
Mining Large Software Compilations over Time:
Another Perspective of Software Evolution∗

Gregorio Robles, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos
{grex,jgb}@gsyc.escet.urjc.es

Martin Michlmayr
University of Cambridge

martin@michlmayr.org

Juan Jose Amor
Universidad Rey Juan Carlos

jjamor@gsyc.escet.urjc.es

ABSTRACT
With the success of libre (free, open source) software, a new
type of software compilation has become increasingly com-
mon. Such compilations, often referred to as ‘distributions’,
group hundreds, if not thousands, of software applications
and libraries written by independent parties into an inte-
grated system. Software compilations raise a number of
questions that have not been targeted so far by software
evolution, which usually focuses on the evolution of sin-
gle applications. Undoubtedly, the challenges that software
compilations face differ from those found in single software
applications. Nevertheless, it can be assumed that both, the
evolution of applications and that of software compilations,
have similarities and dependencies.

In this sense, we identify a dichotomy, common to that
in economics, of software evolution in the small (micro-
evolution) and in the large (macro-evolution). The goal
of this paper is to study the evolution of a large software
compilation, mining the publicly available repository of a
well-known Linux distribution, Debian. We will therefore
investigate changes related to hundreds of millions of lines
of code over seven years. The aspects that will be covered
in this paper are size (in terms of number of packages and
of number of lines of code), use of programming languages,
maintenance of packages and file sizes.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Distribution, Mainte-
nance, and Enhancement
∗The work of Gregorio Robles, Jesus M. Gonzalez-Barahona
and Juan Jose Amor has been funded in part by the Euro-
pean Commission under the CALIBRE CA, IST program,
contract number 004337. The work of Martin Michlmayr
has been funded in part by Google, Intel and the EPSRC.
We would also like to thank the anonymous reviewers for
their extensive comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

General Terms
Measurement, languages

Keywords
Mining software repositories, large software collections, soft-
ware evolution, software integrators

1. INTRODUCTION
Large systems based on libre software1 are developed in

a manner that is quite different to traditional systems. In
traditional large systems, such as operating systems, most
work is done in-house, with only few pieces licensed from
other sources and little work contracted to other companies.
Such work is also performed in close cooperation with the
organization and under tightly defined requirements. Libre
software, on the other hand, is typically written by small,
independent teams of volunteers, sometimes collaborating
with paid staff from one or more companies. While various
projects interact with each other, in particular where depen-
dencies between the software exist, there is no central coor-
dination between the individual projects. The main task
of vendors (i.e. distributions) of libre operating systems is
therefore not to write software but to group existing soft-
ware, taken from several sources, together and to make that
collection easy to install, configure and administer.

Since users of libre software have no incentive to download
software from hundreds of sites and installing them individ-
ually, distributions play an important role by providing an
integrated system that is easy to install. Unsurprisingly, a
number of companies have seen this as a business opportu-
nity and offer such distributions among with related services,
such as support. There are also a number of community
projects which operate on a non-profit basis like other libre
software projects. Given their open way of collaboration,
these are a good target for in-depth study of extremely large
software compilations. While some commercial entities have
recently started their own community projects in addition
to their enterprise offerings, most notably Fedora (Red Hat)
and OpenSUSE (Novell), we will take Debian as the source

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

3

of data for this study since it is one of the most accessible
and best established projects.

Debian is a community effort that has provided a soft-
ware distribution based on the Linux kernel for well over
10 years. The work of the members of the Debian project
is similar to that carried out in other distributions: soft-
ware integration. Unlike many other distributions, Debian
is mostly composed of volunteers who are spread all around
the world. As a side-effect of this, all development infras-
tructure, including mailing lists, bug tracking and of course
the source code itself, is publicly available. In addition to
integrating and maintaining software packages, members of
the Debian project are in charge of the maintenance of a
number of services, such as a web site, user support, etc. In
the following, we will mostly focus on the work carried out
in their role as integrators of software – work that has had
tremendous success, given that Debian is the largest distri-
bution of all in terms of number of software packages [1].

2. RELATED RESEARCH AND GOALS
Software evolution has been a matter of study for more

than thirty years now [5, 7]. So far, the scope of software
evolution analyses has always been that of single applica-
tions. Example case studies are the “classical” analysis of
the OS/360 operating system [5], and, more recently, many
of studies on libre software systems. Such is the case for
the Linux kernel [3], or other well-known libre software ap-
plications, including Apache and GCC [11]. Noteworthy is
the proposal of studying the evolution of applications at the
subsystem level [2], as this introduces the issue of granu-
larity. Nonetheless, our approach considers as system the
whole software compilation and as subsystem the hundreds
of applications and libraries that are usually matter of soft-
ware evolution studies.

However, the authors have not found a study on the evolu-
tion of a system integrating many independent software ap-
plications. Actually, software compilations have rarely been
studied in software engineering. This is probably due to the
intrinsic difficulties that software companies find when inte-
grating large amounts of software programs built by several
vendors. There are a number of reasons for this, both legal
and technical. It seems that even if one of the most promis-
ing steps of software engineering has been to create reusable
components (or modules), in a similar way as bricks and
mortar, little attention has been put on how the integration
of these components evolve. A promising path has been
the study of integration of COTS from a software evolution
perspective [6].

As noted above, the public availability of source code of
libre software programs and the possibility of freely redis-
tributing this software allow to have an ample number of
software distributions. Both characteristics also enable the
investigation of distributions. In this sense, there have been
already some radiographies of some distributions, mainly of
the well-known Red Hat and Debian distributions. These
studies have pointed out the packages they contain, the size
of the packages and of the whole distribution, and some
statistics on the programming languages, among other is-
sues [14, 4, 1].

This paper goes a step beyond the single-version analyses
of software distributions: our goal is to study the evolution
of software compilations. We therefore consider data from
several points in time. However, it should be noted that the

goals of this study differ slightly from those usually consid-
ered as common for software evolution. In part this is be-
cause a different type of work has to be accomplished while
creating software compilations than during software devel-
opment. The work to be done for a software compilation
is mainly integration of software rather than development,
although the latter is not excluded at all (for instance, for
the development of an installer or other software administra-
tion tasks that distributions may include). Needless to say,
there are some aspects that are common to traditional soft-
ware evolution analyses, such as how the size of the software
evolves.

Putting a software distribution together is not only in-
tegration work, however. Maintenance also has to be per-
formed, but not so much in the classical way as defined by
Swanson (corrective, adaptive and perfective maintenance
activities) [12]. Maintenance in software compilations fo-
cuses on the integration of new versions of software that has
been released. In other words, a package maintainer will not
necessarily submit patches that correct errors; but they will
update the package whenever new versions are published by
the developers of the application or when changes in the dis-
tribution, such as library transitions or toolchain updates,
occur. This raises interesting questions in our longitudinal
analysis. For instance, we will analyze packages that are
kept and that get lost (removed) over time, as the composi-
tion of the software compilation may vary. We will also look
at packages whose version has not changed, as we will take
this as an indication of unmaintained packages.

As software compilations are composed of a large variety
of software applications for different purposes and from dif-
ferent backgrounds, we may find a larger heterogeneity than
when looking at specific software applications. This is the
case for instance in the use of programming languages: a
particular software application, for example the Linux ker-
nel [3, 10], is usually implemented primarily in one program-
ming language, with only minor portions in other languages
(such as glue code or the build system). This means that
studying compilations as large as the one we have selected
as our case study can be considered as a proxy of libre soft-
ware in general – a macroscopic view of the libre software
landscape. We are in this sense performing a holistic study
of libre software and analyze how it is in the large, drawing
some conclusions about the phenomenon itself.

3. METHODOLOGY
The methodology that we have used for the analysis of

the stable versions of Debian is as follows: first, we have re-
trieved files which contain information about the packages
that are distributed in a given Debian distribution. Distri-
butions are organized internally in packages where packages
correspond to applications or libraries. Debian developers
commonly try to modularize packages to the maximum, for
example splitting documentation into a separate packages if
it is very large. Since 2.0, the Debian repository contains a
Sources.gz file for each release, listing information about ev-
ery source package. For each package, it contains the name
and version, list of binary packages built from it, name and e-
mail address of the maintainer, and some other information
that is not relevant for this study. In some cases, packages
are not maintained by individual volunteers, but by teams.

As an example, an excerpt of the entry for the Mozilla

4

source package in Debian 2.2 has been included below2. It
can be seen how it corresponds to version M18-3, provides
four binary packages, and is maintained by Frank Belew.

[...]
Package: mozilla
Binary: mozilla, mozilla-dev, libnspr4, libnspr4-dev
Version: M18-3
Priority: optional
Section: web
Maintainer: Frank Belew (Myth) <frb@debian.org>
Architecture: any
Directory: dists/potato/main/source/web
Files:

57ee230[...]c66908a 719 mozilla_M18-3.dsc
5329346[...]bad03c8 28642415 mozilla_M18.orig.tar.gz
3adf83d[...]ca20372 18277 mozilla_M18-3.diff.gz

[...]

The Sources.gz files are parsed and the data they contain
is stored into a database. Then, each package is retrieved to
a local machine, the number of source lines of code (SLOC)
is counted and the programming languages in which the code
is written are recognized. The counting is made by means of
SLOCCount3, a tool written by David Wheeler that gives
the number of physical source lines of code of a software
program. SLOCCount takes as input a directory where the
sources are stored, identifies (by a series of heuristics) the
files that contain source code, recognizes for each of them
(also by means of heuristics) the programming language, and
finally counts the number of source lines of code they con-
tain. SLOCs are parsed differently for different languages,
which forces the identification of programming languages.

SLOCCount also identifies identical files (by using MD5
hashes), and includes heuristics to detect (and avoid count-
ing) automatically generated code. These mechanisms are
helpful when analyzing the code, but have some deficiencies.
Finding almost identical files using such hashes is not very
effective. In the second case, heuristics only take care of
well-known and/or common cases, but do not detect all of
them, or others that may appear in future. Nevertheless,
SLOCCount is a proven tool and it has has been used on
studies on Red Hat [14] and on Debian [4].

The results of the SLOCCount analysis are transformed
afterward into other formats, including both relational and
XML data formats. Hence, with a simple web interface any-
one can have access to raw data and more elaborated visu-
alization forms that facilitate a first analysis (graphs, maps,
among others). Many of the results carried out for this study
are offered in a web site4.

4. RESULTS AND OBSERVATIONS
In the following subsections we are going to present and

discuss the results obtained from applying our methodology
to several Debian releases.

4.1 Observations on the size of Debian
At the time of publication, the latest stable release of De-

bian is version 3.1, also known under the codename sarge.

2The original Sources.gz file where this entry comes from
can be found at http://www.debian.org/mirror/list.
3http://www.dwheeler.com/sloccount/
4http://libresoft.dat.escet.urjc.es/debian-counting/

The testing version has been codenamed etch and will be-
come the next stable Debian version some time in the future.
Finally, the one that is in development is called sid. In the
past, sarge also passed through this testing phase. What
we are going to consider in this work are the stable versions
of Debian since version 2.0, published in 1998. Thus, we
will consider Debian 2.0 (hamm), Debian 2.1 (slink), De-
bian 2.2 (potato), Debian 3.0 (woody) and, finally, Debian
3.1 (sarge). The codenames of the versions in Debian corre-
spond to the main characters of the animated cartoon film
Toy Story.

0

50

100

150

200

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05 JAN−06

0

2000

4000

6000

8000

10000

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05 JAN−06

Figure 1: Size in MSLOC and number of packages
for the versions in study. Top: MSLOC for each ver-
sion. Bottom: Number of packages for each version. In
both cases, the studied versions are spaced in time along
the X axis according to their release date.

In figure 1 the number of MSLOC and source packages for
the considered stable versions of Debian can be found. De-
bian 2.0, released July 1998, includes 1,096 source packages
that have more than 25 MSLOC. The following stable ver-
sion of Debian, version 2.1 (published around nine months
later), contains more than 37 MSLOC in 1,551 source pack-
ages. Debian 2.2 (released 15 months after Debian 2.1) sums
up around 59 MSLOC in 2,611 packages, whereas the next
stable version, Debian 3.0 (published two years after Debian
2.2), groups 4,579 packages of source code with almost 105
MSLOC. Finally, almost three years later, Debian 3.1 has
been released, with 8,560 source packages and more than
216 MSLOC.

Version Release Source pkgs Size Mean pkg size
2.0 Jul 1998 1,096 25 23,050
2.1 Mar 1999 1,551 37 23,910
2.2 Aug 2000 2,611 59 22,650
3.0 Jul 2002 4,579 105 22,860
3.1 Jun 2005 8,560 216 25,212

Table 1: Size of the Debian distributions under
study. Size is given in MSLOC, while the mean package
size is in SLOC.

5

Although the number of points is not sufficient to make an
accurate model, we can infer from the current data that the
Debian distribution doubles its size (in terms of source lines
of code and of number of packages) around every two years,
although this growth has been much more significant at the
beginnings (from July 1998 to August 2000 we observed
an increase of 135%) than in later releases (between July
2002 and June 2005 the source code base has not achieved
a 100% increase even though 3 years have passed). Hence,
using time in the horizontal axis, we would have a smooth
growth of the software compilation as found by Turski [13].
On the other hand, if we considered only releases (which is
the methodology preferred by Lehman), the growth would
be super-linear basically because the time interval between
subsequent releases has been growing for most recent re-
leases.

4.2 Observations on the size of packages
The histograms in figure 2 display package sizes for Debian

2.0 and Debian 3.0 (measured in SLOC). It can be clearly
observed that large packages grow in size with time, while
at the same time more packages near the origin appear. It is
astonishing how many packages are very small packages (less
than thousand lines of code), small (less than ten thousand
lines) and medium-sized (between ten thousand and fifty
thousand lines of code).

A small number of large packages in size (over 100
KSLOC) exist and the size of these packages tends to in-
crease over time, as the sixth law of software evolution
states [8]. Nevertheless, it seems surprising that in spite of
the growth that Debian has undergone, the graph does not
show big variations. Still more interesting is the fact that
the mean size for the packages included in Debian is slightly
regular (around 23,000 SLOC for Debian 2.0, 2.1, 2.2, 3.0
and 3.1, see table 1). With the data available at the present
time it is difficult to give a solid explanation of this fact,
but we can suggest some possible hypotheses5. As packages
tend to grow in size and if no new packages are added to new
versions of Debian, a growth in the mean package size would
be expected. So it is the inclusion of new, small packages
that makes the mean size stay almost constant for around
seven years. Perhaps the ecosystem in Debian is so rich that
while many packages grow in size, smaller ones are included
causing that the average to stay approximately constant.

4.3 Observations on the maintenance of pack-
ages

Up to the moment, we have seen how Debian has been
growing in the last 7 years as far as the number of packages
and the number of SLOC is concerned. In the following
paragraphs, we will attend an opposite dimension: pack-
ages that have not changed. This has to be understood in
the sense that taking care of a software distribution requires
maintaining packages, i.e. among other activities including
new versions of the packages in the distribution. Packages
that maintain from one release to the other the same ver-
sion number may have been maintained actively, but usu-
ally even performing corrective maintenance implies releas-
ing new versions of the software. We can therefore assume

5One of the anonymous workshop reviewers pointed out that
this kind of distribution is common in human-created arti-
facts, and is often considered to be an indication of human
cognitive limitations.

that no changes have been performed if the version number
has not been changed.

It should be noted that Debian has a policy about version
numbers. In addition to the software version, the project
appends an own revision number. So, for example, a pack-
age with version number 1.2-3, means that it is the third
Debian revision (upload) of that package in its 1.2 version.
So, even if the original software is not maintained, the De-
bian versions may change because of library transitions (for
instance, compiler changes from GCC 3 to GCC 4). Thus,
some packages have Debian revision numbers up to 20 or
higher - simply because the original software is not devel-
oped anymore but Debian still maintains that package.

Figure 4.3 will help explaining how we are going to mea-
sure maintenance activity supposing that we have two dis-
tributions (given each one by a set of packages, in the figure
these are Debian 2.0 and Debian 3.1). The circle that gives
the set of packages for the Debian 3.1 version has a larger
radius as it contains many more packages than Debian 2.0
(the area of the circles could be considered as proportional
to their size in number of packages). Both sets may have
packages in common (the intersection between the two sets,
as it is the case for the kernel-source package). Other pack-
ages will only be included in one of them. If packages appear
only in the older Debian version, we say that it has been lost,
while packages that appear only in the newer one are new
(or added) packages. We can also identify a subset of those
packages that remain with the same version number (a sub-
set of the intersection between the two sets); those are the
packages that we will consider unmaintained.

Figure 3: Illustration of common packages between
Debian 2.0 and 3.1. Among these packages, we may
find a subset that has the same version number.

Tables 2 and 3 contain some statistics about common
packages in different stable versions. As explained above,
we assume that two versions have a package in common if
that package is included in both, independently of the ver-
sion number of the package. Each table displays in its sec-
ond column the number of packages that a version of Debian
has in common with the other versions (see column “Com
pkgs”). To facilitate the comparison in relative and abso-
lute terms, the same version of Debian that is compared is
included. Needless to say, Debian 2.0 will have in common
with itself 1,096 (all) source packages.

Out of the 1096 packages included in Debian 2.0 only
about 800 appear in the latest version of Debian (at time of

6

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

5
10
15
25
40
60
85

120
170
240
340
480
675

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

5
10
20
35
55
85

130
200
305
465
705

1070
1625
2465
3735

Figure 2: Histogram with the SLOC distribution for Debian packages. Left: Debian 2.0. Right: Debian 3.0

publication of this paper). This means that around 25% of
the packages have disappeared from Debian in seven years.
The number of packages of the 3.0 version that are still in-
cluded in 3.1 is 3,848 out of 4,578 which gives us a similar
percentage of lost packages.

If we consider those packages with version numbers that
have not varied, we have to identify packages included in
two different Debian versions that have the same package
version (see column “Com vers.”). Again, we add the own
Debian version being compared. Because of that, Debian 2.0
will have all of its packages (1,096) in common with itself.

The fact that Debian 3.1 includes 158 packages that have
not evolved since Debian 2.0 is very surprising, as 15% of the
source packages included in Debian 2.0 have stayed almost
with no alterations since they were introduced seven years
ago (or earlier). As expected, the number of packages with
versions in common increases for neighboring distributions.

4.4 Observations on the programming lan-
guages

Our methodology implies to identify the programming
language of source code files before counting the number
of SLOCs. Thanks to this, we are able to compute the sig-
nificance of the different programming languages in Debian.
The most used language in all Debian versions is C with
percentages that vary between 55% and 85% and with a
big advantage on its immediate pursuer, C++. It can be
observed, nevertheless, that the importance of C is dimin-
ishing gradually, whereas other programming languages are
growing at a steady rate.

For example, in table 4 the evolution of the most signif-
icant languages – those that surpass 1% of code in Debian
3.1 – is shown. Below the 1% mark we can find, in this or-
der: tcl, Ada, PHP, Pascal, ML, Objective C, YACC, C#,
Lex, Awk, Sed and Modula3.

There exist some programming languages that we could
consider as minor languages and that reach a high position
in the classification. This is because although being present
in a reduced number of packages, these are large in size.
That is the case of Ada, that sums up 430 KSLOC in three
packages (gnat, an Ada compiler, libgtkada, a binding to
the GTK library, and Asis, a system to manage sources in
Ada) of a total of 576 KSLOC that have been identified as
code written in Ada in Debian 3.0. A similar case is the one
for Lisp, that counts with more than 1.2 MSLOC only for
GNU Emacs and XEmacs of around 4 MSLOC in the whole
distribution.

The programming language distribution pie-charts display

a clear tendency in the decline in relative terms of C. Some-
thing similar seems to happen to Lisp, which was the third
most used language in Debian 2.0 and has become the fifth
in Debian 3.1 (in fact, in 3.1, the forth language is Perl), and
that foreseeably will continue backing down in the future.
In contrast, the part of the pie corresponding to C++, shell
and other programming languages grows.

Figure 5 provides the relative evolution of programming
languages which gives a new perspective of the growth for
the last five stable Debian versions. We therefore take the
Debian 2.0 version as reference and suppose that the pres-
ence of each language in it is 100% (normalized to 1) so that
growth for a programming language is shown relative to it-
self. The graph should be read as follows: for each line in
Debian 2.0 for a given language, the figure gives the number
of lines in subsequent Debian releases for that language.

Previous pies evidenced that C is backing down as far as
its relative importance is concerned. In this one we can ob-
serve that in absolute terms C has grown more than 300%
throughout the four versions (see figure 4 for a histogram
with absolute values). But we can see that scripting lan-
guages (shell, Python and Perl) have undergone an extraor-
dinary growth, all of them multiplying their presence by
factors superior to seven, accompanied by C++. Languages
that grow a smaller quantity are the traditional, compiled
ones (Fortran and Ada) and others (such as Lisp, a tradi-
tional language that does not require compilation). This can
give an idea of the importance that interpreted languages
have begun to have in the libre software world.

Figure 5 includes the most representative languages in De-
bian, but excludes Java and PHP, since the growth of these
two has been enormous, in part because their presence in
Debian 2.0 was testimonial, in part because their popularity
in the latest time is beyond doubt.

4.5 Observations on the file sizes
It should be remarked that some of the most important

programming languages have spectacular increases in their
use, but that their mean file sizes remain generally constant
(see table 5). Thus, for C the average length lies around
260 to 280 SLOC per file, whereas in C++ this value is
located in an interval going from 140 to 185. We can find
the exception to this rule in the shell language, that triples
its mean size. This may be because the shell language is very
singular: almost all the packages include something in shell
for their installation, configuration or as glue. It is probable
that this type of scripts get more complex and thus grow
over the years.

7

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 1,096 1,096 25,267,766 110,587 25,267,766
Debian 2.1 1,066 666 11,518,285 11,5126 26,515,690
Debian 2.2 973 367 3,538,329 86,810 19,388,048
Debian 3.0 754 221 1,863,799 70,326 15,888,347
Debian 3.1 813 158 1,271,377 15,296 15,594,976

Table 2: Packages and versions in common for Debian 2.0

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 813 158 1,271,377 15,296 15,594,976
Debian 2.1 1,124 231 2,306,969 27,543 23,630,211
Debian 2.2 1,946 508 4,992,308 60,525 36,584,110
Debian 3.0 3,848 1,567 16,042,810 211,299 78,451,818
Debian 3.1 8,560 8,560 215,812,764 931,834 215,812,764

Table 3: Packages and versions in common for Debian 3.1

2.0 % 2.0 2.1 % 2.1 2.2 % 2.2 3.0 % 3.0 3.1 % 3.1
C 19,371 76.7% 27,773 74.9% 40,878 69.1% 66.6 63.1% 120.5 55.8%

C++ 1,557 6.2% 2,809 7.6% 5,978 10.1% 13.1 12.4% 36.4 15.8%
Shell 645 2.6% 1,151 3.1% 2,712 4.6% 8.6 8.2% 20.4 9.4%
Perl 425 1.7% 774 2.1% 1,395 2.4% 3.2 3.0% 6.4 2.9%
Lisp 1,425 5.6% 1,892 5.1% 3,197 5.4% 4.1 3.9% 6.8 3.1%

Python 122 0.5% 211 0.6% 349 0.6% 1.5 1.4% 4.1 1.9%
Java 22 0.1% 58 0.2% 183 0.3% 0.5 0.5% 3.8 1.7%

Fortran 494 2.0% 735 2.0% 1,182 2.0% 1,939 1.8% 2.7 1.3%

Table 4: Top programming languages in Debian. For Debian 2.0, 2.1 and 2.2 the sizes are given in KSLOC,
for versions 3.0 and 3.1 in MSLOC.

Debian2.0 Debian2.1 Debian2.2 Debian3.0 Debian3.1
0

5e+07

1e+08

1.5e+08

2e+08

C
C++
Lisp
Shell

Figure 4: Evolution of the four most used languages
in Debian.

It is very peculiar to see how structured languages usu-
ally have larger average file lengths than object-oriented lan-
guages. Thus the files in C (or Yacc) usually have higher
sizes, in average, than those in C++. This makes us think
that modularity of programming languages is reflected in
the mean file size.

5. CONCLUSIONS AND FURTHER RE-
SEARCH

In this paper we have shown the results of a study on the
evolution of the stable versions of Debian from the year 1998

 0

 5

 10

 15

 20

 25

 30

Debian 3.1Debian 3.0Debian 2.2Debian 2.1Debian 2.0

R
el

at
iv

e
SL

O
C

 (S
LO

C
 in

 D
eb

ia
n

2.
0

=
1)

C
C++

LISP
Shell

FORTRAN
Perl
Ada

Python

Figure 5: Relative growth of some programming lan-
guages in Debian.

onwards. We have traced and presented the evolution of the
size of its source code (measured in physical source lines of
code), of the number and size of the packages, and of the
use of the various programming languages.

Among the most important evidence we have found we can
highlight the drastic evolution rate of the distribution: sta-
ble versions double in size (measured by number of packages
or by lines of code) approximately every two years. This,
when combined with the huge size of the system (about 200
MSLOC and 8,000 packages in 2005) may pose significant

8

Lang. Deb. 2.0 Deb. 2.1 Deb. 2.2 Deb. 3.0 Deb. 3.1
C 262.88 268.42 268.64 283.33 276.36

C++ 142.50 158.62 169.22 184.22 186.65
Lisp 394.82 393.99 394.19 383.60 349.56
shell 98.65 116.06 163.66 288.75 338.25
Yacc 789.43 743.79 762.24 619.30 599.23
Mean 228.49 229.92 229.46 243.35 231.6

Table 5: Mean file size for some programming lan-
guages.

problems for the management of the future evolution of the
system, something that has probably influenced the delays
in the release process of the last stable versions.

A specific problem in this realm comes from the fact that
until now the mean size of packages has remained almost
constant, which means that the system has more and more
packages (growing linearly with the size of the system in
SLOCs). Since there is a certain level of complexity related
to the specifics of each package, which imposes a limit on
the number of packages per developer, this means that the
project would need to grow in terms of developers at the
same pace. However, such a growth is not easy, and causes
problems of its own, specially in the area of coordination.

With respect to the absolute figures, it can be noted that
Debian 3.1 is probably one of the largest coordinated soft-
ware collections in history, and almost for sure the largest
one in the domain of general-purpose software for desktops
and servers. This means that the human team maintaining
it, which has also the peculiarity of being completely formed
by volunteers, is exploring the limits of how to assemble and
coordinate such a huge quantity of software. Therefore, the
techniques and processes they employ to maintain a certain
level of quality, a reasonable speed of updating, and a release
process that delivers stable versions quite usable, are worth
studying, and can for sure be of use in other domains which
have to deal with large, complex collections of software.

As far as the programming languages are concerned, C
is the most used language, although it is gradually losing
importance. Scripting languages, C++ and Java are those
that seem to have a higher growth in the newer releases,
whereas the traditional compiled languages have even infe-
rior growth rates than C. These variations also imply that
the Debian team has to include developers with new skills
in programming languages in order to maintain the evolving
proportions. By looking at the trends in languages use with-
ing the distribution, the project could estimate how many
developers fluent in a given language it will need. In ad-
dition, this evolution of the different languages can also be
considered as an estimation of how libre software is evolving
in terms of languages used, although some of them are for
sure misrepresented (for instance, Java is underrepresented,
possibly because of licensing issues).

The evolution shown in this paper should also be put in
the context of the activity of the volunteers doing all the
packaging work. While some work has been done in this
area [9], more research needs to be performed before a link
can be established between the evolution of the skills and
size of the developer population, the complexity and size
of the distribution, the processes and activities performed
by the project, and the quality of the resulting product.
Only by understanding the relationships between all these

parameters can reasonable measures be proposed to improve
the quality of the software distribution, or shorten the re-
lease cycle without harming reliability and stability of the
releases.

All in all, the study of distributions such as Debian can be
of great interest not only for understanding their evolution,
but also to be used as good case studies which can help to
understand large, complex software systems which are more
and more common in many domains.

6. REFERENCES
[1] J. J. Amor, J. M. Gonzalez-Barahona, G. Robles, and

I. Herraiz. Measuring libre software using Debian 3.1
(Sarge) as a case study: preliminary results. Upgrade
Magazine, Aug. 2005.

[2] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth.
Software evolution observations based on product
release history. In Proc Intl Conference on Software
Maintenance, pages 160-170, 1997.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the
International Conference on Software Maintenance,
pages 131-142, San Jose, California, 2000.

[4] J. M. Gonzalez-Barahona, M. A. Ortuno Perez, P. de
las Heras, J. Centeno, and V. Matellan. Counting
potatoes: the size of Debian 2.2. Upgrade Magazine,
II(6):60-66, Dec. 2001.

[5] M. M. Lehman and L. A. Belady, editors. Program
evolution: Processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[6] M. M. Lehman and J. F. Ramil. Implications of laws
of software evolution on continuing successful use of
cots software. Technical report, Imperial College, 1998.

[7] M. M. Lehman and J. F. Ramil. Rules and tools for
software evolution planning and management. Annals
of Software Engineering, 11(1):15-44, 2001.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In METRICS’97:
Proceedings of the 4th International Symposium on
Software Metrics, page 20, nov 1997.

[9] M. Michlmayr and B. M. Hill. Quality and the
reliance on individuals in free software projects. In
Proceedings 3rd Workshop on Open Source Software
Engineering, pages 105-109, Portland, USA, 2003.

[10] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In Proceedings of the International
Workshop on Principles in Software Evolution, pages
165-174, Lisbon, Portugal, September 2005.

[11] G. Succi, J. W. Paulson, and A. Eberlein. Preliminary
results from an empirical study on the growth of open
source and commercial software products. In
EDSER-3 Workshop, Toronto, Canada, May 2001.

[12] E. B. Swanson. The dimensions of maintenance. In
Proceedings of the 2nd International conference on
Software Engineering, pages 492-497, 1976.

[13] W. M. Turski. Reference model for smooth growth of
software systems. IEEE Transactions on Software
Engineering, 22(8):599-600, 1996.

[14] D. A. Wheeler. More than a gigabuck: Estimating
GNU/Linux’s size. Technical report, June 2001.

9

