseudo Class 0 0 0

Pool 1 3 1

Restricted Creation 2 2 1

Overrider 8 7 22

Sink 5 10 10

Stateless 8 9 5

Common State 1 1 3

Outline 1 0 0

Function Pointer 1 2 1

Function Object 5 7 19

*Joiner 0 0 0

*Designator 0 0 0

Record 0 0 1

Taxonomy 1 2 2

PureType 4 9 4

*Augmented Type 0 0 0

Extender 3 11 5

Data Manager 1 3 1

*Trait 0 0 0

Cobol Like 0 1 0

State Machine 1 2 1

Recursive 0 0 2

Limited Self 16 20 12

Coverage 55 79 81

4.1 Pattern Frequencies
We compute micro pattern frequencies of a project snapshot (the
latest revision), with results shown in Table 3. ‘Canopy’,
‘Implementor’, ‘Overrider’, ‘Function Object’, and ‘Limited
Self’ are the most prevalent micro patterns. 81% of classes have
one or more micro patterns in jEdit, 79% for Columba and 55%

for ArgoUML. The remaining classes do not match any micro
pattern (NONE). Some micro patterns, such as ‘Joiner’ or
‘Pseudo Class,’ do not exist in the latest revision.

The micro pattern distributions of three projects are quite
similar. For example, the Pearson’s correlation coefficient [5] of
the micro pattern frequencies of ArgoUML and jEdit is 0.96.
Even though these two projects have different physical features
in their source code, they have similar pattern frequencies,

suggesting that any correlations between patterns, or pattern
evolution kinds found in these two projects would have
applicability to both projects, and perhaps others as well.

4.2 Pattern Evolution Kinds
We count all micro pattern evolution kinds of each Java class

file change across the project histories. Table 4 shows the top 20
micro pattern evolution kinds, their counts, and relative
frequency (percentage of all observed pattern evolutions) of
each pattern change. The most common micro pattern evolution
kind is ‘NONE ! NONE’. Other common micro pattern

evolution kinds are ‘LimitedSelf ! LimitedSelf’, ‘Implementor

! Implementor’, ‘Overrider ! Overrider’, and ‘Extender !

Extender’. The common micro pattern evolution kinds are
similar for the three projects.

42

Table 4. Top 20 most common pattern evolution kinds of the analyzed projects.

 ArgoUML Columba jEdit

Rank Pattern evolution kind

change #
(change %) Pattern evolution kind

change #
(change %) Pattern evolution kind

change #
(change %)

1 NONE ! NONE 1830 (33%) NONE ! NONE 4245 (31%) NONE ! NONE 1738 (24%)

2 LimitedSelf ! LimitedSelf 931 (17%) LimitedSelf ! LimitedSelf 1684 (12%) LimitedSelf ! LimitedSelf 803 (11%)

3 RestrictedCreation ! RestrictedCreation 490 (8.8%) Implementor ! Implementor 1589 (12%) Overrider ! Overrider 751 (10%)

4 Implementor ! Implementor 375 (6.8%) Extender ! Extender 1294 (9.5%) CommonState ! CommonState 582 (7.9%)

5 Overrider ! Overrider 342 (6.2%) Overrider ! Overrider 749 (5.5%) Implementor ! Implementor 575 (7.8%)

6 Extender ! Extender 262 (4.7%) Stateless ! Stateless 578 (4.2%) Canopy ! Canopy 452 (6.2%)

7 Sink ! Sink 203 (3.7%) Sink ! Sink 538 (4%) Recursive ! Recursive 317 (4.3%)

8 Stateless ! Stateless 189 (3.4%) CommonState ! CommonState 237 (1.7%) Extender ! Extender 286 (4%)

9 Sampler ! Sampler 142 (2.6%) Immutable ! Immutable 223 (1.6%) Sampler ! Sampler 274 (3.7%)

10 Common State ! Common State 91 (1.6%) Box ! Box 201 (1.5%) Immutable ! Immutable 223 (3%)

11 Immutable ! Immutable 77 (1.4%) PureType ! PureType 178 (1.3%) CompoundBox ! CompoundBox 216 (2.9%)

12 Compound Box ! Compound Box 70 (1.3%) Taxonomy ! Taxonomy 163 (1.2%) FunctionObject ! FunctionObject 183 (2.5%)

13 Implementor ! NONE 70 (1.3%) DataManager ! DataManager 163 (1.2%) Sink ! Sink 170 (2.3%)

14 NONE ! Stateless 50 (0.9%) CompoundBox ! CompoundBox 161 (1.2%) Pool ! Pool 140 (1.9%)

15 Canopy ! Canopy 45 (0.8%) Canopy ! Canopy 145 (1.1%) Stateless ! Stateless 112 (1.5%)

16 Outline ! Outline 42 (0.8%) Outline ! Outline 143 (1%) PureType ! PureType 63 (0.9%)

17 Box ! Box 30 (0.5%) RestrictedCreation ! RestrictedCreation 127 (0.9%) Box ! Box 39 (0.5%)

18 LimitedSelf ! NONE 27 (0.5%) FunctionPointer ! FunctionPointer 114 (0.8%) DataManager ! DataManager 37 (0.5%)

19 Pool ! Pool 25 (0.5%) Pool ! Pool 97(0.7%) Outline ! Outline 24 (0.3%)

20 NONE ! Implementor 24 (0.4%) FunctionObject ! FunctionObject 82 (0.6%) Taxonomy ! Taxonomy 17 (0.2%)

Also note that the patterns in the top pattern evolution kinds are
not the same as the most frequent patterns shown in Table 3. For

example, the most common pattern in jEdit is ‘Implementor’,
but the most common pattern evolution kind is ‘LimitedSelf !

Limited Self’ (excluding ‘NONE ! NONE’). The fourth ranked

pattern evolution kind, ‘CommonState ! CommonState’, is a

relatively rare micro pattern in jEdit (only 3%).

Overall, micro patterns in Java class files do not frequently

transition to new micro patterns. If a Java class file exhibits
characteristics of a given micro pattern, the class file tends to
stick to the original micro pattern as the class file changes. Table
5 shows the counts and percentages of pattern evolutions that
change patterns, and those that do not. Only 4 to 6% of Java
class file changes result in micro pattern changes.

Note that the total pattern evolution kind count (Table 5) is
greater than the total class file change count (Table 1), since a

class file can have more than one pattern and a class change
includes more than one pattern evolution kind. The multiplicity
of micro patterns are explained in [7].

Table 5. Ratio of pattern evolution kinds the three projects.

 ArgoUML Columba jEdit

Pattern unchanged 5,238 (94%) 12,977 (95%) 7,403 (95.9%)

Pattern changes 313 (6%) 643 (5%) 287(4.1%)

4.3 Bug-prone Pattern Evolution Kinds
We count bug-introducing changes for each micro pattern
evolution kind, and compute the bug change rate for each kind.
After computing all bug introduction rates for all pattern
evolution kinds, we draw contour graphs to indicate the common
bug-prone pattern evolution kinds. Figure 2 shows the bug
introduction rates for each micro pattern evolution kind for
ArgoUML. The x-axis indicates to-patterns and y-axis indicate

from-patterns. For example, the left-bottom cross indicates the
bug rate of the ‘NONE ! NONE’ pattern evolution kind. The

order of micro patterns along the x-axis and y-axis is the same as
the ordering in Table 3, excluding the infrequently occurring *

marked patterns. The contour line density indicates the bug
rates. Note that the value associated with each contour line

varies by chart, since each chart scales the contours to improve
presentation. Contour graphs show the overview properties of
bug-prone pattern evolution kinds. Denser contour lines indicate
higher bug rates.

Figure 2. ArgoUML bug-prone pattern evolution kinds

Figure 3 shows bug introduction rates for each micro pattern
evolution kind for jEdit. The two contour graphs (Figure 2, and

Figure 3) show that the bug-prone micro pattern evolution kinds
of the two projects are somewhat similar, but not identical. For
example, the ‘Sampler ! Sampler’ micro pattern evolution kind

is bug-prone in all projects. However, the ‘CompoundBox !

Canopy’ micro pattern evolution kind is bug-prone in jEdit, but
not in ArgoUML. Table 6 shows the top 20 most bug-prone
pattern evolution kinds of all three projects.

43

Table 6. Top 20 most bug-prone pattern evolution kinds.

 ArgoUML Columba jEdit

Rank Pattern evolution kind
bug
rate

Pattern evolution kinds
bug
rate

Pattern evolution kinds
bug
rate

1 Pool ! Pool 40 Implementor ! NONE 26 Sampler ! Sampler 72

2 CommonState ! CommonState 37 RestrictedCreation ! RestrictedCreation 22 Recursive ! Recursive 63

3 Canopy ! Canopy 36 CompoundBox ! CompoundBox 21 CommonState ! CommonState 58

4 Sampler ! Sampler 33 Immutable ! Immutable 21 FunctionObject ! NONE 53

5 Box ! Box 30 CobolLike ! NONE 20 CompoundBox ! CompoundBox 52

6 Immutable ! Immutable 29 NONE ! Implementor 19 LimitedSelf ! LimitedSelf 51

7 NONE ! NONE 27 NONE ! NONE 18 NONE ! NONE 49

8 Stateless ! Stateless 27 LimitedSelf ! NONE 18 Pool ! Pool 48

9 RestrictedCreation ! RestrictedCreation 26 Recursive ! Recursive 18 Immutable ! Immutable 43

10 Extender ! Extender 23 Overrider ! NONE 17 Outline ! Outline 42

11 LimitedSelf ! NONE 22 NONE ! Extender 17 Immutable ! NONE 40

12 LimitedSelf ! LimitedSelf 21 NONE ! Overrider 15 Implementor ! NONE 38

13 Outline ! Outline 19 CommonState ! CommonState 14 Sink ! NONE 38

14 NONE ! CobolLike 18 FunctionObject ! FunctionObject 13 NONE ! LimitedSelf 36

15 CompoundBox ! CompoundBox 17 Box ! Box 13 Stateless ! Stateless 34

16 Overrider ! Overider 17 Stateless ! Stateless 13 CompoundBox ! NONE 33

17 Implementor ! Implementor 11 Extender ! NONE 13 PureType ! PureType 32

18 NONE ! CommonState 10 Extender ! Extender 12 Implementor ! Implementor 32

19 NONE ! FunctionObject 10 Canopy ! Canopy 12 Extender ! Extender 31

20 Stateless ! RestrictedCreation 9.1 CobolLike ! CobolLike 12 Overrider ! Overrider 31

Figure 3. jEdit (rev 1-1449) bug-prone pattern evolution kinds

We observe bug-prone micro pattern evolution kinds in two

different periods of the same project, jEdit. The bug rates of each
micro pattern evolution kind of the two periods are shown in
Figure 4 (revisions 1-500) and Figure 3 (revisions 1-1449). The
bug introduction rates of the two periods are almost identical. We
conclude that the bug rates of micro pattern evolution kinds of
different projects are typically, but not always, similar. Bug-prone
pattern evolution kinds from two different periods of the same
project are very similar. We expect that quality assurance
personnel could use already observed bug-prone micro pattern

evolution kinds in a project to predict future bug-prone pattern
evolution kinds for that same project.

4.4 Frequencies, Pattern Evolution Kinds,

and Bug Rates
Since the Java class changes that cause pattern changes are
infrequent (only 4 to 6% in Table 5), in this section we observe
only class file changes that do not change micro patterns, such as
‘NONE ! NONE’, ‘Box ! Box’, and Sampler ! Sampler.’ We

compare the frequencies, the number of the evolution kinds, and

bug rates of these micro patterns. To permit cross-project
comparison, we normalize each value (i.e., frequency, the number
of the evolution kinds, and bug rate) by dividing each value by the
sum of the values. For example, each change count is divided by

the total number of changes to compute a normalized change
count. The sum of normalized values is 1. The normalized values
show the distribution of values among micro patterns. Figure 5-
Figure 7 show the normalized values of each pattern of the three
projects. For example, in Figure 5, 35% of the micro pattern
evolution kinds are ‘NONE ! NONE,’ as shown in the middle

bar for ‘NONE’ (this is slightly higher than the 33% value for

NONE ! NONE in Table 4, since we have eliminated rates of

class file changes that change micro patterns, and then
recomputed frequencies). However, the bug introduction rate of
‘NONE ! NONE’ is relatively low. Though Table 6 indicates

that 27% of these transitions are buggy, they are only 6% of total
project bugs. In contrast, the ‘CommonState!CommonState’

transition is found in only 1.6% of changes (see Table 4), but it
contributes 9% of total project bugs. Clearly this is a dangerous
type of change.

Figure 4. jEdit (rev. 1-500) bug-prone pattern evolution kinds

44

We observe that, in general, the fact that a pattern frequently
occurs in the source code does not necessarily mean that it
frequently changes. Similarly, the number of pattern changes and
the bug introduction rate are not strongly correlated. Some
patterns have many changes, but low bug introduction rates. There

are common patterns, which occur less frequently and have small
change numbers, but high bug introduction rates. For example, the
‘Box’, ‘CompoundBox’, ‘Pool’, ‘CommonState’, and ‘Outline’
micro patterns have high bug rates, but their frequencies and
change counts are low. In contrast to that, ‘Overrider’ and ‘Sink’
micro patterns have comparatively lower bug rates.

Figure 5. Micro pattern distributions, the number of changes,

and bug rates of ArgoUML

Figure 6. Micro pattern distributions, the number of changes,

and bug rates of Columba

Figure 7. Micro pattern distributions, the number of changes,

and bug rates of jEdit

5. DISCUSSION

5.1 Generalization
We identified the common pattern evolution kinds and bug-prone
micro patterns of three projects. We showed that the three projects
share some common properties, but they are not identical. We
analyzed only these three projects, so it is hard to determine if our
findings are broadly generalizable.

However, we showed that the bug-prone pattern evolution kinds
of two different periods of the same project are very similar. This

indicates that the common pattern evolution kinds and bug-prone
micro patterns discovered in part of a project’s history can be
generalized for the remainder of the project’s history.

5.2 Bug-prone Patterns
We identified common bug-prone micro patterns of the three
analyzed projects, and summarize our findings in Table 7. Why

are some micro patterns more bug-prone than others?
Understanding bug-prone micro patterns may lead to a deeper
understanding of the causes of bug-introducing changes. We also
note that, since a class changes micro patterns so infrequently,
most of our results are really noting correlations between
individual micro patterns and bug-proneness, and not correlations
between changes of micro pattern and being bug-prone.

Table 7. More/less bug-prone micro patterns

Category Micro Pattern evolution kinds/micro patterns

Bug-prone
Pattern
evolution

kinds

Pool ! Pool, Implementor ! NONE, Sampler !

Sampler, CommonState ! CommonState,

Canopy!Canopy, Recursive ! Recursive

High bug rate
patterns

Box, CompoundBox, Sampler, Pool, Outline,
CommonState

Low bug rate
patterns

Overrider, Sink

Identifying pattern specific bugs may provide insight into the
causes of bug creation. However, since identifying micro pattern
specific bugs requires manual project analysis, it is very labor-
intensive. In our limited explorations to date, we have not found
strong examples or trends in pattern-specific bugs. Identifying

trends in micro pattern specific bugs remains as future work.

5.3 Threats to Validity
There are four major threats to the validity of this work.

Systems examined might not be representative. We examined
three systems. It is possible that we accidentally chose systems
that have similar (or different) micro design patterns and
evolution properties. Since we intentionally only chose systems

that had some degree of linkage between change tracking systems
and the text in the change log (so we could determine bug-
introducing changes), we have a project selection bias. It certainly
would be nice to have a larger dataset.

Systems are all open source and written in Java. The systems
examined in this paper all use an open source development
methodology and are written in Java, and hence might not be
representative of all development contexts. It is possible that the
stronger deadline pressure of commercial development could lead
to different micro pattern change properties.

Some revisions are not compilable. To extract micro patterns from
Java source code, we need to compile them and create class files

45

first. Analyzed open source projects contain revisions that cannot
be compiled, with reasons ranging from syntax errors to missing
library files. We skipped non-compilable source code, which may
affect the results.

Bug-introducing change data is incomplete. We rely on the
change logs to identify bug-introducing changes. Even though we
selected projects that have good quality change logs, we still are

only able to extract a subset of the total number of bugs. The bug
change identification relies on the heuristic algorithm given in
[13], so it may have false positives and false negatives.

6. RELATED WORK
Patterns in software design and implementation have been
explored by many research efforts. In object-oriented designs,

design patterns describe the relationships and interactions between
classes or class instances and the template to manage them. In [6],
Gamma et al. discussed some design patterns that are categorized
into creational patterns, structural patterns, and behavioral
patterns. Heuzeroth et al. [8] explored automatic design pattern
detection in legacy code using static and dynamic analyses, in
which patterns like Observer, Composite, Mediator, etc. are
identified from Java code. In [12], Prechelt et al. presented a

system called Pal that discovers structural design patterns in C++
software by examining the C++ header files. Livshits and
Zimmermann combined software repository mining and dynamic
analysis to discover common usage patterns and code patterns that
likely encounter violations in Java applications [10]. Code-Web
[11] discovers library reuse patterns in the ET++ application
framework through data mining. Micro patterns are at an abstract
level between design patterns and implementation patterns.

Compared to design patterns, micro patterns are extractable;
compared to implementation patterns that need static or dynamic
analysis to discover them, micro patterns require less computation
to extract.

Gil and Maman perform analysis on the prevalence of micro
patterns across the Sun JDK versions 1.1, 1.2, 1.4, 1.4 and 1.4.2.
They only compared distributions in each release and conclude
that pattern prevalence tends to be the same in software
collections [7]. We analyzed not only distributions, but also
pattern evolution kinds and bug-prone change kinds.

Signature change pattern analysis [9] is similar to ours in that they
try to observe signature change patterns over revisions. However,
they observed only signatures change patterns, while our approach
analyzes micro pattern evolution, which includes non-trivial

idioms of each Java class. We also identify bug-prone patterns
among identified patterns.

7. CONCLUSIONS AND FUTURE WORK
We observed the micro pattern evolution properties of three open
source projects, including frequencies of micro patterns, common

micro pattern evolution kinds, and bug-prone micro patterns. We
found that the micro pattern distributions and common change
kinds of analyzed projects are similar. The bug rates of patterns of
different projects are somewhat similar. However, the bug rates of
two different periods of the same projects are almost identical. We
conclude that the identified bug-prone patterns from a part of a
project history can be used to predict or raise awareness of the
future pattern changes for the project.

We need to analyze more software projects to see if our findings
can be generalized to other projects. The micro patterns are not

originally designed to identify more/less bug-prone modules. We
need to mine or develop new patterns to easily identify more/less
bug-prone patterns. In addition, we need to mine finer granularity
patterns for use at the function/method level. The software pattern
evolution analysis methodology used in this paper can be reusable

for other software patterns.

8. ACKNOWLEDGMENTS
Our thanks to Itay Maman and Joseph (Yossi) Gil for allowing us
use the micro pattern extraction tool and for their valuable
feedback.

9. REFERENCES
[1] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K. Hancock,

and B. Collins-Sussman, "Subversion Project Homepage,"
2005, http://subversion.tigris.org/.

[2] B. Berliner, "CVS II: Parallelizing Software Development,"

Proc. Winter 1990 USENIX Conf., Washington, DC, pp.
341-351, 1990.

[3] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,
"Facilitating Software Evolution with Kenyon," Proc. 2005
European Software Engineering Conference and 2005
Foundations of Software Engineering (ESEC/FSE 2005),
Lisbon, Portugal, pp. 177-186, 2005.

[4] J. W. Cooper, The Design Patterns: Java Companion:

Addison-Wesley, 1998.
[5] R. E. Courtney and D. A. Gustafson, "Shotgun Correlations

in Software Measures," Software Engineering J., v. 8, pp. 5 -
13, 1992.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.
Boston, MA, USA: Addison-Wesley, 1995.

[7] J. Y. Gil and I. Maman, "Micro Patterns in Java Code,"

proceedings of the 20th Object Oriented Programming
Systems Languages and Applications, San Diego, CA, USA,
pp. 97 - 116, 2005.

[8] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe,
"Automatic Design Pattern Detection," Proc. 11th IEEE Int'l
Workshop on Program Comprehension, pp. 94, 2003.

[9] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of
Signature Change Patterns," Proc. Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, MO, USA,

pp. 64-68, 2005.
[10] B. Livshits and T. Zimmermann, "DynaMine: Finding

Common Error Patterns by Mining Software Revision
Histories," Proc. 2005 European Software Engineering Conf.
and Foundations of Software Eng. (ESEC/FSE 2005),
Lisbon, Portugal, pp. 296-305, 2005.

[11] A. Michail, "Data Mining Library Reuse Patterns in User-
Selected Applications," Proc. 14th International Conference

on Automated Software Engineering, Cocoa Beach, Florida,
USA, pp. 24–33, 1999.

[12] L. Prechelt and C. Krämer, "Functionality versus
Practicality: Employing Existing Tools for Recovering
Structural Design Patterns," J. Universal Computer Science,
vol. 4, pp. 866-882, 1998.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?" Proc. Int'l Workshop on Mining

Software Repositories (MSR 2005), Saint Louis, MO, USA,
pp. 24-28, 2005.

46

