
Mining CVS Repositories to Understand Open-Source Project Developer

Roles

Liguo Yu

Computer Science and Informatics

Indiana University South Bend

South Bend, IN, USA

ligyu@iusb.edu

Srini Ramaswamy

Computer Science Department

University of Arkansas at Little Rock

Little Rock, AR, USA

srini@acm.org

Abstract

This paper presents a model to represent the

interactions of distributed open-source software

developers and utilizes data mining techniques to

derive developer roles. The model is then applied on

case studies of two open-source projects, ORAC-DR

and Mediawiki with encouraging results.

1. Introduction

The increasing use of open-source software coupled

with the expanding of open-source community reflects

the importance of open-source development and is no

longer being ignored by software engineering

researchers. Considerable studies have been conducted

in this field. For example, Reis and Fortes [1] analyzed

the development of the Mozilla web browser to model

the software process. Jensen and Scacchi [2] studied

the negotiation of conflicts, collaborative efforts, and

leadership in the Netbeans community. Espinosa et al.

[3] investigated how shared mental models, work

familiarity and geographic dispersion affect

coordination in software teams. Elliott and Scacchi [4]

analyzed the virtual organization of GNU project.

Scacchi [5] outlined the socio-technical activities of

open-source projects in different communities. Madey

et al. studied open-source community as a social

network [6].

In this paper we present our results of mining CVS

repositories to understand developer roles on software

projects.

2. Open-source software developer model

For two developers i and j, we define interaction

frequency as the degree of interactions between i and j

based on one or more measures between them. The

measurement of interaction frequency is a context

based concept, which means different measures may

result in different interaction frequency. In distributed

open-source development, candidate measures for

interaction frequency are the frequency of email

correspondence, the frequency of co-editing, the

frequency of task sharing, and so on.

For a project that contains n developers, the degree

of interactions between these n developers is

represented as an n×n matrix, in which item at position

(i, j) is the interaction frequency between developer i

and developer j.

2.1 Clustering and role identification

Complete-linkage hierarchical clustering method [7]

is used to group developers according to the interaction

frequencies between them. Given a set of n developers

to be clustered, and an n×n interaction matrix, the basic

procedure is described below.

1. Start by assigning each developer to a cluster. Let

the interaction frequency between the clusters be

the same as the interaction frequency between the

developers they contain.

2. Find the pair of clusters that have the largest

interaction frequency (say, IF) and merge them

into a single cluster. The new cluster is said to

have the interaction frequency of CIF=IF.

3. Compute interaction frequency between the new

cluster and each of the other (old) clusters. The

interaction frequency between them is considered

to be equal to the smallest interaction frequency

from any member of one cluster to any member

of the other cluster.

Repeat steps 2 and 3 until all developers are

clustered into a single cluster of size n. The complete-

linkage hierarchical clustering is used to ensure that the

interactions between every two members in a cluster

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

have at least the interaction frequency equal to the

frequency of the cluster CIF.

For a small-size and medium-size project, the

developer roles can be basically divided into two types,

core members and associate members. After clustering,

the developers that are in a cluster with interaction

frequency (CIF) greater or equal to a specified threshold

are called core members. The rest of the developers are

called associate members.

It can be seen from the specification that the

interaction frequencies between any pair of core

members are greater or equal to the threshold. It worth

noting that (1) the definition of core member and

associate member are context based, which means, the

determination of the specified threshold of interaction

frequency threshold is based on the analysis of the

specific project; (2) the two-level role (core member

and associate member) categorization scheme is best

for small-sized and medium-sized (less than 100

developers) projects. For large-size (say, over 200

developers) projects, it might be appropriate to have

more levels (categories) of developer roles.

2.2 Rule extraction and prediction

In practice, it is important to analyze the external

attributes of different developer roles and determine the

rules that can predict the developer roles according to

the external attributes. In this study, data classification

technique [8] is used to build predictive rules. The

procedure is described below.

1. Determine the attributes of a developer that can

be used for the rule establishment. The data is

then arranged in a two dimension table in which

each column represents one attribute and each

row contains a record of a developer.

2. Rules are constructed using the training data set.

3. The predictive accuracy, percentage coverage,

and attribute significance of each rule are

analyzed. The predictive accuracy is the

percentage of test set samples that are correctly

classified by the rule. The percentage coverage is

the percentage of a developer role that can be

predicted by the rule. The attribute significance is

derived by subtracting the smallest class mean

from the largest mean value. In this study, the

rules that have predictive accuracy less than 0.9,

or percentage coverage less than 0.7, or attribute

significance less than 0.25 are considered

insignificant and have to be eliminated.

3. Case studies

In this research, one small-size open-source project

and one medium-size open-source project are

investigated. They are ORAC-DR [9], which contains

14 developers, and Mediawiki [10], which contains 56

developers. The interaction frequency is represented

with the measure of the number of common source

code modules two developers share. The value of

interaction frequency threshold is specified to be 10.

Our selection of interaction frequency threshold is

tentative and needs to be further validated.

3.1 Clustering and role identification

ORAC-DR contains 14 developers. The clustering

results show that 5 developers are the core members.

The rest are associate members. Figure 1 shows the

organization of the ORAC-DR development team.

Strong interactions (interaction frequency is greater

than 10) exist among core members, weak interactions

(interaction frequency is less than 10) are found

between associate member and core member. Few

lower-degree interactions (interaction frequency is less

than or equals to 2) are also found among associate

members.

Figure 1. The organization of ORAC-DR

development team

Mediawiki contains 56 developers. After clustering,

the development team is divided into two groups. Each

group contains core members and associate members.

Figure 2 shows the developer organization of the

Mediawiki development team. Strong interactions

(interaction frequency is greater than or equal to 10)

exist between core members; weak interactions

(interaction frequency is less than 10) exist between

associate members and core members in the same

group; medium interaction (interaction frequency is

between 5 to 10) exist between core members of

different groups; few lower-degree interactions

(interaction frequency is less than or equals to 2) exist

between associate members.

Although in theory, strong interactions could exist

between an associate member and a particular core

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

member, in the studies of ORAC-DR project and

Mediawiki project, no such interactions were found.

3.2 Rule extraction and cross-validation

For each developer, the following attributes are used

as inputs of the rules: percentage of revisions,

percentage of modified lines of code, and major

workday. The major workday is categorized as

everyday, every weekday, part weekday, and weekend.

The role category (core member and associate member)

is used as output of rules. Table 1 and Table 2 show the

rules that satisfy the thresholds specified in Section 2.

Two rules are generated for ORAC-DR project, one

is for core member and one is for associate member.

Four rules are generated for Mediawiki project, two are

for core members, two are for associate members. The

results also show that workday does not contribute to

the classification of developer roles.

ORAC-DR and Mediawiki are two open-source

projects that are of different sizes and under different

domains. To understand whether the rules generated in

one project are applicable to another project, the rule

cross-validation is performed and shown in Table 3.

Figure 2. The organization of Mediawiki

development team

Table 3 shows that the rules are cross project valid.

Despite ORAC-DR and Mediawiki are two different

projects, they share some similarities in charactering

core members and associate members. This also

indicates that the selection of 10 as interaction

frequency threshold is valid for the two projects.

Table 1. The developer role prediction rules of ORAC-DR project

Rule number Role Rule Accuracy Coverage

1 Core Percentage of modified lines ≥ 4.4% 100% 80%

2 Associate Percentage of revisions <= 1.4% 100% 89%

Table 2. The developer role classification rules of Mediawiki project

Rule number Role Rule Accuracy Coverage

3 Core Percentage of revisions ≥ 2.1% 100% 92%

4 Core Percentage of modified lines ≥ 3.6% 100% 82%

5 Associate Percentage of revisions <= 3.3% 94% 100%

6 Associate Percentage of modified lines <= 2.9% 96% 100%

Table 3. Cross-validation of the prediction rules

Rule number Role Generated from Applied on Accuracy Coverage

1 Core ORAC-DR Mediawiki 100% 73%

2 Associate ORAC-DR Mediawiki 100% 98%

3 Core Mediawiki ORAC-DR 83% 100%

4 Core Mediawiki ORAC-DR 67% 80%

5 Associate Mediawiki ORAC-DR 100% 89%

6 Associate Mediawiki ORAC-DR 100% 78%

3.3 Development effort distribution

Table 4 and Table 5 show the development effort

with respect to the number of lines of code modified

and the number of revisions in ORAC-DR project and

Mediawiki project respectively.

Table 4. The project effort of ORAC-DR

Members

Number of lines of

code modified

(KLOC)

Thousand

number

of revisions

Core (5) 233.068 10.722

Associate (9) 32.982 1.480

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Table 5. The project effort of Mediawiki

Members

(G1=Group 1)

(G2=Group 2)

Number of lines of

code modified

(KLOC)

Thousand

number

of revisions

Core (6) 516.440 17.602
G1

Associate (34) 75.836 2.585

Core (5) 133.471 4.549
G2

Associate (10) 29.576 1.008

Figure 3 shows the percentage distribution of

development effort of core members and associate

members in the two projects. In all four cases, it can be

seen that core members are responsible for over eighty

percent of the development effort, while associate

members are responsible for less than twenty percent.

0%

20%

40%

60%

80%

100%

ORAC-DR

(number of

lines of code)

ORAC-DR

(number of

revisions)

Mediawiki

(number of

lines of code)

Mediawiki

(number of

revisions)

Core member Associate member

Figure 3. Percentage development effort by core

member and associate member in two projects

To study the similarities or differences among the

four distributions statistically, we presented the

following two null hypotheses.

• H01: There is no significant difference of the

distributions of the project effort in terms of KLOC

modified by core members and associate members

in ORAC-DR project and Mediawiki project.

• H02: There is no significant difference of the

distributions of the project effort in terms of

thousand revisions by core members and associate

members in ORAC-DR project and Mediawiki

project.

The obvious way to test these hypotheses is to apply

the chi-square test. We construct two 2 × 2 contingency

tables based on the data shown in Table 5 and Table 6.

The results are that in both two tests, the significance

(p-value) is greater than 0.05; we can not reject the null

hypotheses and conclude that there is no significant

difference of the distributions of the project effort (in

terms of thousand of lines of code modified and

thousand of revisions) by core members and associate

members in ORAC-DR project and Mediawiki project.

4. Conclusions and future work

This paper presented a model to represent the

interactions of software developers. Case studies were

performed on ORAC-DR project and Mediawiki

project using this approach. The study shows that the

interaction model combined with the data mining

techniques is an effective way to study the developer

organization, especially the developer roles of

distributed open-source software development. The

model can be refined to take into account several

limitations such as examining context to disregard

routine or non-development work focused interactions.

5. References

[1] C. Reis, and R. Fortes, “An Overview of the Software

Engineering Process and Tools in the Mozilla Project”,

Proceedings of Workshop on Open Source Software

Development, Newcastle, UK, February, 2002.

[2] C. Jensen, W. Scacchi, “Collaboration, Leadership, and

Conflict Negotiation in the NetBeans.org Community”,

Proceedings of the 4th Workshop on Open Source Software

Engineering, Edinburgh, UK, May 2004.

[3] J.A. Espinosa, R.E. Kraut, S.A. Slaughter, J.F. Lerch,

J.D. Herbsleb, A. Mockus, “Shared Mental Models,

Familiarity, and Coordination: A Multi-Method Study of

Distributed Software Teams”, Proceedings of the 23rd

International Conference on Information Systems,

December, 2002, Barcelona, Spain, 425–433.

[4] M. Elliott, W. Scacchi, “Free Software Developers as an

Occupational Community: Resolving Conflicts and Fostering

Collaboration”, Proceedings of the ACM International

Conference on Supporting Group Work, Sanibel Island, FL,

November 2003, pp. 21–30.

[5] W. Scacchi “Socio-Technical Interaction Networks in

Free/Open Source Software Development Processes”,

Software Process Modeling, Springer, New York, 2005, pp.

1–27.

[6] G. Madey, V. Freeh, R. Tynan, “Modeling the F/OSS

Community: A Quantative Investigation”, Free/Open Source

Software Development, Idea Group Publishing, Hershey, PA,

2004, pp. 203–221.

[7] A.K. Jain, M. N. Murty, and P.J. Flynn, “Data Clustering:

A Review”, ACM Computing Surveys, vol. 31, no. 3, 1999,

pp. 264–323.

[8] J. Han and M. Kamber, Data Mining: Concepts and

Techniques, Morgan Kaufmann Publishers, 2001.

[9] ORAC-DR project, http://www.oracdr.org/

[10] http://www.mediawiki.org-/wiki/MediaWiki

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

