Error Detection by Refactoring Reconstruction

Carsten Gorg
Saarland University
Computer Science

D-66041 Saarbriicken
Germany

goerg@cs.uni-sb.de

ABSTRACT

In many cases it is not sufficient to perform a refactoring
only at one location of a software project. For example,
refactorings may have to be performed consistently to sev-
eral classes in the inheritance hierarchy, e.g. subclasses or
implementing classes, to preserve equal behavior.

In this paper we show how to detect incomplete refactor-
ings — which can cause long standing bugs because some of
them do not cause compiler errors — by analyzing software
archives. To this end we reconstruct the class inheritance
hierarchies, as well as refactorings on the level of methods.
Then, we relate these refactorings to the corresponding hier-
archy in order to find missing refactorings and thus, errors
and inconsistencies that have been introduced in a software
project at some point of the history.

Finally, we demonstrate our approach by case studies on two
open source projects.

1. INTRODUCTION

Refactoring is the process of changing a software system such
that it does not alter the external behavior of the code, but
improves its internal structure [2]. In many cases the same
refactoring has to be applied to more than one entity to
achieve that the behavior really does not alter. For example,
changing a method signature often requires to change the
signature of methods in sub, super, and sibling classes as
well. To help programmers with this task modern integrated
development environments, like ECLIPSE [7], provide (semi-)
automated application of refactoring to a software project.
But unfortunately, not all programmers make consistent use
of this feature and possibly introduce bugs, which are hard
to find later on.

In this paper, we show an approach to investigate the appli-
cation of refactorings over the lifetime of a software system.
In particular we check if refactorings have been performed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR’05, May 17,2005, Saint Louis, Missouri, USA

Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00

29

Peter WeiBgerber
Catholic University Eichstatt
Computer Science
D-85072 Eichstatt
Germany

peter.weissgerber@ku-eichstaett.de

consistently, i.e. in such a way that the behavior of the soft-
ware system has not altered. We concentrate on refactor-
ings of types Add/Remove Parameter and Rename Method.
When a refactoring of one of these types is applied to a
method in a class, it should also be applied to the corres-
ponding methods of subclasses in most cases, and in some
cases even of sibling classes. If a developer fails to do so,
two kinds of errors can occur:

o An interface method or an abstract method is no longer
implemented in a subclass. This kind of error results
in compile time errors, and thus, is easy to detect.

o The refactored method is inherited by a subclass in-
stead of being overwritten. However, the project can
still be compiled without any problems and, thus, the
developer may not notice the problem for a long time.

Our approach is applicable in two scenarios: First, we can
search in existing software repositories for incomplete refac-
torings that have been done in the past and have not been
corrected yet. In addition to this, we can assist the devel-
oper with the daily work: Every time the developer commits
source code to the repository a tool can check the committed
code for incomplete refactorings and warn if necessary.

The remainder of this paper is organized as follows: First,
we explain in Section 2 how refactorings can be extracted
from a software archive. Then, in Section 3 we show how
to check for consistency of the reconstructed refactorings.
Section 4 presents case studies of two open source projects.
After that, we outline related work in Section 5. Finally,
Section 6 summarizes our findings.

2. UNCOVERING REFACTORINGS

In this section we present a technique to detect refactorings
on the level of methods in a software archive managed by
cvs [1]. At first, we explain how we preprocess the reposi-
tory data to get easy and fast access to it. After that, we
take a closer look on how to retrieve classes and methods
of Java files. We need this information in the following step
where we analyze if methods have been refactored by re-
naming them, or adding resp. removing parameters. After
that, we discuss in few words how we deal with additional
changes to refactored methods and with ambiguous refac-
torings. Finally, we explain how we relate refactorings to

complete configurations of the software project. A more de-
tailed and formal description of this technique is described
in [3].

2.1 Preprocessing the CVS Data

Unfortunately, the direct access on the data is much too
slow, and furthermore, some information has to be recovered
from different places of the repository. Thus, the first step
of our technique is to extract the repository completely, re-
cover information where necessary, and store this data in
a relational database. The details of this extraction step
are described in [8]. After the extraction we can access the
following information:

Versions. A wversion describes one revision of a file in the
CVS repository (e.g. file org/epos/epos.java in revi-
sion 1.4). For each revision in the repository we store
information about the committer, the log message, the
timestamp, the state, the predecessor revision if one
exists, and the text.

Transactions. A transaction is the set of versions that
have been committed to the repository at the same
time by the same developer. As CVS splits commits
that contain more than one file into single check-ins for
each file and does not store which of these check-ins
have been issued together, we use a sliding time win-
dow heuristic to recover transactions quite precisely.

Additionally, we need information about particular config-
urations. A configuration is a set of versions of distinct files.
In our application, we are only interested in active config-
urations after transactions. An active configuration after a
transaction is the set of versions a developer can access in
his working directory after performing the transaction.

If we want to examine a new commit to the repository in-
stead of searching existing failures, it is sufficient to consider
the set of versions belonging to the current commit and to
build the active configuration after this committed transac-
tion.

2.2 Parsing Syntactical Blocks of Versions

To gather information about which classes and methods are
contained in a JAVA file (and thus, may be affected by refac-
torings) we use a light-weight parser that identifies a) classes
in versions and b) methods in classes. The classes are iden-
tified by its fully-qualified name while methods are identi-
fied by their signature, e.g. parseInt(String):int. If we
compare the classes of a version v to the classes of its pre-
decessor version v', we note by COMMONCc (v, v") the set of
classes that exist in both v and v'.

For each class c € COMMONCc (v, v") we can now compute the
sets of added, removed, and common methods by comparing
the methods contained in the class in v with the methods in
the corresponding class in v':

e ADDEDw(v,v’, c) method that have been added to c;

¢ COMMONw(v,’, c) methods that are contained in ¢
in both versions v’ and v;

30

¢ REMOVEDw (v, ', ¢) methods that have been deleted
from c.

2.3 Identifying Local Refactorings

To find refactorings performed in single classes we iterate
over the set V,. of all versions of JAVA files in the repository.
As refactorings describe changes with respect to the prede-
cessor version, we ignore versions that have no predecessor.
For all remaining v € V,., we take the predecessor version v’
and test in all classes c € COMMONc(v,v") if we can find
one of the following refactorings:

Rename Method.

If we find a method m; € REMOVEDw (v, v’, ¢) and a method
mas € ADDEDy (v, v', ¢) that have exactly the same text, the
same return type, the same parameters, but different names
we consider this as a Rename Method refactoring.

Add Parameter.

If we find a method m; € REMOVEDw (v, 7', ¢) and a method
ms € ADDEDwm(v,v’, ¢) that have the same name and the
same return type, but my has additional parameters with
respect to m1, we consider this as an Add Parameter refac-
toring. The Remove Parameter refactoring is recognized
analogously.

2.4 Impure and Ambiguous Refactorings

A major problem in parsing the version archive for refactor-
ings is that often the refactorings are impure: The developer
has not only performed the refactoring, but has changed
other things at the same location at the same time, or the
developer has performed two different refactorings on the
same entity. Our approach is not capable to find Rename
Method and Add/Remove Parameter refactorings that have
been applied to the same entity in the same transaction.
In addition, these refactorings cannot be recognized if other
changes have been simultaneously performed to the method
signature (i.e. name, parameter list, and return type). How-
ever, if only the body of the method has been changed to-
gether with the refactoring, we still detect Add/Remove Par-
ameter refactorings. As a consequence, it can happen that
we fail to detect some inconsistent refactorings: Assume that
in class A a method has been renamed and at the same time
an additional parameter has been added. Furthermore, as-
sume that class B is a subclass of A. Thus, the corresponding
method in B has to be refactored the same way. But, as we
cannot detect the refactoring in A we also cannot detect if A
has been refactored but B has been missed.

Unfortunately, it is not always possible to unambiguously
identify all refactorings as the following example illustrates:
a class contains the methods m(ty, t2) : t; and m(ta, t3) : t:
and after a new transaction it contains instead of these two
the new method m(ti,ts,ts) : t-. Now it is undecidable if
this is an Add Parameter refactoring from m(t;,t2) : tr by
adding ts or from m(t2, ts) : t: by adding ti. In such cases,
we take all matching refactorings into account.

2.5 Relating Refactorings to Configurations

To detect errors it is not sufficient only to look at the classes
that have been currently changed and may contain refactor-
ings, but also at the other classes that have been part of

the project and (maybe erroneously) not have been updated
when the developer has performed the check-in to the reposi-
tory. Thus, additionally to the changed versions, for each
file that has not been changed in a transaction we take the
most recent version into account and parse it for its classes
and methods. We call the set of changed versions and most
recent versions of non-changed files the configuration active
after transaction t.

2.6 Reconstructing the Class Hierarchy

Before we can check if refactorings have been applied con-
sistently to related classes with respect to the class hierarchy,
we have to construct the inheritance tree of the examined
JAVA project. Thus, we iterate over the set of transactions
and build for each the configuration active after it. For each
such configuration we know the set of project classes these
are the JAVA classes in the workspace of the developer after
the transaction. Thus, the inheritance tree for both imple-
ments and extends relations is built by iterating over these
project classes, parsing them for the declarations after the
implements resp. extends keyword and relating the found
class references (using the import declarations) to a) the
classes of the JAVA standard API and b) the classes contained
in JAR files.

3. CHECKING CONSISTENCY

In this section we explain how we check if the reconstructed
refactorings of types Rename Method and Add/Remove Par-
ameter have been applied consistently to the software pro-
ject. For each refactoring we compute a list of other pos-
sible candidates in the current configuration and check if the
refactoring has been applied also to them. If not, we regard
this as a possible inconsistency.

The list of possibles candidates is computed as follows: Let
ref be a refactoring changing the parameter list of method m
in class ¢ in configuration conf; from params; to params, in
configuration conf,. If in configuration conf, exists a super-
class, subclass or sibling class® of class ¢ that contains the
method m with parameter list params, then this method is
a possible candidate for a missing refactoring. Analogously,
we compute further candidates by taking refactorings re-
naming a method into account.

The methods found as candidates split into two different
categories:

e Methods in subclasses: If methods in a class are
refactored it is likely that overwritten methods in sub-
classes should be refactored the same way. For this
type of error candidates one can distinguish between
two subtypes: If the superclass is an interface, the
unrefactored subclasses do not implement the inter-
face correctly anymore and thus, cannot be compiled
successfully. Otherwise, the affected subclass inherits
the refactored method from the superclass and add-
itionally, holds its own unrefactored method. Thus,
the class can be compiled, but may behave incorrectly.

1a sibling class of class ¢ is an arbitrary subclass of a super-
class of class c.

31

e Methods in sibling classes: There are also cases
when sibling classes have to be updated although the
superclass has not to be updated. For example, in one
transaction of JEDIT at the same time in both classes
EnhancedMenuIltem$MouseHandler and EnhancedCheck-
BoxMenuItem$MouseHandler the method mouseClicked
has been renamed to mouseReleased. As both classes
are subclasses of the standard JAVA class MouseAdapter
the actions implemented in these methods are not in-
stantly triggered any more when the mouse has been
clicked, but not until the mouse has been released
again. Clearly, this refactoring should be applied at
the same time to all classes extending from Mouse-
Adapter to preserve a consistent user interface.

As we examine the whole software archive and start with the
oldest configurations, it is possible that the missing parts
of a detected inconsistent refactoring have been added some
transactions later (this means the refactorings has been per-
formed using multiple transactions). Hence, for each candi-
date we iterate over all configurations with a timestamp later
than the considered configuration and look if the refactoring
has been applied to the corresponding method. If we find
such a later configuration, the inconsistency (and thus the
error) has been resolved.

4. CASE STUDIES

We applied our techniques to detect inconsistent refactor-
ings to the software archives of the open source projects
JEDIT and TOMCAT. We found five candidates for erroneous
transactions in JEDIT and seven in TOMCAT. For JEDIT two of
these candidates are unrefactored methods in subclasses —
both have been refactored in later transactions — and three
are methods in sibling classes. For TOMCAT three candidates
are methods in subclasses and four are methods in sibling
classes. Nomne of these unrefactored methods have been up-
dated later. In the following paragraphs we explain some
noticeable transactions in more detail.

4.1 Unrefactored Methods in Subclasses

We found an example of the subclasses type in Transaction
876 of JEDIT: An additional parameter has been added to the
method foldLevelChanged of the interface BufferChange-
Listener. This interface is implemented by two classes:
BufferChangeAdapter and JEditTextArea$BufferChange-
Handler. Thus, these classes should have been updated ac-
cordingly to ensure that they can be compiled. Interest-
ingly, only JEditTextArea$BufferChangeHandler has been
initially updated. One month later the other class has been
refactored, too, allowing it to be compiled again.

Also in JEDIT we found a second example where the devel-
opers seem to have noticed their mistake and corrected it
some transactions later: In Transaction 1241 a developer has
added a boolean parameter to the method addTokenHandler
in the class DefaultTokenHandler. One day later, in the fol-
lowing transaction, the subclass DisplayTokenHandler has
been updated accordingly. Note, that in this example the
superclass is not an interface. This means, even the incorrect
configuration was syntactically correct and did not produce
compiler errors.

preSe:wce

juest,

interface org.apache.tomcat.core.Requestinterceptor

mntexmap(ﬁequesi} mi

r SEMap] Request) i
a:eﬁar.‘y RequesL Resaanse} int

Response):int

beforeCommil(Request, Response):int

afterBody(Request, Response):int

posiService(Request, Response):int

authe.lmcateﬁRequest Response):int

getMethods():Stringl]

i ADD PARAMETER FROM authorize({Request, Response) int

P

org.apache.tomcat.core.BaselInterceptor

log(String) :void

saltontexif rlanager((nmexlrlanagel) waid

setDebug(int) v
mqueslMap}RequesL\ int
contextMap{Request

int
beforeb ndyfRequesl Respmsa) int

Baselnterceptor()
preService| R

uest, Respense)iint

IJefDre(_ommll Request, Respcnsej int
erBody(Request, Response):int
pcsl&-erulce(kequest Rgsponse) int

contextinit{Context):void

preServietinit{Context, ServietWrapper) void

postServletlnit{Context, ServietWrapper) :void
preServietDestroy(Context, ServietWrapper) ivoid
postServlelDestroy(Context, ServletWrapper):void
ngmelm[(Cﬂnteleanager):vmd
ddContext{ContextManager, Context}:void

contextShutdown(Context
engineShutdawni

getMethods
addSect

antext Manage
lEMOVELQﬂlEXl(o\ltexLManager

urit:
authelmcate(neques[Re;ponse\

addContainer{Container) void

mmnveLnnlamer([ontamer\ woid

E‘outaxt) vold

onstramt(Lomext Slrmg Container):void

(Reg)it
rADD PARAMETER FROM aumcnze(Reques[Response).int

org.apache.tomcat.request.JDBCRealm
setContextManager{ContextManager) :void

contextlnit{ Context): void
contextShutdown{Context):void

org.apache.tomcat.request. AccountingInterceptor

setConlextManag arme\textManagar) woid
setDebug(int} :vol

authenticate{Request, Respanse):int
getUserRoles{String) :String[]
satDrlverName(‘Slrmg‘:vol
setConnectionURL{ St void
;EtUserTahletStringJ:vni
setUserbameCol(S] ? o
LE[USEICF&dLDI(blnng vol Id
satUserRoIeTab\eFStrm '8 vo:u

contextinit{Context) Vo
au thenticalefRequest, Resuonse]
SAl

org.apache.tomcat.request.SimpleRealm
setContextManager-’Cm\tey.tManager) woid

DD PARAMETER FROM authonze(Requesl Response)int

requesLMaprequesle dint
contextMap(Request}zint
beforeBody(Reqguest, Response):int
greServ:ce(Re uest, Response):int
efareCommit{Request, Response):int
anerBody(Request Response):int
postService(Request, Response):int
en%'nelnlttLomextManagen void

setRoleNameCol{ Strin
authenucale(smng blnng\ boulean
setConnectioniame(String

s ADD PARAMETER FF!OM zumnnze[Requesl Response):int

autl Enucate(Requ
authorize(Request, Re:
‘Accountinglnterceptor(
selTrace(String):void

Figure 1: Add Parameter refactorings in transaction 1971 of TOMCAT.

But we also found transactions where the unrefactored class
has not been updated later. For example, in Transaction
1475 of TOMCAT the method handleTagBegin has been ex-
tended by one parameter in different classes of the package
org.apache. jasper.compiler, but not in the class Dumb-
ParseEventListener. The documenting comments in the
source code of the class tell that the class is a testing class
that should be removed some time.

This shows that our approach only finds candidate methods
that may be buggy. Actually, these methods should be au-
dited by a developer.

Figure 1 shows a more complex example for a maybe incon-
sistent Add Parameter refactoring in TOMCAT. In this visu-
alization the involved classes and the inheritance relations
between them are displayed in the UML notation, refactored
methods are marked green (a tooltip describes the refactor-
ing) and missing refactorings are colored red. In Transac-
tion 1971 the method authorize of the interface Request-
Interceptor has been extended by one parameter of type
String[]. This new parameter provides the roles which the
person that should be authorized owns (e.g. “admin”). Con-
sequently, the class BaseInterceptor that implements this
interface has been updated, too. Moreover, two of three sub-
classes of BaseInterceptor have also been changed: Simple-

32

Realm and JDBCRealm. Surprisingly, the class Accounting-
Interceptor that both ¢mplements RequestInterceptor and
at the same time eztends BaseInterceptor has not been
updated. Anyway, this class can be successfully compiled
because the authorize method as needed because of the
interface is inherited from the superclass BaseInterceptor.

To get a deeper understanding of what happened in the de-
scribed transaction we checked out the source code of the
involved classes at the time of the transaction. We found
that in the unrefactored class AccountingInterceptor the
questionable method always returns the value “0” for “au-
thorized”. This is exactly what the updated method that is
inherited from BaseInterceptor does. Thus, there was no
need to update the method in this class because the inher-
ited one does the right thing and the unrefactored one does
the same and can be used as abbreviation.

4.2 Unrefactored Methods in Sibling Classes

As we have explained in Section 3 in some cases it is also
necessary to update sibling classes although the superclass of
a class has not been refactored. In JEDIT we found three and
in TOMCAT four transactions where a class has been refactored
on method level but the siblings have not been updated.
None of these have been updated later in the history.

As siblings do not inherit from each other, they can imple-
ment completely different methods. Thus, again the found
transactions are only candidates and have to be checked by
a developer.

For example in Transaction 3240 of TOMCAT, a parameter
has been added to the method addTagRules in the class
ProfileLoader. This class is a subclass of BaseInterceptor
which has two other subclasses: ContextXMLReader and Ser-
viceXMLReader. In these classes the described refactoring
has not been performed.

S. RELATED WORK

General information on refactoring are presented in Fowler’s
book [2]. Demeyer et. al presented some metrics-based heur-
istics [6] to detect refactorings in successive configurations
of software systems. They primarily concentrated on move-
ments, splits, and merges of methods and performed case
studies on three open source projects. In contrast to our
work, they did not access the software archive to get succes-
sive configurations. Software metrics like the McCabe com-
plexity [4] can also give hints about files and classes that
are likely to contain errors. Ostrand and Weyuker [5] used
a different approach to detect and predict possible problems
in a software. They mined bug databases in order to predict
fault-prone files.

6. CONCLUSIONS AND OUTLOOK

In this paper we introduced an approach to reconstruct
refactorings on method level from software archives. Then
we explained how to check if they have been consistently
applied. The case studies on the open source projects JEDIT
and TOMCAT show that our approach allows to detect can-
didates for incomplete refactorings. In two cases, the can-
didates have been applied later and so it turned out that
they have been really missing. In two other cases, they have
also been missing, but have not been applied, because they
concerned classes, which have no longer been under active
development. The remaining cases have to be inspected by
the developer to decide whether the refactorings are really
missing or not.

For future work we plan to investigate how to reconstruct
more complex types of refactorings from software archives.
Moreover, there are additional refactorings that could be
checked for consistency without altering our current archi-
tecture but are not yet implemented: For example the Ez-
tract Interface refactoring that creates an interface contain-
ing the methods of a class and lets the class implement this
interface could be detected by comparing the method declar-
ations of new interfaces to the methods of existing classes.
In addition to this, the Generalize Type refactoring that
changes the type of an object to a more general type could
be recognized using the class hierarchy.

As our approach can be used to support developers in their
daily work to prevent errors in refactoring tasks, it would be
desirable to let our algorithms run in the background while
the developer is working. To achieve this we are planning
to integrate it into a development environment like ECLIPSE.

Furthermore, we plan to extend our case study to more soft-
ware projects of different size, complexity, and age.

33

7. REFERENCES
[1] P. Cederqvist. Version Management with CVS.
http://wuw.cvshome.org/docs/manual/.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of Ez-

isting Code. Addison-Wesley, 2001.
[3

C. Gorg and P. Weiigerber. Detecting and Visualizing
Refactorings from Software Archives. In Proceedings of
the 13th International Workshop on Program Compre-
hension (IWPC 2005), St. Louis, Missouri, U.S., 2005.

T. J. McCabe. A Complexity Measure. IEEE Transac-
tions on Software Engineering, Vol. 2, 1976.

T. J. Ostrand and E. J. Weyuker. A Tool for Mining
Defect-Tracking Systems to Predict Fault-Prone Files.
In Proc. International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, Scotland, U.K.,
2004.

6

O. N. Serge Demeyer, Stéphane Ducasse. Finding Refac-
torings via Change Metrics. In Proceedings of ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2000), Minneapolis,
Minnesota, U.S., 2000.

The Eclipse Foundation. Eclipse Homepage.
http://wuw.eclipse.org.

[8] T. Zimmermann and P. Weigerber. Preprocessing CV'S
Data for Fine-Grained Analysis. In Proc. International
Workshop on Mining Software Repositories (MSR 2004),

Edinburgh, Scotland, U.K., 2004.

