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Abstract—Software developers’ activities are in general
recorded in software repositories such as version control
systems, bug trackers and mail archives. While abundant
information is usually present in such repositories, successful
information extraction is often challenged by the necessity to
simultaneously analyze different repositories and to combine
the information obtained.

We propose to apply process mining techniques, origi-
nally developed for business process analysis, to address
this challenge. However, in order for process mining to
become applicable, different software repositories should be
combined, and “related” software development events should
be matched: e.g., mails sent about a file, modifications of the
file and bug reports that can be traced back to it.

The combination and matching of events has been im-
plemented in FRASR (FRamework for Analyzing Software
Repositories), augmenting the process mining framework
ProM. FRASR has been successfully applied in a series
of case studies addressing such aspects of the development
process as roles of different developers and the way bug
reports are handled.
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I. INTRODUCTION

Modern software development processes often involve
multiple developers and development teams, sometimes
residing at different continents and time-zones. Commu-
nication and coordination in such projects necessitates
support by means of various kinds of software repositories,
including mail archives, bug trackers and version control
systems. A plentitude of data available in such repositories
triggered an extensive research effort on mining software
repositories [1], [2], [3], [4], [5], [6], i.e., automatic
analysis of the development process based on such data.

In this paper we advocate applying process mining
to analysis of data from multiple software repositories.
Process mining [7], [8] aims at extracting information
from event logs produced by an information system, in
order to capture the business process supported by the
information system. It has already been demonstrated to
be a valuable technique for analyzing business processes
in various domains [8], [9]. Process mining makes a clear
separation of the event log preparation [10] from the
event log analysis [7]. Therefore, once data from multiple
software repositories has been translated to an event log
suited for process mining, a wide range of process mining
techniques becomes applicable. This sharply contrasts
with many existing repository mining applications [4], [5]
that tightly couple the preprocessor to the analyzer, i.e.,
the analyzers cannot be reused or combined.
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Figure 1. Process mining meta model, modified from [11].

In order to be amenable for process mining, the event
logs should conform to the process mining event log meta
model [11] (see Figure 11). An event log contains data
from a number of processes (usually one). Each process
has a number of process instances that can be uniquely
identified. Furthermore, each process has a number of
activities, and each process instance, also known as case
instance—a number of events, consisting of an activity
being executed at a certain moment in time and associated
with certain data. For instance, a log of an insurance
company might contain information about a billing process
and a refund process. A refund process has a number
of process instances uniquely identified by the claim
number. Activities that should be executed in the refund
process may include registering the claim, and checking
the insurance policy. An example of an event is “On
Thursday September 23, 2010 Alice checks the insurance
policy of the persons involved in claim 478-12”. Process
mining aims, therefore, at discovering the information
about a process, based on the information about different
process instances. Based on a log conforming to the meta
model, process mining techniques can, for instance, derive
abstract representations of the process control flow, detect
relations between the individuals involved in the business
process and their tasks, and infer data dependencies be-
tween different process activities.

The application of process mining techniques to reposi-
tory mining, requires the information from the software
repositories to be preprocessed first. The preprocessing

1As process mining terminology was evolving, different papers use
different names for notions as process, event, etc. In our choice of
names in Figure 1, we have tried to achieve clarity and consistency with
terminology used in the research on mining software repositories.



step should not only combine the data from different
sources, but also produce a log conforming to the process
mining meta model (Figure 1). To create such a log, the
following challenges have to be addressed:

• While for many business processes the appropriate
notion of case is the “natural way” to associate
different events, e.g., customer number associates all
events pertaining to the same customer, this is not
necessarily the case for software artefacts.

• While traditional logs state the events explicitly, this
is not always the case for software repositories: e.g.,
one has to analyze the contents of an e-mail to decide
whether it represents an event relevant for a given file.

• Finally, multiplicity of software repositories leads to
different representations of the same information in
different repositories: e.g., user names’ of the bug
tracker might be very different from those found
in the mailing archive. Therefore, such represen-
tations should be matched: for instance, developer
names should be matched and bug reports in the bug
tracker should be ideally linked to code modifications
caused by resolving bugs, as reflected in a version
control system. While modern systems like Sub-
clipse (http://subclipse.tigris.org) al-
low to link bug reports and code modifications, most
of the time these links are not available [12].

Once the preprocessing step has been completed, the re-
sulting log can be analyzed using existing process mining
application, such as ProM [7].

The remainder of the paper is organized as follows. Af-
ter discussing the challenges identified above in Section II,
we present our prototype implementation, called FRASR
http://www.frasr.org, in Section III. Application
of the tool in a series of case studies is discussed in
Section IV. Discussion of the related work in Section V
and conclusions in Section VI close the paper.

II. APPLYING PROCESS MINING TO SOFTWARE
REPOSITORIES

In this section we discuss how the three challenges
identified in the introduction can be addressed. We start
by presenting different ways in which the case can be
defined, proceed to event extraction and conclude with
how different representations of the same information
can be matched. As the running example in this sec-
tion, we consider information from a Subversion version
control system. One should note however, that similar
case definitions and event extraction techniques can be
applied to other software repositories as well. Additional
examples and ways of defining cases and event extraction
techniques, are discussed in [13].

A. Defining case

The main challenge pertaining to the application of
process mining to software repositories is related to the
notion of case: many software repositories do not express
this notion explicitly. This means that the application of
process mining to a software repository requires an explicit

preprocessing step allowing to identify related events
within or across different repositories, i.e., to form a pro-
cess instance. In our running example, process instances
can be formed by all commits in the Subversion log,
commits performed by a developer or commits affecting
a software component. Alternatively, a process instance
can be formed by commits that took place on a certain
date or during a certain period. It should be noted that
the way the case is defined greatly influences which
analysis techniques are applicable. Having, for example,
the component as the process instance allows the user
to combine the data from different software repositories
pertaining to this component; having the developer as the
process instance allows to combine the data from different
software repositories pertaining to this developer, etc.

B. Extracting events

As opposed to logs used for traditional process mining,
logs produced by software repositories often do not specify
the events explicitly. Therefore, we have to introduce event
bindings as a mean to specify the way the events should
be extracted from the data of the software repositories.
For every event extracted, we need to determine to which
activity the event belongs, when the event took place and
what data is associated with the event.

Basic event bindings: Software repositories can be
seen as lists of uniform entities, e.g., commits in the
running example. Basic event bindings retrieve these
entities from the software repository and create a sep-
arate event for each one of them. For all the events
extracted, the corresponding activity is derived from a
property of the repository. In this way we can distinguish
between events originating from different categories of
software repositories (e.g., version control system vs. a
bug tracker), different types of repositories belonging to
the same category (e.g., a Subversion repository and a
Git repository) and different repositories of the same type
(e.g., a Subversion repository for system version 5 and a
Subversion repository for system version 6).

Detailed event binding: While basic event bindings
provide means to associate events with coarse-grained
properties of software repositories, sometimes a more fine-
grained labeling is desired. The detailed event binding
allows a user to specify for every node in the hierarchy
of the data fields of the software repository, whether
to use it, and how to derive the activities. In the Sub-
version data field hierarchy, a repository consists of a
list of commits. Each commit contains the commit-level
information such as ‘commit-id’, ‘author’, ‘timestamp’
and ‘commit message’, and a list of files added, deleted,
modified or renamed. Each modified file has a list of
modified text fragments associated. Hence, the data field
hierarchy contains three levels: commits, modified files
and modified text fragments. The detailed event binding
allows one to indicate for each level whether to use the
corresponding information to extract the events. Moreover,
if the information from a certain level is used, one should
be able to select the data fields required to identify the



activity. For instance, the detailed event binding can be
used to get for each file in a Subversion repository (used as
a process instance) the modifications that were performed
on it (as events).

Type-specific event bindings: While the preceding
groups of event bindings can be defined for any type
of software repositories, type-specific event bindings are
specific for a given repository type. For example, an event
binding specific for Subversion might label the commits
as predominantly additions (VCS: A), deletions (VCS: D),
modifications (VCS: M) and renamings (VCS: R).

Category-specific component event bindings: An
other type of event bindings specific for repositories of a
given category are component event bindings. These event
bindings determine the activities based on the activities
associated with software repositories of a given category,
e.g., for version control systems, components can be
derived by applying a regular expression to the file path:
/trunk/src/com/company/application/component/Interface-
Implementation.java is matched to component.

C. Matching different representations

Different software repositories might involve different
representations of the same entity. For instance, developers
might use different names in the mail archive and in
the version control system; while specific versions of a
document stored in the version control system are often
encoded as a part of the document name (SRS-1.0), mail
messages are likely to refer to them using their generic
name (SRS). Moreover, developers might be identified by
their real names, aliases or mail addresses. Therefore, one
should be able to indicate cross-repository links: either
manually or automatically, e.g., as suggested in [14], [15].

III. FRASR

We have implemented the preprocessing techniques dis-
cussed in Section II in a prototype called FRASR (FRame-
work for Analyzing Software Repositories). FRASR is
a quite small application consisting of 173 Java files
amounting to 20,301 source lines of code (SLOC) and
20 more form files implementing the user interface. A
simplified view on the architecture of FRASR is shown
in Figure 2. FRASR is aware of different data sources
that can be associated with projects: e.g., the aMSN
case study discussed in Section IV-B has associated a
version control system, mail archives and bug trackers.
In general, FRASR supports 12 commonly used data
sources: Subversion, Bugzilla, Trac tickets, JIRA bugs,
SourceForge bugs, mbox archives, SourceForge mails,
Piper mail archives, MARC mail archives, Tigris mail
archives, SourceForge forums and Trac wiki articles. Each
data source might contain more information than needed
to answer a specific software engineering question: to this
end filters can be applied. Moreover, each data source
mentions developer aliases that can be associated with
a single developer. Using simple heuristics, FRASR can
automatically construct the developer matching, an impor-
tant form of cross-repository link specification, based on

the developer aliases from the data sources in the project.
The heuristics gives more weight if it is more likely that
two aliases refer to the same developer. For example, the
weight corresponding to the complete mail address such
as psmith@example.com is at least as high as the weight
corresponding to the username in an other software repos-
itory, such as psmith. As the automatically constructed
developer matching may contain false positives and false
negatives, the user can manually correct this matching.
Finally, to create (export) the event log, case and event
bindings have to be defined.

In Figure 2, abstract classes (typeset in italics) indicate
extension points: FRASR can be extended to add new
cases, event bindings, data sources and export types.

As indicated, answering different questions with respect
to the same software repositories might require redefi-
nition of the case and/or event bindings, and therefore,
recalculation of the event log. In order to speed up this
process as well as to support incremental analysis, FRASR
also includes a cache. Caching significantly reduces the
time needed to preprocess the log: for instance, pre-
processing 7223 version control system revisions, 3349
bug reports and 4256 mails of the WinMerge project
(http://www.winmerge.org), FRASR needs 10
minutes instead of 71 minutes on a 32bit Windows 7
machine with an Intel Core2 Quad CPU 2.40 GHz
with 3GB of memory. Similar improvement figures
were obtained for other projects such as PhpMyAdmin
(http://www.phpmyadmin.net) with 13465 revi-
sions, 7694 bugs, 49696 mails and 10065 topics from the
SourceForge forum: on the same machine the analysis time
was reduced from 588 minutes to 45 minutes [13]. Further
time reduction can be achieved by filtering data from the
software repositories. FRASR allows the user to specify
that, e.g., only bugs reported after January 17, 2010 should
be included in the resulting log.

The log produced by FRASR can be exported ei-
ther as a comma-separated list or in the MXML for-
mat, supported by the ProM process mining work-
bench (http://www.processmining.org). ProM
contains more than 170 mining, analysis, monitoring and
conversion plugins. Mining plugins aim at discovering a
process model for a given log: e.g., the Alpha algorithm
detects a control flow, while the Fuzzy Miner, used in
Section IV-C, is suited for mining less-structured, flexible
processes. Analysis plugins aim at providing insights in
correctness or performance of the process reflected in
the log. For instance, Dotted Chart Analysis, used in
Section IV-B, shows a spread of events of an event log
over time. The added value of FRASR consists, therefore,
in providing the user with a wide palet of successful
techniques for repository mining. In the next section we
will see how the combination of FRASR and ProM can
be applied in practice.

IV. EVALUATION

In this section we report on the application of FRASR
in a number of real-life cases. We start by presenting a
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Figure 2. Architecture of FRASR

methodology, following the general guidelines of [16], and
then discuss two case specific case studies.

A. Methodology

The objective of the case studies is to demonstrate how
software engineering questions can be answered using
FRASR. While the software system and the software
engineering question considered in the case studies are
different, the same procedure presented in Figure 3 has
been followed. We started by defining data sources, i.e.,
providing FRASR with information about software repos-
itories. In our studies we have considered open-source
projects: an instant messaging application aMSN, and the
GNU compiler collection (gcc). In both cases appropriate
repositories were available on-line, so data source defi-
nition consisted of entering the URL and authentication
information. To ensure no ethical issues were involved,
we have opted for software systems with which none
of the authors has previous experience. Next, a case
mapping and event bindings have been defined. To match
developers across different repositories FRASR calculates
the developer matching, and finally, it exports the data as
an event log. The log has been imported to ProM. Finally,
ProM-assisted analysis has been carried out providing an
answer to the initial software engineering question.

S.E. Question FRASR ProM Answer

Define case 
mapping

Attach event 
bindings

Calculate 
developer 
matching

Export
Define data 

sources

Figure 3. Using FRASR for answering software engineering questions.

B. Case study 1: developer roles

The goal of this case study is to demonstrate the added
value of using the combination of multiple software repos-

itories compared to using multiple data sources separately.
We show that when using the ‘combined’ data from
multiple software repositories, we can get insights which
cannot be obtained by using only data from individual
software repositories in isolation. As case study we have
chosen the problem of classifying developers in open
source software projects to roles. Such a classification is
necessary to analyze the social relationships between the
community members and the relationships between the
roles.

1) Classification rules: We follow the classification of
Nakakoji et al. [17]. While alternative classifications have
been proposed, e.g., in [18], Nakakoji et al. provide a
detailed description of the roles.

• Project leader is, as defined in [17], often involved
from the beginning of the project. She is responsible
for vision and overall direction of the project. There-
fore, we require a project leader to be involved from
the beginning of the project and to contribute to its
core base, i.e., she should have added or modified
files in the version control system. A complementary
approach to project leader identification proposed
in [19] is based on the number of inbound mail
messages. This approach is, however, no longer appli-
cable when mailing lists are used as all messages are
being addressed to all list subscribers. The number
of outbound responses might reflect helpfulness or
technical expertise rather than actual leadership.

• Core member is a developer which has been in-
volved in the project for a relatively long period
of time. Nakakoji et al. state that core members
should have made “significant contributions to the
development and evolution of the system” [17]. As
we have studied the repositories from February 26,
2002 until July 9, 2010, we have opted for a con-
tinuous period of at least thirty-six months as the
threshold for “relatively long period of time”. More-
over, core member’s contribution to the development



and evolution of the system should be significant.
Therefore, we require such a developer to have more
revisions in the version control system than average
(of all the developers having events in the version
control system). Moreover, core members must have
added files to and modified files in the version control
system.

• Active developers regularly contribute new features
and fix bugs, i.e., during their activity period they
should have Ticket-closed, VCS: A and VCS: M
events. We interpret “regularly” as at least one event
every month. Furthermore, to distinguish active de-
velopers and core members we require the continuous
activity period of active developers to be shorter than
thirty-six months.

• Peripheral developer are those with sporadic or
irregular contribution to the system functionality. To
characterize these developers we require them to have
both VCS: A and VCS: M events, but no longer
require the events to be present every month.

• Bug fixer is a developer that fixes bugs discovered
either by herself or by a different developer. This
means that the bug fixers should have Ticket-closed
and VCS: M events, and should not belong to the
other categories.

• Bug reporter is an open-source counterpart of a
tester. Bug reporters discover bugs and report them,
but do not modify the code. Bug reporting occurs
either using a bug tracker or a mailing list: samples
of the mailing list messages in a number of projects
have been inspected, confirming that the mailing lists
are indeed often used for reporting bugs. Hence, bug
reporters have Ticket-created events or Mail thread
created, but no events related to version control.

• Reader goes beyond using the system and inspects
the code to understand how the system works.

• Passive user is attracted by the functionality of
an open source system, but does not attempt to
contribute to it.

As activities of readers and passive users are often not
reflected in software repositories, we do not consider these
classes further. Indeed, the only information available
about the behavior of passive users is the number of
times the executables were downloaded, but as regis-
tration is often not a prerequisite for downloading we
cannot distinguish between different passive users. Sim-
ilarly, registration-free access to the source code does not
allow to distinguish between different readers. Therefore,
we only consider the categories: bug reporter, bug fixer,
peripheral developer, active developer, core member and
project leader.

2) System under investigation: We have chosen to
study aMSN, a free and open source instant messag-
ing application, clone of Windows Live Messenger. Un-
like Windows Live Messenger, aMSN supports Mac-
intosh and UNIX/Linux in addition to the Windows
platform. At the moment of writing aMSN has been
downloaded more than 38 million times, making it 20th

most popular SourceForge project of all times. To anal-
yse aMSN we have considered seven bug repositories
(bugs, feature requests, patches, plugins, skins, support
requests and translations), three mail archives (com-
mits, devel and lang) and one Subversion repository lo-
cated at https://amsn.svn.sourceforge.net/
svnroot/amsn/. We have focused on the period from
February 26, 2002 until July 09, 2010. In total, the
repositories contained 3137 bug reports, 34947 mail mes-
sages and 12062 revisions. The aMSN project also has a
discussion forum. However, the data of this forum cannot
be used in the current implementation of FRASR.

The data from the software repositories has been ex-
ported using the developer case and the data source spe-
cific binding for each data source. The developer matching
has been calculated automatically using the simple heuris-
tics mentioned in Section II-C. Furthermore, we assume
that the time stamps are synchronous, i.e., when time
stamps from both repositories are equal, the points in ‘real
time’ they were recorded, do not differ significantly.

3) Results: Using the exported log in combination with
the ProM Dotted Chart visualization and a spreadsheet
application, the developers were assigned to one of the
available roles. Figure 4 presents a part of a Dotted
Chart visualization, used in the classification. Green dots
correspond to mail events such as Mail thread created and
Mail reply, black to Ticket-created, red to other bug tracker
events, blue to addition of files in the version control
system, and finally white to other events of the version
control system (modifications, deletions and renames). The
size of dots represents a number of events occurring in
the same week and color mixture corresponds to events
of different kinds occurring in the same week.

By inspecting Figure 4 we clearly see that the developer
in the first line is represented by a sequence of overlapping
white, red and blue dots, starting at the very beginning
of the project. According to the classification rules above
this developer (Alvaro J. Iradier Muro/airadier2) will be
classified as the project leader. Furthermore, we observe
that some developers are represented by long sequences of
overlapping dots, as is, for instance, the case for Alaoui
Youness/kakaroto and Boris Faure/billiob. These develop-
ers are core members of the project. Shorter sequences rep-
resent active developers, such as Arieh Schneier/lio lion
and Tom Jenkins/bluetit. Finally, disconnected dots are
characteristic for the sporadic activity of peripheral de-
velopers. This is, for instance, the case for Harry Ven-
nik/thaven.

Visual inspection of Figure 4 provides for qualitative
results. Additional quantitative results have been obtained
by exporting the relation between the developers and
activities, expressed by a so called ProM “originator
by activity matrix”, to the spreadsheet application and
performing simple counting. In this way, out of 1725
developers we have identified 1443 bug reporters, 3 bug

2The developer names are derived from the information of the asso-
ciated developer aliases. This includes for example a username and a
name associated to an email address.



Figure 4. Dotted Chart visualization of the top-15 developers of aMSN, sorted by number of events. Color legend: Green: Mail thread created and
Mail reply. Black: Ticket-created. Red: Ticket-closed, Ticket-commented, Ticket-reopened. Blue: VCS: A (file added). White: VCS: M (file modified),
VCS: D (file deleted) and VCS: R (file renamed)

fixers, 29 periferal developers, 6 active developers, 7 core
members and 3 project leaders. Moreover, 234 developers
cannot be classified according the rules above: these are,
e.g., developers having only Ticket-commented or Mail
reply events (6 max), anonymous developers and the
SourceForge robot commenting on and closing tickets.

4) Conclusions: The case study has revealed a number
of shortcomings of the classification of [17]. First of all,
the classification considers the entire development process
as a whole, while developers clearly interleave periods
of high and low activity (see, e.g., the behavior of Karel
Demeyer/scapor in Figure 4). To address this problem, the
classification can be refined to take only shorter periods
of time into account. The refined classification can be
further supported by the filtering capabilities of FRASR
(Section III). Furthermore, we have observed that such
classification criteria as “responsibility for vision and
overall direction of the project” are difficult to formalize,
and therefore, to assess objectively.

Compared to the general structure of open source soft-
ware communities (as presented in [17]), our results ex-
hibit a relatively low number of bug fixers. We conjecture
that access to the Subversion repository is granted only to
relatively active project members, i.e., bugs are fixed by
project members classified as peripheral developers.

From the methodological point of view this case study
illustrates that software engineering questions that cannot
be split to sub-questions pertaining to individual reposito-
ries can be answered using FRASR and ProM combination
due to the ability of FRASR to combine information
coming from different software repositories. Identification
of bug fixers provides an example of such a software
engineering question.

Validity of the conclusions above could have been
affected by a number of threats. Construction validity
pertains to the way the study has been conducted: we
have, for instance, not considered the discussion forum
of aMSN that might have been used for bug reporting.
In this way we could have misclassified some developers.

To compensate for this we did not distinguish between
different kinds of mail archives and considered, e.g., the
“translations” mail archive as relevant for bug reporting.
As we do not aim at generalizing our conclusions to
additional developer classification approaches or software
systems, no threats to external validity are present.

C. Case study 2: bug life cycle

The purpose of this case study is demonstration of more
advanced mining features becoming applicable to software
repositories. We discuss the life cycle of a software artefact
and show that FRASR enables a process mining technique
well-suited to identify popular and exceptional sequences
of events as reflected in the log. As an example we
consider the life cycle of bug reports in Bugzilla.

1) Life cycle of bugs in Bugzilla: According to the
Bugzilla Guide [20] the bug reports follow the flow
presented in Figure 5. However, bug reports typically do
not ‘visit’ each possible state (e.g., bug reports marked
as a duplicate are immediately removed). We investigate
whether the actual bug reports life cycle corresponds to
Figure 5.

2) System under investigation: To study the bug reports
life cycle we have chosen GCC, the GNU Compiler
Collection, containing front ends as well as libraries for
such programming languages as C, C++, Ada, Java and
Fortran. As GCC is well-known for a big and active users
community, we expected numerous bug reports to be filled
in, and hence, the bug reports life cycle constructed based
on the GCC data will also show less frequent transitions
between the bug report states.

In our study, we focused on bugs
recorded in the GCC Bugzilla, located at
http://gcc.gnu.org/bugzilla, and reported
from January 1, 1999 till January 31, 2010. During this
period 42373 bugs have been reported. The number of
comments and updates corresponding to these bugs equal
495321. In total 13944 users have been involved in bug
reporting and discussion.



Figure 6. Bug life cycle Fuzzy Graph, extracted from the GCC Bugzilla repository.

To get insights in the actual transitions between states of
the bug reports as opposed to the prescribed ones, we have
used FRASR in combination with the ProM Fuzzy Miner
plugin. The event log was produced by FRASR using
the data field case on the bug-id’s, in combination with
the data source specific (Bugzilla) binding. The events
named ‘Ticket-commented’ and ‘Ticket-updated’ have been
filtered out, as these are not present in Figure 5 and make
the figure unnecessarily complex.

3) Results: Figure 6 presents the Fuzzy Graph corre-
sponding to the bug reports life cycle in the GCC Bugzilla
repository. We observe that Figure 6 distinguishes between
different kinds of ticket resolution with resolution “later”
being absent from Figure 5. Moreover, Figure 6 introduces
two states ‘Ticket-waiting’ and ‘Ticket-suspended’ absent

from Figure 5.

The thickness of an arrow in Figure 6 represents the
percentage of process instances (bug reports) making the
transition to that state. Figure 6 shows that most of the bug
reports are either immediately resolved (‘Ticket-created’,
‘Ticket-new’, ‘Ticket-resolved(fixed)’) or successfully re-
solved after one or more assignments (‘Ticket-created’,
‘Ticket-new’, ‘Ticket-assigned’, ‘Ticket-resolved(fixed)’).
Several other paths however are present in the graph,
including an unexpected recreation of tickets, indicated
by arrows entering ‘Ticket-created’, as opposed to ‘Ticket-
reopened’.

4) Conclusions: Summarizing the results above, we ob-
serve that the official bug reports life cycle as presented in
Figure 5 provides a simplified view on the way bug reports
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Figure 5. Bugzilla bug life cycle according to [20].

are handled in practice. We expect that less frequent states
or transitions might be absent in smaller open source
projects, but are likely to be present in the larger ones,
comparable with GCC in size and popularity.

Validity of the conclusions above might have been
affected by our choice of the case study: however, we
have explicitly chosen a larger open source project in
order to highlight less frequent scenarios as well. Unlike
traditional approaches we do not limit our attention to
“completed cases”, i.e., cases that end with one of the
activities denoting bug report being closed. By doing so we
increase the collection of process instances to include open
bug reports, and observe transitions that might have been
absent in completed cases. Furthermore, relations between
the expected bug report life cycles, as reflected in diagrams
of other bug trackers, and the way these bug trackers are
used in practice should be a subject of a separate study.

V. RELATED WORK

Application of process mining to software repositories
was considered in [3]. This approach focusses on deriving
process models from data in software repositories. While
the component case/binding in FRASR is similar to the
one used in [3], FRASR also supports means to map data
from, e.g., mail archives to activities. ProM Import [10]
is a preprocessor similar to FRASR. Unlike FRASR how-
ever, ProM Import cannot combine information from dif-
ferent sources. Moreover, it has been designed for business
processes rather than software repositories. Therefore, it
misses essential functionality such as matching developers
and configuring the case definition.

Beyond process mining, mining software repositories

has attracted significant attention from the research com-
munity: CVSgrab [1] supports gathering and visualization
data from CVS repositories. Using CVSgrab, a user can
answer questions like ‘What is / was the development
process?’ and ‘What are the main contributors and their
responsibilities?’. Other tools like the eROSE [2] and
ProjectWatcher [6] plugins in Eclipse, assist develop-
ers in finding related artefacts. Hipikat [5] is similar
to ProjectWachter, but uses data from multiple software
repositories (e.g., Subversion, Bugzilla). Using Hipikat, a
developer new to a project can quickly become familiar
with the project group memory. However, as these tools
are geared towards a single developer, they are not very
well suited for analyzing the development process of the
project. Similarly, Alitheia Core [4] can calculate metric
values based on multiple software repositories, while
softChange is a fact enhancer and a visualizer support-
ing data import from mail archives, Bugzilla repositories
and CVS repositories. All these tools gear the analysis
towards specific visualizations. Unlike them, our approach
separates the preprocessing step carried out by FRASR
and the analysis step, and hence makes multiplicity of
mining and analysis techniques readily available. In the
case studies above, we have used ProM to carry out the
analysis but commercial process mining tools such as
Futura Reflect (http://www.futuratech.nl) could
have been used for this purpose as well.

Matching identities from various sources is a nontrivial
task, as the identities can be usernames, e-mail addresses,
real names, etc. In [15], Robles and Gonzalez-Barahona
present an approach for matching developer aliases from
various software repositories. In this approach, identities
are constructed by using information from the sources (like
an e-mail address or a username). For example, the name
and surname can be extracted from an e-mail address like
name.surname@example.com; a technique also applied in
FRASR. They also use GPG keys (which contains a list of
e-mail addresses a developer may use for encryption and
authentication purposes) and other information related to
the developers. Bird et al. propose a technique more spe-
cific to matching e-mail addresses [14]. In this approach
they use the Levenshtein edit distance between (parts of)
e-mail addresses to determine the similarity.

VI. CONCLUSIONS

In this paper we advocate applying process mining tech-
niques to mining software repositories. We have identified
the challenges that should be addressed to enable this
application, discussed how they can be addressed and
presented FRASR, our prototype implementation. Unlike
existing approaches to repository mining, the approach
proposed makes clear separation between the preprocess-
ing step and the analysis step, fostering reuse of analysis
techniques.

Case studies (coming from different domains), have
shown that process mining in combination with FRASR
leverages valuable insights in software development pro-
cesses. The flexibility provided by FRASR allows to



combine information from software repositories depending
on the question the analyst tries to answer: for aMSN cases
were based on the developer names and for Bugzilla on
bug identifiers.

As future work we consider developing new analysis
techniques, tool extension and empirical studies. We plan
to study integration of process mining techniques with
software metrics, specifically recent approaches to metrics
aggregation [21]. Furthermore, we will investigate what
kind of process mining techniques are required to ad-
dress additional software engineering questions. As a tool,
FRASR should be extended with components allowing it
to parse information from decentralized version control
systems such as Mercurial and GIT, forums such as phpBB
Forum as well as from micro-blog message systems such
as Twitter. We also plan to integrate in FRASR more
advanced artefact and deloper matching techniques such
as [15]. To support a more interactive form of analysis
such as visual analytics [22], FRASR should be extended
to support quick navigation to elements in the data sources,
such as a single bug report or an email message, where
the events originated from. As empirical studies we further
consider application of FRASR + ProM combination to
a controlled study of student projects, on the one hand,
and on a larger scale to such open source projects as
Debian and KDE, on the other. Moreover, we intend to
apply FRASR + ProM to social network analysis using
the corresponding ProM mining plugin and single point
of failure detection using the so called “originator by task
matrix”.
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