
Managing Corrective Actions to Closure
in Open Source Software Test Process

Tamer Abdou
CSE Department

Concordia University
Montréal, Québec, Canada

t moh@encs.concordia.ca

Peter Grogono
CSE Department

Concordia University
Montréal, Québec, Canada

grogono@encs.concordia.ca

Pankaj Kamthan
CSE Department

Concordia University
Montréal, Québec, Canada

kamthan@encs.concordia.ca

Abstract—In assessing test process maturity, one of the goals
is to manage disciplinary issues. Managing corrective actions to
closure is known to aid software quality assurance, in general,
and testing process activities, in particular. In this paper, a
framework for software testing assessment, namely OSS-TPA,
that aims to evaluate corrective actions in OSS test process, is
proposed. The OSS-TPA framework is based on earlier studies
and relies on a conceptual model for test process activities in
OSS development. Using success factors in OSS development,
the relationship between the maturity of managing corrective
actions and the adoption of OSS is investigated.

Index Terms—Open Source Software; Software Engineering;
Software Quality; Software Testing; Test Process Improvement.

I. INTRODUCTION

In the past couple of decades, there has been a notable
growth in the adoption of open source software (OSS), both by
organizations and by people. The increasing commitment to
OSS places ever more moral and ethical responsibility on the
developers to produce better software. This, in turn, impacts
the OSS development process, and calls for attention to OSS
quality, in general, and OSS testing, in particular.

In this paper, the interest is in the improvement of OSS
test process [1]. Indeed, process improvement (along with
automation and standardization) is regarded as one of the
major research directions in software testing [2]. To that
end, this paper proposes an OSS test process assessment
framework, henceforth abbreviated as OSS-TPA, that provides
guidelines, procedures, and metrics with the aim of evaluating
OSS projects.

In recent years, a number of maturity models have been
proposed for evaluating OSS projects. However, these models
do not focus on the underlying OSS development process,
and do not adequately address issues related to testing or the
maturity of the underlying testing process. This motivates the
need for evaluating the OSS testing process systematically, and
the OSS-TPA framework is a step in that direction. OSS-TPA
is based on the Test Maturity Model Integration (TMMi) [3].
Furthermore, OSS-TPA relies on a conceptual framework that
identifies OSS test process activities, such as Test Design and
Implementation, Test Execution, and Test Incident Reporting,
and aligns these activities with the ISO/IEC Standard for test
process [4].

The rest of the paper is organized as follows. Section 2
analyzes existing approaches for assessing and measuring OSS
projects, as well as examines related studies on the assessment
of OSS test process. Section 3 provides a description of the
OSS-TPA framework and its parts. Section 4 suggests avenues
for future research. Finally, Section 5 provides concluding
remarks.

II. BACKGROUND AND RELATED WORK

The approaches for investigating the OSS test process can
be classified into two categories, namely assessment and
measurement [5]. These are discussed in some detail in the
next two sections.

A. Assessment Approaches

An assessment approach is concerned with qualitative eval-
uation. In this approach, reasoning or subjective judgment is
taken to conclude whether the OSS or one of its software
components meet specified requirements.

A number of assessment models have been introduced over
the years to provide the basis for evaluating the test process
of software projects, as summarized in Table I [6]. TMMi
is a successor of these initiatives. It provides guidelines and
a reference model for test process improvement, and has
proven useful in practice [3] [7] [8]. The TMMi reference
model has sixteen process areas that include practices, ranging
from general to specific, related to test process improvement.
Furthermore, each process area is subdivided into a number
of goals to be achieved in order to reach a specific level of
maturity.

B. Measurement Approaches

A measurement approach is concerned with quantitative
evaluation. In this approach, direct measures are recorded and
compared to pre-established values to decide whether the OSS
or one of its software components meet numerical thresholds.

The metrics for test process allow managers to track,
understand, and control (and thereby improve) testing. For
example, the number of test cases, defect density, and other
similar metrics, provide an insight into different aspects of a
test process [9] [10].

Features TMM TIM TPI TMMi
Model Type Maturity Maturity Maturity Maturity
Year of Development 1996 1996 1997 2008
Approach Theoretical Practical Practical Theoretical
Number of Levels 5 5 14 5
Number of Key Process Areas 13 5 20 16
Assessment Type Questionnaire Questionnaire Checklist N/A
Assessment Foundation CMM, ISO, SPICE Practical Experience Practical Experience CMMI
Information about Model Articles, Thesis, Books Articles Articles, Books Articles, Books

TABLE I: An Overview of the Main Features of Existing Test-Process Improvement Models

In recent years, a number of maturity models have been pro-
posed for evaluating OSS projects, including OpenBQR [11],
OpenBRR [12], SQO-OSS [13], and FOCSE [14]. They aim to
help prospective adopters understand the features of an OSS,
and to assess the advantages and drawbacks of its selection
and use [15] [1].

However, these models are rather limited in their considera-
tion of process maturity, in general, and test process maturity,
in particular. For example, out of twenty-eight evaluation
criteria in OpenBRR, only two criteria (namely, the average
volume of the mailing list in the last six months and the
number of unique contributors in the last six months) are
relevant to process maturity [12]. In some maturity models,
criteria for test process maturity (such as, the criterion of
the availability of testing and benchmark reports in Open-
BQR [16]) are mentioned, but not considered in any detail.
Finally, these maturity models lack a standard basis [12], and
the process of capturing data that these models are derived
from is usually subjective [17]. The purpose of OSS-TPA is
to overcome some of these drawbacks.

III. THE OSS-TPA FRAMEWORK

The OSS-TPA framework consists of four modules, namely
Quality Model, Data Collection, Data Analysis, and Data
Interpretation, as shown in Figure 1.

A. OSS-TPA Quality Model

The OSS-TPA quality model is based on two comple-
mentary approaches to satisfy the definition of test process
evaluation [18], and thereby evaluate the OSS test process.

The first approach is the use of the Goal-Question-Metric
(GQM) framework [19]. It is known that GQM provides a
systematic approach towards software measurement via orga-
nization of relevant goals, questions, and metrics. The second
approach is the use of the TMMi framework. The TMMi
reference model specifies the test process area and provides
means for controlling the scope of the goals in the OSS-TPA
quality model. The attention in this paper is specifically on
the aspects related to the Test Monitoring and Control process
area of the TMMi framework.

The lack of time is among the frequently-cited reasons
for organizations to not adopt Capability Maturity Model
Integration (CMMI) [20].

OSS Repositories Data Collection

Extractor

Model Definition

Data Analysis

SCAMPI
Rate

Analysis

NA
[0 - 15%)

PA
[15% - 50%)

LA
[50%- 85%)

FA
[85% - 100%]

Analyzer

Data Interpret.

1. An indicator
2. An answer
3. Goal

attained
4. Maturity

threshold
5. Guidelines

XML

Local DB

XML

XML
XML

XML XML
XML

XML

Report

Fig. 1. A High-Level View of OSS-TPA Architecture

1) OSS-TPA Quality Model: Definition: The combination
of GQM and TMMi contributes to decreasing the time for
adopting a CMMI-based approach in an OSS project.
The measures for answering questions in the OSS-TPA quality
model were computed manually, as well as, automatically,
using a variety of tools.

The model definition module of OSS-TPA, as shown in
Figure 2, consists of three abstract phases:

1. The conceptual phase, which derives the goal of man-
aging the corrective actions to closure from the TMMi
reference model.

2. The operational phase, which specifies a set of questions
concerning the achievement of the goal stated in the
conceptual phase. These questions are based on the
relevant practices in the TMMi reference model.

3. The quantitative phase, which identifies a set of metrics
for each specified question. These metrics are based on
the work products associated with the test practices in
the TMMi reference model.

It is known that appropriate corrective actions should be
taken when test progress deviates significantly from the test
plan, or product quality deviates from expectations [3].

Model Definition

M
an

ag
in

g
C

o
rr

ec
ti

ve

A
ct

io
n

s
to

 C
lo

su
re

P1. Analyze Tracking Issues

P2. Take Corrective Actions

P3. Manage Corrective Actions

M
an

ag
in

g
C

o
rr

ec
ti

ve
A

ct
io

n
s

to
 C

lo
su

re

Does the OSS project team
collect and store test
tracking issues needed to be
corrected?

Number of
Tracking Issues

Does the OSS project team
take corrective actions on
the identified tracking
issues?

Number of Open
Tracking Issues

Percentage of
Corrected Issues

Does the OSS project team
analyze results of the
corrective actions to
determine their
effectiveness?

Number of
Developers

Number of
Downloads

Number of
Page Views

TMMi maturity levels and process areas

Fig. 2. A High-Level View of the OSS-TPA Quality Model

Indeed, managing these actions to closure is one of the goals
to be achieved in the Test Monitoring and Control process
area that, in turn, belongs to Level 2 Managed in the TMMi
framework, as shown in Figure 2.

2) OSS-TPA Quality Model: Measurement: The OSS-TPA
quality model has a single goal:

Goal Manage corrective actions to closure with the aim of
evaluating its maturity from a software manager’s point
of view.

To satisfy the aforementioned goal, the following questions
are derived and formulated:

Q1 Does the OSS project team collect and store test tracking
issues needed to be corrected?

Q2 Does the OSS project team take corrective actions on
the identified tracking issues?

Q3 Does the OSS project team analyze results of the cor-
rective actions to determine their effectiveness?

The OSS-TPA quality model includes three main quality
attributes for managing corrective actions to closure, namely
Analyze Issues, Take Corrective Action, and Manage Correc-
tive Action, as shown in Figure 2. Each quality attribute is
associated with a number of metrics. The selected metrics are
based on the TMMi guidelines, and help in obtaining objective
answers to the aforementioned questions.

The result, as shown in Table II, is a collection of 19 metrics,
of which 4 correspond to the first quality attribute, 12 to the
second quality attribute, and 3 to the third quality attribute.
It can be noted that the mapping between the set of quality
attributes and the set of metrics is not one-to-one.

The tracking issues in Table II are based on the classification
scheme from SourceForge.net, and are categorized accordingly
into four groups, namely Bugs, Feature Requests, Support
Requests, and Patches.

Metrics Q1 Q2 Q3

Number of Bugs x
Number of Patches x
Number of Feature Requests x
Number of Support Requests x
Number of Open Bugs x
Number of Closed Bugs x
Percentage of Corrected Bugs x x
Number of Open Feature Requests x
Number of Closed Feature Requests x
Percentage of Corrected Feature Requests x x
Number of Open Support Requests x
Number of Closed Support Requests x
Percentage of Corrected Support Requests x x
Number of Open Patches x
Number of Closed Patches x
Percentage of Corrected Patches x x
Number of Downloads x
Number of Developers x
Number of Page Views x

TABLE II: Metrics of interest

B. Data Collection

The source of data for this study is the SourceForge Re-
search Data Archive (SRDA) [21]. The SRDA is a repository
of SourceForge OSS research data and allows the execution
of SQL queries on tables exported from SourceForge.

The SQL query that follows has been used in this research
to extract information on one of the tracking issues, namely
bugs. For example, the following SQL query extracts the total
number of bugs and the number of open ones for each project
hosted on SourceForge in July 2010 for “sf0710” scheme:

SELECT g.group id, ag.name, ac.count, ac.open count

FROM sf0710.artifact counts agg ac, sf0710.artifact group list ag, sf0710.groups g

WHERE ac.group artifact id = ag.group artifact id AND g.group id = ag.group id

AND ag.name = ’Bugs’

The OSS projects with total issues (of the type bugs, feature
requests, support requests, or patches) of zero have been
excluded to get a valid number for the percentage of corrective
issues (that is, total number of corrected issues divided by
the total number of issues). Moreover, OSS projects that have
assigned a NULL value to an issue have been excluded, as
NULL cannot be considered as a valid number.

The data analysis module, as shown in Figure 1, deals
with interpreting the collected data involving the percentage of
issues for bugs, feature requests, and patches. This follows the
ISO/IEC 15939 methodology for specifying indicators [22],
and the ISO/IEC 15504 policy for rating indicators [23]. Each
corrective action is measured on a four-point rating scale as
follows:

NA: Not Achieved [0% - 15%)
PA: Partially Achieved [15% - 50%)
LA: Largely Achieved [50% - 85%)
FA: Fully Achieved [85% - 100%]

OSS Factor Description Indicator Concept
Downloads Total number of downloads of

the software package
Moving from alpha to beta
to stable; Achieved identified
goals

Physical attribute; Community
attribute

Developers Total number of developers on
the project

Activity level; User contribu-
tion; Knowledge sharing

Community attribute

Page Views Total number of views of any
of the project’s website

User acceptance Physical attribute; Community
attribute

TABLE III: OSS Success/Abandonment Factors

C. Data Analysis and Data Interpretation

This section aims to answer the questions Q1, Q2, and Q3

from Section III-A2. Figure 3 shows data related to the four
tracking issues, and whether the data related to those issues
was collected in an OSS project. For example, bugs were
collected and stored in 30,029 out of 335,562 OSS projects.

Fig. 3. Analyzing Tracking Issues

To answer the question Q2 from Section III-A2, the fol-
lowing was carried out. Figure 4 shows the SCAMPI rating of
OSS projects hosted on SourceForge.net. For example, 140
out of 1253 OSS projects failed to take corrective actions
towards fixing bugs, while 411 out of 1253 OSS projects took
corrective actions towards fixing bugs.

To answer the question Q3 from Section III-A2, the fol-
lowing was carried out. The dataset consisting of 1253 OSS
projects was categorized into four quartiles of 313 to 314
projects each. These were subsequently arranged in an ascend-
ing order of the applied factor of success, namely Number
of Downloads, Number of Developers, and Page Views, as
shown in Table III. These independent factors apply to the OSS
development process [24], and allow distinguising between
successful and abandoned OSS projects (for the majority of
those) in the SourceForge repository [25].

Next, assuming that the data collected is randomly dis-
tributed and is not normal, chi-square test [26] has been
applied to determine the effectiveness of the corrective actions
by investigating the dependency between these actions and the
success factors (specified later in Table V).

Fig. 4. Taking Corrective Actions

OSS
Quart.

Frequencies Not
achieved

Partially
achieved

Largely
archived

Fully
achieved

Totals

First Observed 19 53 128 114 314
Expected 35.08 65.41 110.51 103.00

Second Observed 42 72 103 96 313
Expected 34.97 65.20 110.16 102.67

Third Observed 31 73 112 97 313
Expected 34.97 65.20 110.16 102.67

Fourth Observed 48 63 98 104 313
Expected 34.97 65.20 110.16 102.67

Totals 140 261 441 411 1253

TABLE IV: Results of Chi-Square Test of Significance

The following conclusions can be drawn from the chi-square
test results, as shown in Table IV, at a 5% level of significance.

There is insufficient evidence to conclude that the maturity
of corrective actions towards fixing bugs, p-value > 0.05,
is dependent on the success of OSS, using the number of
downloads and the number of page views as success factors.

There is sufficient evidence to conclude that the maturity of
corrective actions towards fixing bugs, p-value < 0.05, and the
success of OSS, using the number of developers as a success
factor, is interdependent.

There is sufficient evidence to conclude that the maturity
of corrective actions towards fixing feature requests, support
requests, and patches, p-value < 0.05, are dependent on the
success of OSS, using the number of downloads, the number of
developers, and the number of page views as success factors.

Tracking issues Success factor Chi-Square P-Value Dependency
Bugs Number of downloads 13.938 0.125 No
Feature Requests Number of downloads 20.170 0.017 Yes
Support Requests Number of downloads 24.310 0.004 Yes
Patches Number of downloads 31.607 0.000 Yes
Bugs Number of developers 24.705 0.003 Yes
Feature Requests Number of developers 25.969 0.002 Yes
Support Requests Number of developers 35.291 0.000 Yes
Patches Number of developers 49.881 0.000 Yes
Bugs Number of page views 04.925 0.841 No
Feature Requests Number of page views 20.469 0.015 Yes
Support Requests Number of page views 29.262 0.001 Yes
Patches Number of page views 43.866 0.000 Yes

TABLE V: Results of Chi-Square Test of Significance

IV. SUPPORT FOR OSS-TPA

The results of the previous section are supported by an-
other empirical study [27]. In this study, six major OSS are
studied to set up a reliability model using the general Weibull
distribution. It is shown that widely-used measures, such as
page views and downloads, are not highly correlated with the
monthly bug arrival rate.

The results of the previous section also confirm the ob-
servations made in a study that has been applied on two
major OSS projects, namely the Apache Web server and the
Mozilla Firefox Web browser [28], namely that most bugs
were reported by a relatively small developer community and
not end-users. This signifies that, for most OSS projects, the
number of bugs is not highly dependent on the number of page
views or on the number of downloads.

V. DIRECTIONS FOR FUTURE RESEARCH

The work presented in this paper can be extended in a few
different directions.

For example, the OSS-TPA framework can benefit from the
support of further empirical studies. In particular, investigating
the maturity of the OSS test processes in repositories other
than SourceForge.net and/or with different process areas of
the TMMi framework, is of research interest.

The list of success factors for OSS projects stated in this
paper is not fixed, and can evolve. Indeed, other success factors
might result in a different perspective on the OSS test process,
and thereby constitutes another possible avenue of research
interest.

VI. CONCLUSION

The growing number of competing software systems pose
a challenge for their prospective adopters, and OSS are no
different. The visibility of steps taken towards assuring the
quality of an OSS is one of the most important factors towards
its selection as a potential candidate.

This paper builds a foundation for evaluating and improving
the OSS test process. In doing so, it presents a practical,
customizable, and extensible framework, namely OSS-TPA,
for understanding the management of corrective actions to
closure in OSS.

The OSS-TPA framework supports the evaluation of a
number of activities inherent in OSS test process, such as
analyzing tracking issues, taking corrective actions, and man-
aging corrective actions to closure, as shown by an empirical
study presented in this paper. Using variations of GQM, the
OSS-TPA framework can be customized to analyze the OSS
test process in different contexts. Finally, OSS-TPA can be
extended and applied to different maturity levels and relevant
process areas of the TMMi framework.

VII. ACKNOWLEDGMENT

The authors would like to thank Olga Ormandjieva for
discussions and comments on an earlier version of the paper.

REFERENCES

[1] S. Morasca, D. Taibi, and D. Tosi, “Towards Certifying the
Testing Process of Open-source Software: New challenges or Old
Methodologies?” in The 31st International Conference on Software
Engineering (ICSE09) - The 2nd Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development
(FLOSS09). Vancouver, Canada: IEEE, 2009, pp. 25–30.

[2] O. Taipale, K. Smolander, and H. Kalviainen, “Finding and Ranking
Research Directions for Software Testing,” in Software Process Im-
provement, ser. Lecture Notes in Computer Science, I. Richardson,
P. Abrahamsson, and R. Messnarz, Eds. Springer-Verlag Berlin
Heidelberg, 2005, vol. 3792, pp. 39–48.

[3] E. van Veenendaal and J. Jaap, “Testing Maturity - Where Are We Today:
Results of the first TMMi benchmark,” Testing Experience, vol. 3, no. 3,
pp. 72–74, 2012.

[4] T. Abdou, P. Grogono, and P. Kamthan, “A Conceptual Framework for
Open Source Software Test Process,” in The 36th Annual Computer
Software and Applications Conference (COMPSAC12) - The 4th IEEE
International Workshop on Software Test Automation (STA12). Izmir,
Turkey: IEEE, 2012, pp. 458–463.

[5] R. S. Kenett and E. R. Baker, Software Process Quality: Management
and Control. Marcel Dekker, 1999.

[6] R. Swinkels, “A Comparison of TMM and Other Test Process Improve-
ment Models.” Technical Report, Frits Philips Institute, Technische
Universiteit Eindhoven, Netherlands, 2000.

[7] M. Rasking, “Experiences Developing TMMi as a Public Model,” in
Communications in Computer and Information Science, ser. Communi-
cations in Computer and Information Science, R. V. O’Connor, T. Rout,
F. McCaffery, and A. Dorling, Eds. Springer-Verlag Berlin Heidelberg,
2011, vol. 155, pp. 190–193.

[8] International Organization For Standardization, “ISO/IEC WD 29119-
2:2010 - Software and Systems Engineering - Software Testing - Test
Process,” 2010.

[9] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Using In-Process
Testing Metrics to Estimate Post-Release Field Quality,” in The 18th
IEEE International Symposium on Software Reliability (ISSRE07).
Trollhattan, Sweden: IEEE, 2007, pp. 209–214.

[10] I. Burnstein, Practical Software Testing: A Process-oriented Approach.
Springer New York, 2003.

[11] D. Taibi, L. Lavazza, and S. Morasca, “OpenBQR: A Framework for
the Assessment of OSS,” in Open Source Development, Adoption and
Innovation, ser. IFIP The International Federation for Information
Processing, J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds.
Springer Boston, 2007, vol. 234, pp. 173–186.

[12] J.-C. Deprez and S. Alexandre, “Comparing Assessment Methodologies
for Free/Open Source Software: OpenBRR and QSOS,” in Product-
Focused Software Process Improvement, ser. Lecture Notes in Computer
Science, A. Jedlitschka and O. Salo, Eds. Springer-Verlag Berlin
Heidelberg, 2008, vol. 5089, pp. 189–203.

[13] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The
SQO-OSS Quality Model: Measurement Based Open Source Software
Evaluation,” in Open Source Development, Communities and Quality,
ser. IFIP International Federation for Information Processing, B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi, Eds. Springer
Boston, 2008, vol. 275, pp. 237–248.

[14] C. Ardagna, E. Damiani, and F. Frati, “FOCSE: An OWA-based
Evaluation Framework for OS Adoption in Critical Environments,” in
Open Source Development, Adoption and Innovation, ser. IFIP
International Federation for Information Processing, J. Feller,
B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds. Springer Boston, 2007,
vol. 234, pp. 3–16.

[15] M. Michlmayr, “Software Process Maturity and the Success of Free
Software Projects,” in Software Engineering: Evolution and Emerging
Technologies, K. Zieliski and T. Szmuc, Eds. IOS Press Amsterdam,
The Netherlands, 2005, pp. 3–14.

[16] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos, and
D. Spinellis, “Software Quality Assessment of Open Source Software,”
in The 11th Panhellenic Conference on Informatics (PCI07), Patras,
Greece, 2007, pp. 303–315.

[17] M. Cabano, C. Monti, and G. Piancastelli, “Context-Dependent
Evaluation Methodology for Open Source Software,” in Open Source
Development, Adoption and Innovation, ser. IFIP The International
Federation for Information Processing, J. Feller, B. Fitzgerald,
W. Scacchi, and A. Sillitti, Eds. Springer New York, 2007, vol. 234,
pp. 301–306.

[18] Y. Wang and G. A. King, Software Engineering Processes: Principles
and Applications. CRC Press, 2000.

[19] V. Basili, G. Caldiera, and D. H. Rombach, “The Goal Question Metric
Approach,” in Encyclopedia of Software Engineering, J. Marciniak, Ed.
Wiley, 1994.

[20] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and R. Murphy,
“An Exploratory Study of Why Organizations Do Not Adopt CMMI,”
Journal of Systems and Software, vol. 80, no. 6, pp. 883–895, 2007.

[21] G. Madey, “The SourceForge Research Data Archive, SRDA, University
of Notre Dame,” 2010.

[22] International Organization For Standardization, “ISO/IEC 15939:2007-
Systems and Software Engineering - Measurement Process,” 2007.

[23] H. V. Loon, Process Assessment and ISO/IEC 15504: A Reference
Book. Springer New York, 2007.

[24] K. Crowston, H. Annabi, J. Howison, and C. Masango, “Towards
a Portfolio of FLOSS Project Success Measures,” in The 26th
International Conference on Software Engineering (ICSE04) -
Collaboration, Conflict and Control: The 4th Workshop on Open
Source Software Engineering, 2004, pp. 29–33.

[25] C. M. Schweik, R. C. English, and S. Haire, “Factors Leading to Success
or Abandonment of Open Source Commons: An Empirical Analysis of
Sourceforge.net Projects,” South African Computer Journal, vol. 43, pp.
58–65, 2009.

[26] R. R. Johnson and P. J. Kuby, Elementary Statistics. Brooks/Cole,
2007.

[27] Y. Zhou and J. Davis, “Open Source Software Reliability Model: An
Empirical Approach,” The 27th International Conference on Software
Engineering (ICSE05) - Open Source Application Spaces: The 5th
Workshop on Open Source Software Engineering, vol. 30, no. 4, pp.
1–6, 2005.

[28] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla,” The ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

