
Mining Eclipse Developer Contributions via Author-Topic Models

Erik Linstead†, Paul Rigor†, Sushil Bajracharya∗,
Cristina Lopes∗, Pierre Baldi†

†Institute for Genomics and Bioinformatics ∗Institute for Software Research

Donald Bren School of Information and Computer Sciences
University of California, Irvine

{elinstea,prigor,sbajrach,lopes,pfbaldi}@ics.uci.edu

Abstract

We present the results of applying statistical author-topic
models to a subset of the Eclipse 3.0 source code consist-
ing of 2,119 source files and 700,000 lines of code from 59
developers. This technique provides an intuitive and auto-
mated framework with which to mine developer contribu-
tions and competencies from a given code base while simul-
taneously extracting software function in the form of topics.
In addition to serving as a convenient summary for program
function and developer activities, our study shows that topic
models provide a meaningful, effective, and statistical basis
for developer similarity analysis.

1 Introduction

As the availability of open source software repositories
continues to grow, so does the need for tools that can au-
tomatically analyze these repositories on an increasingly
larger scale. The ability to mine source code for function-
ality, team structure, and developer contributions is also
of great interest to private industry, where these tools can
be applied to such problems as in-house code reuse and
project staffing. While accomplishing these tasks for ar-
bitrarily large code repositories has proven challenging, re-
cent progress in statistical topic modeling provides another
direction for research in this area.

Automated topic modeling has been successfully used
in the text mining and information retrieval communities
where it has been applied to the problem of summarizing
large text corpora. Recent techniques include Latent Dirich-
let Allocation (LDA), which probabilistically models text
documents as mixtures of latent topics, where topics corre-
spond to key concepts presented in the corpus [3]. Author-
Topic (AT) modeling is an extension of topic modeling that
captures the relationship of authors to topics in addition to

extracting the topics themselves. A recent advancement in
this area is the probabilistic Author-Topic model, an aug-
mentation of LDA that models the distribution of authors
over topics in addition to topics over documents [7]. The
end result is the ability to extract the most likely authors for
topics mined from the corpus, where the list of topics is de-
termined by the algorithm. These more recent approaches
have been found to produce better results than traditional
methods such as latent semantic analysis (LSA).

Despite the capabilities of the probabilistic author-topic
model, its applications have generally been limited to tra-
ditional text corpora such as academic publications, news
reports, and historical documents [5]. At the lowest level,
however, a code base is nothing more than a text corpus
where source files are analogous to documents and develop-
ers to authors. Though syntax and convention differentiate a
programming language from a natural language, the tokens
present in a source file are still indicative of its function (ie.
its topics).

For the 2007 MSR challenge we develop and apply
author-topic models to software data, and demonstrate the
results with the Eclipse 3.0 source code to answer the fol-
lowing data mining questions:

• What topics define the functionality of the Eclipse 3.0
code base?

• Which developers are most likely to contribute to a
particular topic?

• Which developers are most similar based on their con-
tributions across topics?

The remainder of the paper is dedicated to answering these
questions. Section 2 describes the dataset used in our anal-
ysis. Section 3 summarizes the tools and methodology used
in applying the AT model to the Eclipse source. Section 4
presents and discusses the results of our mining technique,
which leads to conclusions and future work in section 5.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



2 Input Data

To demonstrate our approach we consider the 3.0 ver-
sion of Eclipse from the project archive [1]. While our tools
are general enough to be applied to documentation, build
files, and additional data distributed with the source, the fo-
cus of our efforts for this task is on Java source code alone.
Though we have developed a substantial crawling infras-
tructure to be able to run topic modeling algorithms on ar-
bitrarily large code repositories, its use was not required for
the Eclipse mining challenge since all code was available in
a single zip archive.

Exploratory data analysis indicates that author informa-
tion is not readily available in the Eclipse 3.0 code base in
the form of javadoc tags. To generate a list of authors for
specific source files we leverage the Eclipse bug data avail-
able in [6]. Parsing the provided XML files for version 3.0
allows us to derive a list of contributing developers, as well
as the source files modified by each developer.

After pruning files not associated with any author, the
input dataset consists of 2,119 Java source files, comprising
700,000 lines of code, from a total of 59 developers.

3 Tools and Methodology

Applying AT models to software requires the develop-
ment of several tools to facilitate the processing and model-
ing of source code. A key task of these tools is the conver-
sion of source code into compatible representations for the
AT algorithm, required as input parameters. Of these pa-
rameters, the most important are the word-document matrix
and the author-document matrix. These matrices represent
the occurrence of words in individual documents and the as-
signment of authors to individual documents, respectively.

To produce the word-document matrix for our input data
we developed a comprehensive tokenization tool tuned to
the Java programming language. This tokenizer includes
language-specific heuristics that follow the commonly prac-
ticed naming conventions. For example, the Java class name
“QuickSort” will generate the words “quick” and “sort.” All
punctuation is ignored.

As an important step in processing source files our tool
removes commonly occurring stop words. For the purposes
of our mining task we augment a standard list of stop words
used for the English language (eg. and, the, but, etc) to
include the names of all classes from the Java SDK (eg.
ArrayList, HashMap, etc). This is done to specifically avoid
extracting common topics relating to the Java collections
framework, thus focusing the analysis on what the code is
doing rather than how it is doing it.

Running the tokenizer on our input dataset yields a vo-
cabulary of 15,391 distinct words. The result is then a
15,391 x 2,119 word-document matrix such that entry [i,j]

corresponds to the number of times word i occurs in docu-
ment j.

The author-document matrix is produced directly from
the Eclipse bug data XML. It is a 59 x 2,119 binary matrix
where [i,j]=1 if author i contributed to document j, and 0
otherwise.

For convenience we relied on a popular Matlab imple-
mentation of the LDA-based AT algorithm from [2]. The
algorithm was run on the input matrices with additional in-
put parameters specifying that 100 topics (a number deter-
mined from experimentation) should be extracted from the
code. The number of iterations, i, to run the algorithm was
determined empirically by analyzing results for i ranging
from 500 to several thousand. Final results were captured
using 3,000 iterations, which we found to produce inter-
pretable topics (ie. topics whose words could be associated
with an intutive label such as testing or code completion) in
a reasonable amount of time. Because the algorithm con-
tains a stochastic component we also verified the results of
multiple runs of i=3,000. In total, the process of parsing
and topic modeling required about 14 hours to run to com-
pletion on a a single Sun SunFire X2200 M2 Server. This
machine contained two dual-core AMD Opteron processors
along with 8GB of RAM

As output the algorithm produces a document-topic ma-
trix and author-topic matrix specifying the number of times
a document or author was assigned to each of the 100 topics
extracted from the code. The topics themselves are defined
by representative words from the corpus.

4 Results

A representative subset of 7 topics extracted via Author-
Topic modeling on the selected 2,119 source files is given
in Table 1. Each topic is described by several words as-
sociated with the topic concept. To the right of each
topic is a list of the most likely authors for each topic
with their probabilities. The complete list of 100 top-
ics with word and author distributions is available from:
http://sourcerer.ics.uci.edu/msr2007/index.html.

Examining the topic column of the table it is clear that
various functions of the Eclipse framework are represented.
For example, topic 1 clearly corresponds to unit testing,
topic 2 to debugging, topic 4 to building projects, and topic
6 to automated code completion. Remaining topics range
from package browsing to compiler options. The presence
of some words that do not seem to “fit” the overall topic
category is both a result of the text corpus itself and the
mathematical machinery behind the author-topic algorithm.
For example, “swt” is assigned to the testing topic, likely
due to co-occurrence within source files. Some topics are
also more specific than others, and do not lend themselves
as easily to high-level lables such as “testing” or “debug-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



egamma
jeromel

kjohnson

dmegert

kmaetzel

cwong

ptff

lbourlier

jfogell
prapicau

dwilson

jburns

maeschlimann

kkolosow

bbaumgart
akiezun

daudel

mkeller

mrennie

jaburns

darins

othomann

mfarajsfranklin

johna

jeem

dejan

tmaeder

aweinand

mvanmeek tod

bbokowski

twatson

khorne

dpollock

oliviert

bbiggs

darin

jeff

dbirsan

krbarnes

ffusier

ikhelifi

sxenos

pmulet

jdesrivieres

wmelhem

schan

rchaves

maeschli

dj

cmarti

sarsenau

kent

teicher

jlanneluc
twidmer

dbaeumer

nick

Figure 1. Authors Clustered by KL Divergence

ging”. Specific topics are ultimately best interpreted by do-
main experts rather than those only casually familiar with
the contents of the corpus being analyzed.

Examining the author assignments (and probabilities) for
the various topics provides a simple means by which to dis-
cover developer contributions and infer their competencies.
It should come as no surprise that the most probable devel-
oper assigned to the JUnit framework topic is “egamma”, or
Erich Gamma. In this case, there is a 97% chance that any
source file in our dataset assigned to this topic will have him
as a contributor. Based on this rather high probability, we
can also infer that he is likely to have extensive knowledge
of this topic. This is of course a particularly attractive ex-
ample because Erich Gamma is widely known for (among
other things) being a founder of the JUnit project, a fact
which lends credibility to the ability of the topic modeling
algorithm to assign developers to reasonable topics.

One can interpret the remaining author-topic assign-
ments along similar lines. For example, developer “daudel”
is assigned to the topic corresponding to automatic code
completion with probability .99. Referring back to the
Eclipse bug data it is clear that the overwhelming major-
ity of bug fixes for the codeassist framework were made by
this developer. One can infer that this is likely to be an area
of expertise of the developer.

The observation that most topics are dominated by a sin-
gle developer stems from the fact that only a limited amount
of author information can be extracted from the bug data.
Source files that were not included in bug fixes could not be
associated with developers, and some Eclipse components
had a single developer responsible for all bug fixes. Never-

theless, topics 5 and 7 in Table 1 are examples of concepts
to which several developers are assigned with non-trivial
probability. Since authors assigned to the same topic with
similar probabilities are likely to have made similar con-
tributions, using topic assignments as a basis for developer
comparison is a natural next step.

To calculate developer similarity we convert the author-
topic matrix to a similarity matrix capturing the pairwise
“distance” between authors. Several methods for comput-
ing distance were considered, including standard metrics
such as Euclidean and cosine distance. Best results were
ultimately found with symmetrized Kullback-Leibler (KL)
divergence based on reconstructing the probability distribu-
tions over topics for each author. Using visualization tools
from [2] as a template, multidimensional scaling (MDS)
was employed to visualize author similarities, resulting in
Figure 1. The boxes represent individual developers, and
are arranged such that developers with similar topic distri-
butions are nearest one another.

While one could conceive of other ways in which to de-
fine developer similarity, a topic based approach has its ad-
vantages. Because topics are based on actual source files
modified by the developer, the very nature of the compari-
son takes into account skill areas and experience. This in-
formation is useful when considering how to form a devel-
opment team, or choosing suitable programmers to perform
code updates. Indeed, a similar concept was used in [4]
to identify candidates for bug fixes based on bug report de-
scriptions. The technique presented here furthers this work
by taking actual code into account, as well as leveraging the
added flexibility of modeling mixtures of topics.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



Topic Author Probabilities
junit egamma 0.97065
run wmelhem 0.01057

listener darin 0.00373
item krbarnes 0.00144
suite kkolosow 0.00129
swt maeschli 0.00129

runner twidmer 0.00114
target jaburns 0.96894
source darin 0.02101
debug lbourlier 0.00168

breakpoint darins 0.00113
location jburns 0.00106

step aweinand 0.00086
core kkolosow 0.00038
ast maeschli 0.99161

button mkeller 0.00097
cplist othomann 0.00055
entries tmaeder 0.00055
astnode teicher 0.00046

iclasspath jeromel 0.00038
key cmarti 0.00038

nls-1 darins 0.99572
ant dmegert 0.00044

manager nick 0.00044
listener kkolosow 0.00036

classpath maeschli 0.00031
property kjohnson 0.00023

build darin 0.00015
type kjohnson 0.59508

length jlanneluc 0.32046
names darin 0.02286
match johna 0.00932

methods pmulet 0.00918
enclosing lbourlier 0.00854

table aweinand 0.00783
token daudel 0.99014

completion teicher 0.00308
current jlanneluc 0.00155

identifier twatson 0.00084
unicode dmegert 0.00046
assist lptff 0.00046
top prapicau 0.00025

fragment dmegert 0.44173
parent maeschli 0.23942

children bbaumgart 0.22126
ipackage egamma 0.02897

delta mkeller 0.02868
ijava tmaeder 0.01953
root darin 0.00167

Table 1. Seven Representative Topics and
Most Likely Authors with Probabilities

5 Conclusions

This paper addressed the effectiveness of the probabilis-
tic Author-Topic model for mining developer contributions
and similarities from the Eclipse 3.0 source code. Re-
sults indicate that the algorithm produces reasonable and in-
terpretable automated topics and author-topic assignments.
Additionally, topics provide a basis for comparing the sim-
ilarity of developers based on their contributions, which is
of potential use in bug fix assignments and staffing.

We are currently expanding the scope of our tools by
considering a much larger repository of open source code
consisting of over 6,000 Java projects from SourceForge
and Apache. To facilitate this process, we have built
crawlers to automatically download and depackage projects
from the Internet. Our parser was also augmented to extract
several thousand author names directly from code. Prelimi-
nary results indicate that our methods scale well with repos-
itory size, and a substantial increase in the diversity of both
topics and author contributions has been observed.

In the future we intend to explore the applicability of
topic models to aspect-oriented programming (AOP), as
many topics extracted by our tools correspond to common
crosscutting concerns. To this end, we envision topic distri-
butions providing an automated mechanism for computing
scattering and tangling for Internet-scale code repositories.

References

[1] Eclipse Archive. http://archive.eclipse.org/eclipse/downloads.

[2] Steyvers, Mark. Topic Modeling Toolbox.
http://psiexp.ss.uci.edu/research/programs data/toolbox.htm.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allo-
cation. Journal of Machine Learning Research, 3:993–1022,
January 2003.

[4] G. Canfora and L. Cerulo. Supporting change request assign-
ment in open source development. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages
1767–1772, New York, NY, USA, 2006. ACM Press.

[5] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The
author-topic model for authors and documents. In UAI ’04:
Proceedings of the 20th conference on Uncertainty in artifi-
cial intelligence, pages 487–494, Arlington, Virginia, United
States, 2004. AUAI Press.

[6] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller. If
your bug database could talk. . . . In Proceedings of the 5th
International Symposium on Empirical Software Engineering,
Volume II: Short Papers and Posters, pages 18–20, September
2006.

[7] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths. Prob-
abilistic author-topic models for information discovery. In
KDD ’04: Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
pages 306–315, New York, NY, USA, 2004. ACM Press.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007


