
The Evolution Radar:
Visualizing Integrated Logical Coupling Information

Marco D’Ambros, Michele Lanza, Mircea Lungu
Faculty of Informatics

University of Lugano, Switzerland
{marco.dambros, michele.lanza, mircea.lungu}@lu.unisi.ch

ABSTRACT
In software evolution research logical coupling has extensively been
used to recover the hidden dependencies between source code arti-
facts. They would otherwise go lost because of the file-based na-
ture of current versioning systems. Previous research has dealt with
low-level couplings between files, leading to an explosion of data
to be analyzed, or has abstracted the logical couplings to module
level, leading to a loss of detailed information. In this paper we
propose a visualization-based approach which integrates both file-
level and module-level logical coupling information. This not only
facilitates an in-depth analysis of the logical couplings at all granu-
larity levels, it also leads to a precise characterization of the system
modules in terms of their logical coupling dependencies.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance, Version Control, Re-
engineering, Reverse Engineering

General Terms
Measurements, Design

Keywords
Evolution, Logical Coupling, Visualization

1. INTRODUCTION
Versioning systems allow developers to record the history of a

software project. The facilities given by versioning systems and
the amount of data retrieved fostered the research field of software
evolution [13], whose goal is to analyze the history of a software
system and infer causes of its current problems, and possibly pre-
dict its future.
The history of a software system also holds information about

the logical couplings. These are implicit and evolutionary depen-
dency relationships between the artifacts of a system which, al-
though potentially not structurally related, evolve together and are
therefore linked to each other from a development process point of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

view. In short, logically coupled entities have changed together in
the past and are thus likely to change in the future. Logical cou-
pling information can therefore be used to predict the evolution of
a software system. Moreover, logical coupling information reveals
potentially misplaced artifacts in a software system, because enti-
ties that evolve together should be placed close to each other for
cognitive reasons: A developer who modifies a file in a system
could forget to modify related files because they are placed in other
subsystems or packages.
In this paper we propose a technique to inspect logical coupling

relationships, which integrates information both at a module-level
(which subsystems are coupled with each other) and at a file-level
(which files are responsible for the logical couplings). Our tech-
nique is based on a specific visualization that we named Evolution
Radar. Visualization techniques have already been successfully
used to study the evolution of software systems [1, 5, 10, 11, 14,
16, 17].
With our approach we tackle the following problems:

• How to present very large amounts of evolutionary informa-
tion in an effective way.

• How to render logical coupling relationships in an intuitive
way.

• How to enable a developer to study and inspect these rela-
tionships and to guide him to the files that are responsible for
the logical couplings.

All the results and the examples presented in the Paper have been
obtained by applying the presented visualization technique on the
Mozilla (www.mozilla.org) case study.
Structure of the paper. In Section 2 we discuss the research that

has been performed on logical coupling. In Section 3 we introduce
our approach based on the Evolution Radar to render logical cou-
pling information. We validate our technique on a large software
system in Section 4 and we look at related work in Section 5. In
Section 6 we conclude the Paper by summarizing our contributions
and give an outlook on our future work in this field.

2. LOGICAL COUPLING
Logical coupling represents the implicit dependency relationship

between two or more software artifacts that have been observed to
frequently change together during the evolution of the system. This
co-change information can either be present in the versioning sys-
tem, or must be inferred by analysis. For example subversion marks
co-changing files at commit time as belonging to the same change
setwhile the files which are logically coupled must be inferred from
the modification time of each individual file.

26

Figure 1: A sample Evolution Radar visualization of the core Mozilla modules.

The concept of logical coupling was first introduced by Gall et
al. [7] to detect implicit relationships between modules. The tech-
nique that they proposed uses information from the CVS version-
ing control system to detect dependencies between the modules of
a system. They used logical coupling to analyze the dependen-
cies between the different modules of a large telecommunications
software system and show that the approach can be used to derive
useful insights on the architecture of the system. There are two
reasons why the technique proved to be useful:

• It is more lightweight than structural analysis, as it needs to
analyze a smaller amount of data, i.e., only the data provided
by the CVS log files. Moreover, as it works at text level, it
can analyze systems written in multiple languages without
the trouble of parsing and analyzing the data.

• It can reveal dependencies that are not structural, and there-
fore are not present in the code or in the documentation.
These dependencies are the most troublesome and are prone
to represent sources of bugs in software projects.

Later the same authors revisited the technique to work at a lower
abstraction level. They detected logical couplings at class level [8]

and validated it on 28 releases of an industrial software system.
The authors showed through a case study that architectural weak-
nesses such as poorly designed interfaces and inheritance hierar-
chies could be detected based on logical coupling information.
Ratzinger et al. [15] used the same technique for analyzing the

logical coupling at the class level with the aim of learning about,
and improving the quality of the system. To accomplish this, they
defined code smells based on the logical coupling between classes
of the system.
Working at a finer granularity level, Zimmermann et al. [20] used

the information about changes that are occurring together to predict
entities that are likely to be modified when one is being modified.
The main problem with the mentioned approaches is that they

either work at the architecture level, i.e., without knowing which
finer-grained entities cause the logical coupling, or they work at
the file (or even finer) granularity level, i.e., losing the global view
of the system.
In this paper we propose an approach to overcome this shortcom-

ing by means of a visualization technique called Evolution Radar,
presented next.

27

3. THE EVOLUTION RADAR
The Evolution Radar is a visualization technique to render file-

level and module-level logical coupling information in an integrated
and interactive way, thus allowing the viewer to navigate and query
the visualized data. It is implemented in BugCrawler [6].

3.1 Principles
The Evolution Radar (see Figure 1) visualizes the logical cou-

pling of one module with the others. The module in focus is placed
in the middle of a pie chart, where each sector represents one of
the other modules. The size of each sector depicts the size of each
module in terms of number of files. The modules are sorted accord-
ing to this size metric.
The files of each of those modules are represented as colored cir-

cles and placed according to the logical coupling they have with the
module placed in the center (the closer the files are to the center, the
more coupled they are). The logical coupling can also be mapped
on the color of the figures using a temperature representation: the
hotter (from blue to red) the color is, the higher the value of the
logical coupling measure is.
In the Evolution Radar it is possible to use different time interval

combinations for the computation of the logical coupling and any
combination of the position-color mapping. For example we can
use the last year as time interval and map the resulting measure on
the position, while for the color we compute the logical coupling
considering the last month of the history of files.

3.2 Example
In the example Evolution Radar depicted in Figure 1 we see that

one module (MozillaSourceCommon marked as 1) in the lower half
of the radar has many files which are strongly coupled with the files
in the center module (MozillaSourceUnixOnly). As a result we can
say that these modules are strongly logically coupled.
Moreover, we see that the largest module (SeaMonkeyCore marked

as 2) contains many files (the sector is big), but only a few are log-
ically coupled with the center module. These files should be inves-
tigated to see whether they should be moved to the center module.

3.3 Logical Coupling Measure
We define the logical coupling between a file f and a moduleM as

the maximum logical coupling between f and all the files belonging
to M. The coupling between two files is defined as the number of
“shared commits” they have, i.e., the commits performed within a
fixed time window1. This approach can be improved using a sliding
time window as proposed by Zimmermann et al. in [19]. Using a
sliding time window the obtained set of shared commits is a super-
set of the one obtained using a fixed time window. Thus the results
found with our approach are still valid with the sliding time win-
dow, but with the latter it might be possible to find more of them.
To avoid outliers (files with a very high value of logical coupling

with respect to the average) to deform our visualization, i.e., push-
ing all the other figures to the boundary, we use a percentage value.
We divide the number of shared commits by the average of the total
number of commits of the two files. However, the percentage mea-
sure does not weigh the logical coupling with the absolute number
of commits, implying that a file with 5 commits has the same value
of a file with 100 commits if they have the same number of shared
commits. A solution to this problem consists in multiplying the
logical coupling percentage value with the logarithm of the total
number of commits. Experiments with both the measures show that
even with the log scale some entities are displaced too much from
1We use a 200 seconds time window, as used in [19].

the center because of the outliers. Thus we choose the percentage
value as logical coupling measure, solving the problem using a sim-
ple query engine. It allows the user to select and/or remove from
the view all files having a number of commits below a given value.

3.4 Advantages
The Evolution Radar is interactive, i.e., the user can zoom in

on details, can select, inspect, remove single files, etc. to verify
hypotheses such as whether certain files should be moved from one
module to the other.
The Evolution Radar has several advantages regarding its visual

expressiveness: It is rotation invariant like Chuah’s time wheel vi-
sualizations [4]. It occupies a settable amount of screen space, i.e.,
it is always possible to visualize the whole radar on screen, inde-
pendent of its resolution. It does not visualize the coupling rela-
tionships as edges and therefore does not suffer from overplotting:
The radar always remains intelligible, i.e., it is easy to make out the
heavily coupled modules which are displayed as “spikes” pointing
to the center. It is also easy to make out single files responsible for
the coupling which are placed close to the center. The Evolution
Radar is applicable not only to modules, but also to any set of files.

4. MOZILLA EXPERIMENTS
The Evolution Radar helps in answering questions about the evo-

lution of a system which are useful to developers, analysts, and
project managers:

• Developers can use the technique to answer the question: “If
I change this file, what others will I have to modify?”. The
Evolution Radar offers a visual way to assess the files that
might change in the future based on the prediction offered
by logical coupling. Due to the fine-grained level of the vi-
sualization, files can be inspected individually.

• Analysts and project managers can use the Evolution Radar
to (i) understand the overall structure of the system in terms
of module dependencies, (ii) examine the structure of these
dependencies at the file granularity level and (iii) get an in-
sight of the impact of changes on a module over other mod-
ules. This knowledge will help them in (i) localizing where
refactorings should be applied, (ii) deciding whether certain
files should be moved to other modules, and (iii) understand-
ing the evolution of the logical coupling among modules.

In the remainder of this section we provide example scenarios of
applying the Evolution Radar technique on 30’000 source code files
in the Mozilla case study. For each example we mention which was
the goal of the analysis and the potential stakeholders. Throughout
the examples the color metric is the same as the distance metric
unless otherwise specified.

4.1 Understanding SeaMonkeyMailNews
Target Audience: Analysts, project managers.
Goals. (1) To understand the dependencies between a module and
all the other modules, (2) to understand the causes of these depen-
dencies, and (3) to get an insight on the impact of changes regarding
the target module.
Analysis. SeaMonkeyMailNews is a large module (1302 files)
with strong dependencies with all the other modules in the system,
especially with the largest module SeaMonkeyCore (7834 files).
Figure 2(a) shows the Evolution Radar of SeaMonkeyMailNews.
Many files are involved in the logical coupling between SeaMonk-
eyCore and SeaMonkeyMailNews. This information is useful but

28

(a) The Evolution Radar of the SeaMonkeyMailNews module. (b) The details of the logical coupling between
SeaMonkeyMailNews and SeaMonkeyCore.

Figure 2: Evolution Radars for SeaMonkeyMailNews.

(a) The Evolution Radar of the ThunderbirdTinderbox module. (b) The details of the logical coupling
between ThunderbirdTinderbox and the
rdf/chrome/src/* files.

Figure 3: Evolution Radars for ThunderbirdTinderbox.

still too coarse-grained. Thus we need to understand how the logi-
cal coupling is structured in terms of the individual files.
We refine the view of the logical coupling between modules by

selecting the files closest to the center that are marked as (1) in
Figure 2(a), and reapply the Evolution Radar for them. Now the
group of selected files belonging to SeaMonkeyCore plays the role
of the module in the center (represented as the cyan disc in Fig-

ure 2(b)), and the contents of SeaMonkeyMailNews, which was
the previous center module, are scattered around them. As we can
see from Figure 2(b) the logical coupling is due to the files marked
as 1. All these files belong to the mailnews/db/mork direc-
tories tree, while the ones marked as 1 in Figure 2(a) belong to
db/mork. These two hierarchies should be further inspected and,
in case, merged and moved to the appropriate module.

29

(a) 3/28/1998 - 3/28/2000. (b) 3/28/2000 - 3/28/2002.

(c) 3/28/2002 - 3/28/2004. (d) 3/28/2004 - 1/9/2005.

Figure 4: The Evolution of the PhoenixTinderbox logical couplings.

4.2 ThunderbirdTinderbox Impact Analysis
Target Audience. Developers.
Goals. (1) To understand the change impact at the file level (i.e.,
answer the question: “If a file changes in this module, what other
files might have to change?”).
Analysis. ThunderbirdTinderbox is a small module (42 files) but it
has dependencies with most of the other Mozilla modules. As de-
velopers, we want the best candidates, i.e., the files which have not
only the strongest logical couplings but also the most recent ones.
We tackle the problem by creating an Evolution Radar view which
presents two types of logical coupling: (i) Coupling computed for
the whole history of the system and (ii) coupling computed for the
last 6 months only.
To present both types of information in the same figure we map

the logical coupling based on the history of the last 6 months on the
color of the discs representing files, while keeping the distance to
represent the logical coupling for the whole history. In Figure 3(a)

we can see three types of files:

• The files in group (3) are the most interesting, as they were
always, and especially during the last 6 months, changed to-
gether with some files of the ThunderbirdTinderbox module.

• For the files marked with (1), the logical coupling is weak
when computed for the whole history, but is strong when
computed considering only recent changes.

• For the files in group (2), the inverse holds, because the cou-
pling recently decreased (strong for the whole history, weak
for the last six months).

To continue the analysis, we focus our attention on the files in
group (3) only (all of which belong to the rdf/chrome/src/
directory), because we want our candidate set to be small. We
build another Evolution Radar (Figure 3(b)) using the set of files

30

in group (3) as the reference point and with the files belonging to
the ThunderbirdTinderbox module scattered around it.
We find out that the logical coupling is due to two files only

(chrome/src/nsChromeURL.cpp and .h) in the Thunder-
birdTinderbox module. This means that if we want to modify the
nsChromeURL files, it is very likely that we have to modify the
files belonging to group 3 as well, while for all the other Thunder-
birdTinderbox files we don’t have this problem.

4.3 The Evolution of PhoenixTinderbox
Target Audience. Project managers, analysts.
Goals. (1) To obtain a high-level insight about the past evolution of
the logical coupling relationships of a certain module during devel-
opment phases, and (2) to understand whether the logical coupling
relationship of a module is “ameliorating” or “degrading”. It is de-
grading if the module is more and more logically coupled to the
others, leading to maintenance problems and suggesting refactor-
ing.
Analysis. The evolution of the logical coupling for the module
PhoenixTinderbox (depicted in Figure 4) shows that the module
went through diverse phases.

1. In the first phase from 1998 to 2000 it was decoupled from
most of the system modules except SeaMonkeyCore because
of the few files marked as (1).

2. Between 2000 and 2002 its architecture degraded since it be-
came more coupled with other modules, namely: SeaMon-
keyLayout, SeaMonkeyMailNews, SeaMonkeyBrowser, Sea-
MonkeyXPToolKit.

3. Between 2002 and 2004, possibly due to a restructuring phase,
most of the logical couplings were reduced but the co-depen-
dency with SeaMonkeyCore remained (marked as 1) and the
one with CoreTinderboxAll increased (marked as 2).

4. In the last phase the architecture degraded again since (i) the
dependencies with SeaMonkeyCore were reduced but still
remained, (ii) the logical coupling with SeaMonkeyLayout
became strong again and (iii) the dependencies with Sea-
MonkeyMailNews, CoreTinderboxAll and SeaMonkeyEdi-
tor were slightly increased.

5. RELATEDWORK
Since Section 2 already introduced related work on logical cou-

pling, this section presents work related to software evolution visu-
alization.
A similar approach to visualize logical coupling has been pre-

sented by Pinzger et al. [14] with Kiviat Diagrams. As a differ-
ence they do not visualize file-level information but use surfaces
to depict complete releases, while in our visualization we depict
all evolving files in one diagram. Another difference is that they
represent the coupling as edges between the visible modules.
The graph based representation in which entities involved in log-

ical coupling were nodes in a graph and coupling was represented
as edges between them was used since the first publications related
to logical coupling [7, 8]. However, the problem with this repre-
sentation is that it either represents only modules, and then it is too
coarse grained, or it represents modules and files, but then it does
not scale to large systems.
A visual data-mining tool to represent both binary association

rules and n-ary association rules is EPOsee [3]. The tool adapts
standard visualization techniques for association rules to also dis-
play hierarchical information.

Chuah and Eick present a way to visualize project information
through glyphs called infobugs. Glyphs are graphical objects rep-
resenting data through visual parameters. Their infobug glyph’s
parts represent data about software [4]. The difference with respect
to our work is that they use glyphs to view project management
data, while our work focuses on describing how a module is log-
ically coupled to the others. One common advantage is that both
approaches are rotation invariant.
Lanza’s Evolution Matrix [12] visualizes the system’s history in

a matrix in which each row is the history of a class. A cell in the
Evolution Matrix represents a class and the dimensions of the cell
are given by evolutionary measurements computed on subsequent
versions. The evolution matrix does not represent any relationship
between the evolving entities.
Bayer [2] computes a co-change graph and proposes a layout

which reveals clusters of frequently co-changed artifacts. Jazayeri
et al. [11] visualizes software release histories using colors and the
third dimension. They do no visualize any coupling relationships
between modules.
Girba et al. used the notion of history to analyze how changes

appear in the software systems [9] and succeeded in visualizing the
histories of evolving class hierarchies [10].
Taylor and Munro [16] visualized CVS data with a technique

called revision towers. Ball and Eick [1] developed visualizations
for showing changes that appear in the source code.
Rysselberghe and Demeyer used a simple visualization based on

information in version control systems to provide an overview of
the evolution of systems [17].
Wu et al. described an Evolution Spectrograph [18] that visual-

izes historical sequences of software releases.

6. CONCLUSION
In this paper we have presented the Evolution Radar, a novel

approach to integrate and visualize module-level and file-level log-
ical coupling information. Unlike the previous visualizations in
this domain, our approach facilitates an in-depth analysis of logical
coupling between entities at different granularity levels. The visu-
alization is useful to answer questions about the evolution of the
system, the impact of changes at different levels of abstraction and
the need for system restructuring.
We have provided solutions for the problems mentioned in Sec-

tion 1: The Evolution Radar presents large amounts of information
in a condensed way (in the Mozilla examples the number of files
was greater than 30’000), guiding the user directly to the files re-
sponsible for the modules’ logical coupling. The interactive facil-
ities provided by our tool allow the user to inspect/filter entities of
interest, to group them and to create ad-hoc visualizations on the
fly.
As a case study, we have presented various scenarios of using our

visualization technique to support the analysis of more than seven
years of evolution of the Mozilla project.

6.1 Future Work
In the future we plan to explore the following research directions:
Structural information. We want to encapsulate structural infor-

mation like file size, number of methods, lines of code, etc. in the
Evolution Radar. The challenge in this is finding a way to encap-
sulate this data in the Radar layout without losing scalability and
readability.
Full integration in BugCrawler. In the current implementation

the Evolution Radar is an extension of BugCrawler [6]. By merg-
ing the two we will be able to navigate from the structural and evo-
lutionary views provided by BugCrawler to the Evolution Radar.

31

Sliding time window. We want to use the sliding time window
approach, instead of the fixed one, to compute the logical coupling
measure.
Bug-related information. We want to apply the same visualiza-

tion technique using the number of shared bugs as a measure for
the dependencies. Our hypothesis is that the greater the number of
bugs shared by two entities the stronger their dependency is. We
will check this hypothesis by comparing the results obtained using
the two measures (i.e., logical coupling and bug sharing).

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science foundation for the projects
“COSE - Controlling Software Evolution” (SNF Project No. 200021-
107584/1), and “NOREX - Network of Reengineering Expertise”
(SNF SCOPES Project No. IB7320-110997), and the Hasler Foun-
dation for the project “EvoSpaces - Multi-dimensional navigation
spaces for software evolution” (Hasler Foundation Project No. MMI
1976).

7. REFERENCES
[1] T. Ball and S. Eick. Software visualization in the large. IEEE

Computer, 29(4):33–43, 1996.
[2] D. Beyer and A. Noack. Clustering software artifacts based

on frequent common changes. In Proceedings of the 13th
IEEE International Workshop on Program Comprehension
(IWPC 2005). IEEE Computer Society Press, Los
Alamitos (CA), 2005.

[3] M. Burch, S. Diehl, and P. Weissgerber. Visual data mining
in software archives. In SoftVis ’05: Proceedings of the 2005
ACM symposium on Software visualization, pages 37–46,
New York, NY, USA, 2005. ACM Press.

[4] M. C. Chuah and S. G. Eick. Information rich glyphs for
software management data. IEEE Computer Graphics and
Applications, 18(4):24–29, July 1998.

[5] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM Symposium on
Software Visualization, pages 77–86, New York NY, 2003.
ACM Press.

[6] M. D’Ambros and M. Lanza. Software bugs and evolution:
A visual approach to uncover their relationships. In
Proceedings of CSMR 2006 (10th European Conference on
Software Maintenance and Reengineering), pages xxx–xxx.
IEEE CS Press, Mar. 2006.

[7] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings
International Conference on Software Maintenance (ICSM
’98), pages 190–198, Los Alamitos CA, 1998. IEEE
Computer Society Press.

[8] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In International
Workshop on Principles of Software Evolution (IWPSE
2003), pages 13–23, Los Alamitos CA, 2003. IEEE
Computer Society Press.

[9] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings 20th IEEE
International Conference on Software Maintenance
(ICSM’04), pages 40–49, Los Alamitos CA, 2004. IEEE
Computer Society Press.

[10] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings Ninth

European Conference on Software Maintenance and
Reengineering (CSMR’05), pages 2–11, Los Alamitos CA,
2005. IEEE Computer Society.

[11] M. Jazayeri, H. Gall, and C. Riva. Visualizing Software
Release Histories: The Use of Color and Third Dimension.
In Proceedings of ICSM ’99 (International Conference on
Software Maintenance), pages 99–108. IEEE Computer
Society Press, 1999.

[12] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. In
Proceedings of IWPSE 2001 (International Workshop on
Principles of Software Evolution), pages 37–42, 2001.

[13] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[14] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages
67–75, St. Louis, Missouri, USA, May 2005.

[15] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability
through refactoring. In MSR ’05: Proceedings of the 2005
international workshop on Mining software repositories,
pages 1–5, New York, NY, USA, 2005. ACM Press.

[16] C. Taylor and M. Munro. Revision towers. In Proceedings
1st International Workshop on Visualizing Software for
Understanding and Analysis, pages 43–50, Los Alamitos
CA, 2002. IEEE Computer Society.

[17] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings 20th IEEE International Conference on
Software Maintenance (ICSM ’04), pages 328–337, Los
Alamitos CA, Sept. 2004. IEEE Computer Society Press.

[18] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. In Proceedings of 11th Working
Conference on Reverse Engineering (WCRE 2004), pages
80–89, Los Alamitos CA, Nov. 2004. IEEE Computer
Society Press.

[19] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proceedings 1st International
Workshop on Mining Software Repositories (MSR 2004),
pages 2–6, Los Alamitos CA, 2004. IEEE Computer Society
Press.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In 26th
International Conference on Software Engineering (ICSE
2004), pages 563–572, Los Alamitos CA, 2004. IEEE
Computer Society Press.

32

