
Local and Global Recency Weighting Approach to Bug Prediction

Hemant Joshi+, Chuanlei Zhang+, S. Ramaswamy*, Coskun Bayrak*
+Applied Science Department, *Department of Computer Science

University of Arkansas at Little Rock, Little Rock AR 72204
{hmjoshi, cxzhang, srini, cxbayrak}@ualr.edu

Abstract

Finding and fixing software bugs is a challenging
maintenance task, and a significant amount of effort is
invested by software development companies on this
issue. In this paper, we use the Eclipse project’s
recorded software bug history to predict occurrence of
future bugs. The history contains information on when
bugs have been reported and subsequently fixed.

1. Introduction

To remain competitive in the fast growing and
changing world of software development, project
managers must optimize the use of their limited
resources to maximize the delivery of quality products
on time and within budget [1]. Software bug
repositories have been recognized as reliable data
assets that can provide useful information to assist with
the software development and project management
process. Therefore, in this work, we have modeled the
occurrence of bug patterns through the characterization
of information stored within bug repositories. We use
the proposed approach is to predict the number of bugs
and types of bugs reported for the Eclipse project for a
specified period, as required by the proposed challenge
in [2].

The remaining part of the paper is organized as
follows. In section 2, we discuss the information source
for our input data. The model used for the bug
predictions is described in Section 3. The prediction
results obtained using our technique, are presented in
Section 4. Section 5 concludes the paper.

2. Input Data

Although over 70,000 bugs associated with the
Eclipse project over the past 6 years were downloaded,
we were particularly interested in the 32 components of
Eclipse, as specified in the challenging task list [3].
More specifically, the model was applied to Eclipse
bugs repositories for the MSR challenge [2]. The bug-
count for each of these 32 components was calculated
for each month, from January 2001 to January 2007
(73 months).

3. Model for Prediction
The proposed model presented in this paper was

built on two bug pattern assumptions. The first is
based on the assumption that the number of bugs or
bug-count reported for any given component in a given
month i, is most strongly impacted by the bug-counts
reported for the previous month i-1. This can be
represented as:

1-ii BugCount BugCount ∝
This indicates that the bug prediction for any month

is largely influenced by the bug-count of the preceding
month. To model this, we introduce the stabilizing
factor, �; which is a measure of how much the
predicted bug-count deviates from the previous month.
Hence,

 1-iii BugCount �BugCount += -- (1)
Here the factor � is used as an offset adjustment to

predict how much the bug-count will vary in the month
under consideration from its most recent predecessor.
In order to determine the factor �, we take into account
the bug-count history of all available years and use
local corrections. Thus, we study this bug prediction
problem by analyzing the historical bug data both
locally and globally.

In our analysis, we refer this as ‘recency-weighting’
approach in which weights are arranged in a manner
that boosts the weight of the most recently known
monthly bug-count for that component. To model
recency, we use a power decay function (with base 2)
given by

 0 x where
2
1

f(x) ≥=
x

 -- (2)

Then, we calculate the average weighted function W(x)
combined with generic bug-count trend (slope, m) for
each month i from January 2001 until January 2007.
Readers can refer to [4] for further details of this
approach.

73

2
10

72
�
== i

ii

i

*m
W -- (3)

where slope mi = BugCounti –BugCount i-1

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Although the above global analysis might shed
significant light on understanding the overall bug-count
trend, it does not include any information about trends
(local) that might be specific to a particular month. As
the bug-count is the ‘reported’ bug-count, it may be
assumed that the bug-count gets affected by seasonal
factors such as holidays, vacations, allergies, or some
other local factors. So we add a local analysis factor in
our model. Since we had to predict for the months of
February, March and April 2007, we considered all the
months of February, March, and April over the past 6
years to predict the number of bugs for February,
March, and April in 2007. Hence, we considered six
weight functions (Wj) for each component under
consideration, to calculate the average local weight
factor as shown in equation (4).

AprMarFeblocal ,,,
6

W
W

2007-local

2001-lj
j

==
�

=
-- (4)

Applying the previous year-month’s bug count offset
to predict current month-year bug-count for the given
component is a viable approach, since the local trends
specific to a month of the year may be expressed in
this case. The implicit bug-count predicted also
provided a higher weight for the previous two years
than other prior (month) years.

4. Prediction Results
Table 1 shows the bug-count predictions for the 32
components of Eclipse dataset. The duration is 3-month
period between February 2007 and April 2007.

Table 1. Bug Prediction Results for 32 Eclipse
components [period Feb 2007 to Apr 2007]

Eclipse Component Alpha
(Global)

Beta
(Global &

Local)
Equinox.Bundles 36 36
Equinox.Framework 105 24
Equinox.Incubator 15 3
Equinox.Website 0 0
JDT.APT 15 15
JDT.Core 217 326
JDT.Debug 111 122
JDT.Doc 12 12
JDT.Text 66 105
JDT.UI 235 258
PDE.Build 27 37
PDE.Doc 6 2
PDE.UI 268 268
Platform.Ant 18 44

Platform.Compare 57 32
Platform.CVS 87 87
Platform.Debug 127 177
Platform.Doc 12 12
Platform.IDE 129 81
Platform.Releng 72 39
Platform.Resources 63 55
Platform.Runtime 57 57
Platform.Scripting 0 0
Platform.Search 3 6
Platform.SWT 315 288
Platform.Team 51 158
Platform.Text 72 76
Platform.UI 725 651
Platform.Update 57 57
Platform.UserAssistance 0 0
Platform.WebDAV 0 0
Platform.Website 3 3

At the time of competition, we had downloaded only
70,000 bugs but since then we have downloaded over
162,000 bugs for various components of Eclipse. We
compared the prediction results with the actual bug-
count for months of Dec 2006 and Jan 2007. The
model performs better with 162,000 bugs than with
70,000 bugs for the two time periods.

5. Conclusion

In this work, we have presented an elegant approach
to the prediction of bugs for a software project based
upon the information contained in open-source bug
repositories. We have illustrated the use of a local and
global recency weighting technique for the design of a
bug prediction algorithm. While we do encounter some
extreme cases in the results, the overall results obtained
are, in general, promising. In the future, we plan to
address predicting for a more distant future by
considering issues such as software versioning impacts.
We also plan to study related issues such as change and
stability analysis.

6. References
[1] A. E. Hassan and R. C. Holt, “The top ten list: dynamic

fault prediction,” Proceedings of the 21st International
Conference on Software Maintenance, Budapest,
Hungary, September 2005, pp. 263–272.

[2] MSR. Mining Challenge 2007.
 http://msr.uwaterloo.ca/msr2007/challenge/
[3] MSR. Mining Challenge 2007 Bug Prediction.
 http://msr.uwaterloo.ca/msr2007/challenge/#predict
[4] C. Zhang, H. Joshi, S. Ramaswamy, C. Bayrak, L. Yu,

“A Dynamic Approach to Software Bug Estimation”,
submitted to International Conference on Global
Software Engineering, Feb 2007.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

