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Abstract

One of the most important decisions researchers face
when analyzing the evolution of software systems is the
choice of a proper data analysis/exchange format. Most ex-
isting formats have to be processed with special programs
written specifically for that purpose and are not easily ex-
tendible. Most scientists, therefore, use their own data-
base(s) requiring each of them to repeat the work of writing
the import/export programs to their format.

We present EvoOnt, a software repository data exchange
format based on the Web Ontology Language (OWL).
EvoOnt includes software, release, and bug-related infor-
mation. Since OWL describes the semantics of the data,
EvoOnt is (1) easily extendible, (2) comes with many ex-
isting tools, and (3) allows to derive assertions through its
inherent Description Logic reasoning capabilities.

The paper also shows iSPARQL – our SPARQL-based
Semantic Web query engine containing similarity joins.
Together with EvoOnt, iSPARQL can accomplish a siz-
able number of tasks sought in software repository mining
projects, such as an assessment of the amount of change
between versions or the detection of bad code smells. To
illustrate the usefulness of EvoOnt (and iSPARQL), we per-
form a series of experiments with a real-world Java project.
These show that a number of software analyses can be re-
duced to simple iSPARQL queries on an EvoOnt dataset.

1 Introduction

Imagine the following situation: Jane is a software devel-
oper who has to report on her 3-year old software project
at her company’s annual software development workshop.
This year, Jane has something very special in mind: she not
only wants to present some current facts and figures as her
colleagues will do, but also argue about the development
progress in the past, the changes she made over time, the
complexity of her system as of today, as well as show pos-
sible problems with the current architecture.

In this paper, we present how our Software Evolution
Ontology EvoOnt, together with some off-the-shelf Seman-
tic Web tools and our special iSPARQL query engine, can
help Jane to resolve to the various software analysis tasks
involved in preparing her presentation without having to
write a single line of code.

EvoOnt is a software evolution data exchange format
based on the Web Ontology Language OWL1. It provides
the means to store all elements necessary for software evo-
lution analyses including the software itself as well as its
version and bug history. Given that OWL is a quasi stan-
dard, a myriad of tools allow its immediate processing in
terms of visualization, editing, querying, and debugging
(among others) – avoiding the need to write code or use
complicated command line tools. In contrast to other data
formats and associated tools such as XML and XQuery2

that operate on the structure of the data, OWL enables treat-
ing of data based on its semantics. This allows the simple
extension of the data model while maintaining the function-
ality of existing tools. Furthermore, given OWL’s Descrip-
tion Logic foundation, any Semantic Web engine allows to
derive additional assertions such as orphan methods and
attributes (see Section 5) in the software project. These as-
sertions are entailed from base facts.

To complement EvoOnt, we developed our iSPARQL
engine that extends the Semantic Web query language
SPARQL3 with facilities to query for similar software enti-
ties (classes, methods, fields, etc.) in OWL software repos-
itories. Using a library of over 40 similarity strategies,
iSPARQL can exploit the semantic annotation of EvoOnt
to compute statistical propositions about the evolution of
software projects (Section 5.2) or even directly supports
data mining techniques, which, for example, allow instance-
based classification.

The remainder of this paper is structured as follows:
next, we succinctly summarize the most important related
work. Section 3 presents EvoOnt itself, which is followed

1http://www.w3.org/TR/owl-ref/
2http://www.w3.org/TR/xquery/
3http://www.w3.org/TR/rdf-sparql-query/
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by a brief introduction to iSPARQL. Section 5 illustrates the
simplicity of using EvoOnt and iSPARQL for some com-
mon software evolution analyses tasks. To close the paper,
Section 6 presents our conclusions, limitations of our ap-
proach, and some insight into future work.

2 Related Work

In the following, we briefly summarize a selection of in-
teresting studies in the field of software research and ontolo-
gies. Firstly, Coogle (Code Google) [15] is the predecessor
of our iSPARQL approach presented in this paper. With
Coogle we were able to measure the similarity between Java
classes of different releases of software projects. A ma-
jor difference between the two approaches is that iSPARQL
does not operate on in-memory software models in Eclipse4,
but on OWL ontologies (i.e., on a well-established Seman-
tic Web format). Furthermore, while in Coogle the range
of usable similarity measures is limited to tree algorithms,
the range of possible measures in iSPARQL includes all the
measures from SimPack5, our generic Java library of simi-
larity measures for the use in ontologies.

Highly related to our approach is the work of Hyland-
Wood et al. [10]. In their studies, the authors present an
OWL ontology of software engineering concepts (SEC) in-
cluding classes, tests, metrics, and requirements. Their on-
tology, however, does not include versioning information
and data obtained from bug tracking systems (as in our on-
tology models). The structure of SEC is very similar to the
language structure of Java. Note that our software ontol-
ogy is based on FAMIX [4] that is a programming language-
independent model for representing object-oriented source
code, and thus, is able to represent software projects written
in different programming languages.

D’Ambros and Lanza [3] present a visualization tech-
nique to uncover the relationships between data from a ver-
sioning and bug tracking system of a software project. To
achieve this goal, they utilize the Release History Database
(RHDB) introduced by Fischer et al. in [6].

Mäntylä et al. [13] and Shatnawi and Li [16] carry out
an investigation of bad code smells in object-oriented soft-
ware. While the first study additionally presents a taxonomy
(in our sense an ontology) of smells and examines its corre-
lations, both studies provide empirical evidence that some
code smells can be linked with errors in software design.

Happel et al. [9] present their KOntoR approach that
aims at storing and querying meta-data about software arti-
facts to foster software reuse. The software components are
stored in a central repository. Furthermore, various ontolo-
gies for providing background knowledge about the com-
ponents, such as the programming language and licensing

4http://www.eclipse.org
5http://www.ifi.unizh.ch/ddis/simpack.html

models are proposed. It is certainly reasonable to integrate
their models with ours in the future to result in an even
larger fact base used to analyze large software systems.

Finally, Dietrich and Elgar [5] present an approach to
automatically detect design patterns in Java programs based
on an OWL design patterns ontology. Again, we think it
would make sense to use their approach and ontology model
to collect even more information about software projects.
This would allow us to conduct further evaluations to mea-
sure the quality of software.

3 Software Ontology Models

In this section, we describe our OWL software ontol-
ogy models shown in Figure 1. We created three differ-
ent models which encapsulate different aspects of object-
oriented software source code: the software ontology model
(som), the bug ontology model (bom), and the version ontol-
ogy model (vom). These models not only reflect the design
and architecture of the software, but also capture informa-
tion gathered over time (i.e., during the whole life cycle of
the software project). Such meta-data includes information
about revisions, releases, and bug reports (among others).

3.1 Software Ontology Model

Our software ontology model (som) is based on FAMIX
(FAMOOS Information Exchange Model) [4, 17]. FAMIX
is a programming language-independent model for repre-
senting object-oriented source code. On the top level, the
ontology specifies Entity that is the common superclass
of all other entities, such as BehaviouralEntity and
StructuralEntity (see Figure 1(a)). The sole par-
ent of Entity is owl:Thing that is the implicit su-
perclass of all user-defined classes in OWL ontologies.
A BehaviouralEntity “represents the definition in
source code of a behavioural abstraction, i.e., an abstrac-
tion that denotes an action rather than a part of the state”
(achieved by a method or function). A “Structural-
Entity, in contrast, represents the definition in source
code of a structural entity, i.e., it denotes an aspect of the
state of a system” [4] (e.g., variable or parameter).

Figure 2 shows the original Famix model that we used
as the basis for our model. When designing our OWL
ontology, however, we made some changes to the orig-
inal model: first, we introduced the three new classes
Context, File, and Directory, the first one be-
ing the superclass of the latter ones. Context is de-
signed as a container class to model the context in which
a source code entity appears. A File is linked with a
Revision of the version ontology (as described in Sec-
tion 3.3) via the isFileForRevision property that is
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(a) Software ontology model (som)

(b) Bug ontology model (bom)

(c) Version ontology model (vom)

Figure 1. The figure depicts the OWL class hierarchy (is-a) of the three created ontology models.

defined in the software ontology. This way it is possi-
ble to receive further information about the revisions of
the file. Furthermore, due to the nature of OWL, we
were able to omit the explicit modeling of association
classes by adding new OWL object properties. For in-
stance, to capture a method accessing a variable, the prop-
erty accesses with domain BehaviouralEntity
and range StructuralEntity can be used. Please note
that we never used Argument and its subentities from the
original FAMIX model. Argument further defines the pa-
rameters of an invocation (e.g., a method invocation) since
we found that the information about the expected arguments
of a BehaviouralEntity was sufficient in all our ex-
periments.

Figure 2. Original Famix model from [4].

In addition to the original model, we added the con-
cept of software metrics to our ontology model. The class
Metric defines an object-oriented source code metric as
defined in [11]. An Entity can be connected to multiple
metrics to measure various aspects of the design of the soft-
ware component. This approach of integrating metrics into
our model allows us to represent object-oriented metrics in
an extendable way and to use the values of the metrics di-
rectly in our experiments (see Section 5).

3.2 Bug Ontology Model

Our bug ontology model (bom) is inspired by the bug
tracking system Bugzilla6. The model is very shallow and
defines nine OWL classes on the top level (see Figure 1(b)).
Issue is the main class for specifying bug reports. It is
connected to Person that is the class to model informa-
tion about who reported the bug, and also to Activity
that links additional details about the current status of the
bug.7 Issue has a connection to Revision (Section 3.3)
via the isResolvedIn property. This way, information
can be modeled about which revision successfully resolved
a particular bug, and, vice versa, which bug reports were
issued for a specific source code entity.

3.3 Version Ontology Model

The goal of our version ontology (vom) is to model the
relationships between files, releases, and revisions of soft-
ware projects. To that end, we defined the three OWL
classes File, Release, and Revision (see Figure 1(c))
as well as the necessary properties to link these classes. For
example, a File has a number of revisions and, there-
fore, is connected to Revision by the hasRevision
property. At some point in time, developers of a software
project usually decide to publish a new release of the soft-
ware, which includes all the file revisions made until that
point. In our model, this is reflected by the isReleaseOf
property that relates Release and Revision.

6http://www.bugzilla.org/
7https://bugs.eclipse.org/bugs shows various concrete

examples.
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4 Our Approach: iSPARQL

This section succinctly introduces the relevant features
of our iSPARQL framework that serves as the technical
foundation to all experiments.8 iSPARQL is an extension of
SPARQL [14] that allows to query by triple patterns, con-
junctions, disjunctions, and optional patterns. iSPARQL
extends the official W3C SPARQL grammar but does not
make use of additional keywords. Instead, iSPARQL in-
troduces the idea of virtual triples. Virtual triples are not
matched against the underlying ontology graph, but used
to configure similarity joins [1]: they specify which pair(s)
of variables (that are bound to resources with SPARQL)
should be joined and compared using which type of similar-
ity measure. Thus, they establish a virtual relationship be-
tween the resources bound to the variables describing their
similarity. A similarity ontology defines the admissible vir-
tual triples and links the different measures to their actual
implementation in SimPack – our library of similarity mea-
sures. The similarity ontology also allows the specification
of more complicated combinations of similarity measures,
which we will call similarity strategies (or simply strate-
gies) in the remainder of the paper. The next two sections
briefly discuss the iSPARQL grammar and introduce some
of the similarity strategies employed in the evaluation.

4.1 The iSPARQL Grammar

The relevant additional grammar statements are ex-
plained with the help of the example query shown in List-
ing 1. This query aims at comparing the same Java class
from two releases of the org.eclipse.compare plug-
in for Eclipse (used in all our experiments) by comput-
ing the structural difference of the classes (achieved by the
“TreeEditDistance” measure, see Section 4.2).

1 PREFIX isparql: <java:ch.unizh.ifi.isparql.query.property.>
2 PREFIX som: <http://semweb.ivx.ch/software/som#>
3 PREFIX vom: <http://semweb.ivx.ch/software/vom#>
4
5 SELECT ?similarity
6 WHERE {
7 ?release1 vom:name "R3_1" .
8 ?release2 vom:name "R3_2" .
9

10 ?file1 som:hasRelease ?release1 .
11 ?file2 som:hasRelease ?release2 .
12 ?file1 som:uniqueName "org.eclipse.compare.MergeMessages.java" .
13 ?file2 som:uniqueName "org.eclipse.compare.MergeMessages.java" .
14 ?file1 som:hasClass ?class1 .
15 ?file2 som:hasClass ?class2 .
16 ?class1 som:uniqueName ?uniqueName1 .
17 ?class2 som:uniqueName ?uniqueName2 .
18
19 # ImpreciseBlockOfTriples (lines 21--26)
20
21 # NameStatment
22 ?strategy isparql:name ‘‘TreeEditDistance’’ .
23 # ArgumentStatment
24 ?strategy isparql:arguments (?class1 ?class2) .
25 # SimilarityStatement
26 ?strategy isparql:similarity ?similarity
27 }

Listing 1. Example iSPARQL query.
8An online demonstration of iSPARQL is available at http://www.

ifi.unizh.ch/ddis/isparql.html

Strategy Explanation
Jaccard
measure
(simple)

Set similarity between sets of methods/attributes of classes: de-
termine the proximity of classes in terms of common and distinct
methods/attributes [2, 8].

Leven-
shtein
measure
(simple)

String similarity between, for instance, class/method names:
Levenshtein string edit distance to measure the relatedness of two
strings in terms of the number of insert, remove, and replacement
operations to transform one string into another string [12].

TreeEdit-
Distance
measure
(simple)

Tree similarity between tree representations of classes: measur-
ing the number of steps it takes to transform one tree into another
tree by applying a set of elementary edit operations: insertion,
substitution, and deletion of nodes [15].

Graph
measure
(simple)

Graph similarity between graph representations of classes: the
measure aims at finding the maximum common subgraph (MCS)
of two input graphs [18]. Based on the MCS the similarity be-
tween both input graphs is calculated.

Custom-
Class-
Measure
(engi-
neered)

User-defined Java class similarity measure: determines the affin-
ity of classes by comparing their sets of method/attribute names.
The names are compared by the Levenshtein string similarity
measure. Individual similarity scores are weighted and accumu-
lated to an overall similarity value.

Table 1. Selection of six iSPARQL similarity
strategies.

In order to implement our virtual triple approach, we
added an ImpreciseBlockOfTriples symbol to the
standard SPARQL grammar expression of FilteredBa-
sicGraphPattern [14]. Instead of matching patterns
in the RDF graph, the triples in an ImpreciseBlock-
OfTriples act as virtual triple patterns, which are inter-
preted by iSPARQL’s query processor.

An ImpreciseBlockOfTriples requires at least a
NameStatement (line 22) specifying the similarity strat-
egy and an ArgumentsStatement (line 24) specifying
the resources under comparison to the iSPARQL frame-
work. Note that iSPARQL also supports aggregation strate-
gies – strategies which aggregate previously computed sim-
ilarity scores of multiple similarity measures to an overall
similarity value (not shown in the example). We found ag-
gregators to be useful to construct overall (sometimes com-
plex) similarity scores based on two or more previously
computed similarity values. Finally, the Similarity-
Statement (line 26) triggers the computation of the sim-
ilarity measure with the given input arguments and delivers
the result back to the query engine.

4.2 Similarity Strategies

Currently, iSPARQL supports all of the about 40 sim-
ilarity measures implemented in SimPack. The reference
to the implementing class as well as all necessary para-
meters are listed in the iSPARQL ontology. It is beyond
the scope of this paper to present a complete list of imple-
mented strategies. Therefore, Table 1 summarizes the five
similarity strategies that we used to test the performance of
iSPARQL on the org.eclipse.compare plug-in for
Eclipse (Section 5). We distinguish between simple and
engineered strategies: simple strategies employ a single,
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atomic similarity measure of SimPack, whereas engineered
strategies are a (weighted) combination of individual simi-
larity measures whose resulting similarity scores get aggre-
gated by a user-defined aggregator.

5 Experimental Results

We conducted four sets of experiments: (1) code evolu-
tion measurements: visualizing changes between different
releases; (2) refactoring experiments: evaluation of the ap-
plicability of our iSPARQL framework to detect bad code
smells; (3) metrics experiments: evaluation of the ability to
calculate software design metrics; and (4) ontological rea-
soning experiments: investigation of the reasoning power
within our software ontology models.

5.1 Experimental Setup and Data Sets

For our experiments, we examined 206 releases of the
org.eclipse.compare plug-in for Eclipse. To gen-
erate an OWL data file of a particular release, it is first
automatically retrieved from Eclipse’s CVS repository and
loaded into an in-memory version of our software ontol-
ogy model, before it gets exported to an OWL file. To get
the data from CVS and to fill our version ontology model,
the contents of the Release History Database (RHDB) [6]
for the compare plug-in are loaded into memory and, again,
parsed and exported to OWL according to our version on-
tology model. While parsing the CVS data, the commit
message of each revision of a file is inspected and searched
for bug IDs. If a bug is mentioned in the commit message
as, for instance, in “fixed #67888: [accessibility] Go To
Next Difference stops working on reuse of editor”, the in-
formation about the bug is (automatically) retrieved from
the web and also stored in memory. Finally, the data of the
in-memory bug ontology model is exported to OWL.

5.2 Code Evolution Visualization

With the first set of experiments, we wanted to evaluate
the applicability of our iSPARQL approach to the task of
software evolution visualization (i.e., the graphical visual-
ization of changes in the code for a certain period of the
life cycle of the software project). To that end, we com-
pared all the Java classes of one major release with all the
classes from another major release with different similarity
strategies. Listing 1 (Section 4.1) shows the corresponding
query for a particular class and the TreeEditDistance mea-
sure. The results for the releases R3 1 and R3 2 are shown
in Figure 3. The heatmaps mirror the class code changes be-
tween the two releases of the project by using different col-
ors for different similarity scores. Analyzing the generated

heatmaps, we found out that the specialized CustomClass-
Measure performed best for the given task. The combina-
tion of method/attribute set comparisons together with the
Levenshtein string similarity measure for method/attribute
names (Figure 3(b)) turned out to be less precise. Finally,
the GraphMeasure (Figure 3(c)) was the least accurate indi-
cator for the similarity of classes.

To shed some light on the history of a single Java class,
we measured the similarity of the class from one release
and the (immediate) next release and repeated this process
for all releases and all classes. This resulted in an array of
values sim

Ri,Rj

class each of them expressing the similarity of
the same class of two different releases. However, to vi-
sualize the amount of change, we plotted the inverse (i.e.,
1− sim

Ri,Rj

class ) as illustrated in Figures 3(d–f) that show the
history of changes of four distinct classes of the project.
There are classes as, for example, BufferedCanvas
which tend to have fewer changes as the project evolves
over time. Other classes such as CompareEditor (Figure
3(e)) are altered again and again, probably implying some
design flaws or code smells. Then again, there are classes
which tend to have more changes over time as shown in
Figure 3(f) for the class Utilities.

5.3 Detection of Bad Code Smells

In a second set of experiments, we evaluated the applica-
bility of our iSPARQL framework to the task of detecting
bad code smells [7]. In other words, the question is whether
iSPARQL is able to give you a hint that there might be a
problem in the code. Can iSPARQL tell you if it could be
solved, for instance, by refactoring current solutions? In
order to solve this task, we selected two candidate smells,
which we thought could be identified in the compare plug-
in: alien spider anti-pattern and long parameter list. We
succinctly present the results of our measurements.

The alien spider anti-pattern denotes the case, where
many objects all mutually “know” each other, which is
(1) bad object-oriented software design and (2) could
lead to an uncomfortable situation when changes are
made to a particular object, since, most probably, many
other objects holding a reference to the changed object
have to be modified too. We successfully identified the
two-class version of the alien spider bad code smell in
the compare plug-in by executing the iSPARQL query
shown in Listing 2. The query returns a single result
that states that the class PatchWizard uses a refer-
ence to the class InputPatchPage and vice versa.
Inspecting class PatchWizard, one encounters the line
addPage(fPatchWizardPage = new InputPatchPage( this ));
expressing that a class InputPatchPage is instanti-
ated and the instantiator (PatchWizard) is passed as
reference. Supposing that some of the functionality of
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(a) CustomClassMeasure (b) TreeEditDistance (labels) (c) GraphMeasure

(d) BufferedCanvas (e) CompareEditor (f) Utilities

Figure 3. The figure depicts the computed heatmaps of the between-version comparison of all
classes of releases R3 1 and R3 2 using three different similarity strategies (Figures a–c). Further-
more, the history of changes for three distinct classes of the project is illustrated. Some classes
tend to stabilize over time (Figure 3(d)), others are altered again and again (Figure 3(e)). Finally,
there are classes which tend to have more changes as the project evolves (Figure 3(f)).

PatchWizard used by InputPatchPage is changed
in the next release, InputPatchPage has to be adapted
accordingly. Therefore, it could make sense to remove such
mutual dependencies to overcome problems in the case the
interface that a class exposes is changed.

1 PREFIX som: <http://semweb.ivx.ch/software/som#>
2
3 SELECT ?class1 ?class2
4 WHERE {
5 ?class1 som:hasAttribute ?var1 .
6 ?class2 som:hasAttribute ?var2 .
7 ?var2 som:hasDeclaredClass ?class1 .
8 ?var1 som:hasDeclaredClass ?class2 .
9 FILTER(?class1 != ?class2)

10 }

Listing 2. Alien spider query pattern.

Long method parameter lists are ugly, hard to under-
stand, difficult to use, and chances are very high to change
them over and over again [7]. In order to find the methods
with long parameter lists in the Eclipse compare plug-in, we
used the query shown in Listing 3. The 10 topmost results of
the query are shown in Table 2. The method merge of the
interface IStreamMerger takes nine parameters as in-
put, and so does TextStreamMerger’s merge method

since it implements IStreamMerger. These methods are
possible candidates for a refactoring improving the overall
design, usability, and quality of the software.

1 PREFIX som: <http://semweb.ivx.ch/software/som#>
2 PREFIX agg: <java:extensions.>
3
4 SELECT ?method ?parametercount
5 WHERE {
6 ?method som:hasFormalParameter ?formalParameter .
7 ?parametercount agg:countParameters ?method .
8 FILTER(?parametercount > 5)
9 } ORDER BY DESC(?parametercount)

Listing 3. Long parameter list query pattern.

5.4 Applying Software Metrics

With our third set of experiments, we wanted to demon-
strate the possibility of calculating software design metrics
with our iSPARQL system. Such metrics are explained in
detail in [11]. For illustration purposes, we have chosen
two of them which we will succinctly discuss in this sec-
tion. Note that there is a close connection between bad code
smells and metrics in the sense that metrics are often used
to identify possible design flaws in object-oriented software
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Class Method Method count
IStreamMerger merge 9
TextStreamMerger merge 9
CompareFilter match 7
RangeDifferencer createRangeDifference3 7
TextMergeViewer mergingTokenDiff 7
TextMergeViewer-
HeaderPainter

drawBevelRect 7

Differencer findDifferences 6
Differencer traverse 6
RangeDifferencer rangeSpansEqual 6
WorkspacePatcher readUnifiedDiff 6

Table 2. Results of long parameter list query
pattern.

systems. To give a simple example, consider the query
shown in Listing 4: the goal of this query is to detect possi-
ble God classes in the compare plug-in. A God class is de-
fined as a class that potentially “knows” too much (its role in
the program becomes all-encompassing), in our sense, has a
lot of methods and instance variables. The query in Listing
4 calculates two metrics: NOM (number of methods) and
NOA (number of attributes). Both metrics can be used as an
indicator for possible God classes. The results are shown in
Table 3. Having a look at class TextMergeViewer, one
can see that the class is indeed very large with its 4344 lines
of code. Also CompareUIPlugin is rather big with a to-
tal number of 1161 lines of code. Without examining the
classes in more detail, we hypothesize that there might be
some room for refactorings, possibly resulting in smaller,
more easy to use classes.

1 PREFIX som: <http://semweb.ivx.ch/software/som#>
2 PREFIX agg: <java:extensions.>
3
4 SELECT ?GodClass ?NOM ?NOA
5 WHERE {
6 ?GodClass som:hasMethod ?Method .
7 ?NOM agg:countMethods ?GodClass .
8 FILTER(?NOM > 15) .
9 ?GodClass som:hasAttribute ?Attribute .

10 ?NOA som:countAttributes ?GodClass .
11 FILTER(?NOA > 15)
12 } ORDER BY DESC(?NOM)

Listing 4. God class query pattern.

God class NOM NOA
TextMergeViewer 115 91
CompareUIPlugin 46 42
ContentMergeViewer 44 36
CompareEditorInput 38 23
EditionSelectionDialog 30 26
CompareConfiguration 28 20
InputPatchPage 27 23
Diff 25 16
ComparePreferencePage 16 18

Table 3. Results of God class query pattern.

To support or discard our hypothesis, we measured the
number of bug reports issued per class since one would as-
sume a correlation between the number of class methods
(attributes) and the number of tracked issues. To that end,

we executed the query presented in Listing 5. Indeed, as the
results in Table 4 clearly show, there is some correlation –
the largest class in the project (TextMergeViewer) also
has the largest number of filed bug reports.

1 PREFIX vom: <http://semweb.ivx.ch/software/vom#>
2 PREFIX bom:<http://semweb.ivx.ch/software/bom#>
3 PREFIX agg: <java:extensions.>
4
5 SELECT ?file ?issuecount
6 WHERE {
7 ?issue bom:isResolvedIn ?revision .
8 ?file vom:hasRevision ?revision .
9 ?issuecount agg:countIssues ?file

10 } ORDER BY DESC(?issuecount)

Listing 5. Bug reports query pattern.

Class Bug reports count
TextMergeViewer 36
CompareEditor 16
Patcher 15
PreviewPatchPage 13
ResourceCompareInput 12
DiffTreeViewer 10
Utilities 10
CompareUIPlugin 9
StructureDiffViewer 9
PatchWizard 6

Table 4. Results of bug reports query pattern.

5.5 Ontological Reasoning

Last, with our final set of experiments, we aim at
demonstrating the benefits of automated reasoning about
facts, given our introduced OWL software ontology models.
Since these models are specified in OWL-DL (Description
Logic), we can apply corresponding reasoners such as Pel-
let9 or the Jena reasoners10 to perform ontological reason-
ing. To give an example, we have chosen the query shown
in Listing 6 that should find orphan methods (i.e., methods
that are not called by any other method in the project).

1 PREFIX som: <http://semweb.ivx.ch/software/som#> PREFIX inf:
2 <http://semweb.ivx.ch/software/inf#>
3
4 SELECT ?orphanMethod WHERE{
5 ?orphanMethod a inf:OrphanMethod
6 }

Listing 6. Orphan method query pattern.

To do so, we (1) defined the concept of an orphan method
as depicted in Figure 4 in a separate ontology model, (2)
loaded all ontology models into a Jena model with an ex-
ternal Pellet reasoner attached to it, and (3) executed the
query against this model. The query returns numerous re-
sults of which we only present one of them here. It finds,
for instance, the method discardBuffer() declared on
BufferedContent that is never invoked by any other

9http://www.mindswap.org/2003/pellet/
10http://jena.sourceforge.net/inference/
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class in the plug-in. Orphan methods could possibly be re-
moved from the interface of a class without affecting the
overall functionality of the system, resulting in cleaner and
more easy to understand source code.

<owl:Class rdf:ID="Orphan">
<rdfs:subClassOf rdf:resource="&som;Method"/>
<owl:equivalentClass>
<owl:Class>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty

rdf:resource="&som;isInvokedBy"/>
<owl:someValuesFrom

rdf:resource="&som;BehaviouralEntity"/>
</owl:Restriction>

</owl:complementOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

Figure 4. Orphan method OWL definition.

6 Conclusions, Limitations and Future Work

We presented a novel approach to mine semantically
annotated software repositories. Based on the Semantic
Web query language SPARQL, our iSPARQL framework
together with EvoOnt provide the ability to mine software
systems represented in the OWL data format. This format
is principally used within the Semantic Web to share, inte-
grate, and reason about data of various origin. We evalu-
ated the use of this format in the context of analyzing the
org.eclipse.compare plug-in for Eclipse.

To illustrate the power of using EvoOnt as a software
evolution data exchange format, we conducted four sets of
experiments in which we showed that iSPARQL and its im-
precise querying facilities are indeed able to shed some light
on the evolution of software systems. iSPARQL also helps
to find bad code smells, and, thus, fosters refactoring. Fur-
thermore, it enables the easy application of software design
metrics to quantify the size and complexity of software, and,
due to OWL’s ontological reasoning support, allows to de-
rive additional assertions (e.g., orphan methods) which are
entailed from base facts.

A limitation of our approach is the loss of informa-
tion due to the use of our FAMIX-based software ontol-
ogy model. Language constructs such as if-then-else- and
switch-statements are not modeled in our ontology (neither
are they in FAMIX). The effects are that measurements on
the statements level of source code cannot be conducted.

Last, the current performance of our system is not satis-
factory. Computing the heatmaps for even a small software
project as the compare plug-in takes more than an hour (de-
pending on the used similarity measure). Also, the amount
of memory it takes to load and process the generated OWL
data files is huge, almost exceeding the maximal available

memory in our Java virtual machine (the amount of neces-
sary memory is even larger if reasoning is turned on).

It is left to future work to analyze iSPARQL’s applica-
bility to other software analysis tasks as, for example, bug
prediction. Furthermore, we think it makes sense to insert
the results of some queries back into the model (e.g., the
results of metric computations), which would boost the per-
formance of our approach. Also, we want to investigate
different, more precise similarity measures to determine the
affinity of Java classes (and other software entities). Given
its support for similarity measures, iSPARQL allows the
simple construction of instance-based machine learning op-
erators as shown in [1]. We plan to extend iSPARQL with
other analytic inference methods in the future. Such meth-
ods include find deviation operators, find rule-based rela-
tionships, predict future behavior (e.g., bug prediction), and
cluster similar entities in the data. This will further simplify
the interpretation of the data. Coming back to the introduc-
tory example, iSPARQL seems to be a practical and easy to
use tool to help Jane analyze her software project along a
multitude of dimensions, making sure that she will perform
brilliantly at her company’s workshop.
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