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Abstract—The severity of a reported bug is a critical factor
in deciding how soon it needs to be fixed. Unfortunately, while
clear guidelines exist on how to assign the severity of a bug, it
remains an inherent manual process left to the person reporting
the bug. In this paper we investigate whether we can accurately
predict the severity of a reported bug by analyzing its textual
description using text mining algorithms. Based on three cases
drawn from the open-source community (Mozilla, Eclipse and
GNOME), we conclude that given a training set of sufficient
size (approximately 500 reports per severity), it is possible to
predict the severity with a reasonable accuracy (both precision
and recall vary between 0.65-0.75 with Mozilla and Eclipse;
0.70-0.85 in the case of GNOME).

I. INTRODUCTION

During bug triaging, a software development team must
decide how soon bugs needs to be fixed, using categories
like (P1) as soon as possible; (P2) before the next product
release; (P3) may be postponed; (P4) bugs never to be fixed.
This so-called priority assigned to a reported bug represents
how urgent it is from a business perspective that the bug
gets fixed. A malfunctioning feature used by many users for
instance might be more urgent to fix than a system crash
on an obscure platform only used by a tiny fraction of the
user base. In addition to the priority, a software development
team also keep tracks of the so-called severity: the impact
the bug has on the successful execution of the software
system. While the priority of a bug is a relative assessment
depending on the other reported bugs and the time until the
next release, severity is an absolute classification. Ideally,
different persons reporting the same bug should assign it the
same severity. Consequently, software projects typically have
clear guidelines on how to assign a severity to a bug. High
severity typically represent fatal errors and crashes and low
severity typically represent cosmetic issues — depending on
the project several intermediate categories exist as well.

Despite their differing objectives, the severity is a critical
factor in deciding the priority of a bug. And because the
number of reported bugs is usually quite high!, tool support
to aid a development team in verifying the severity of a bug
is desirable. Since bug reports typically come with textual

A software project like Eclipse received over 2.764 bug reports over
a period of 3 months (between 01/10/2009-01/01/2010); Mozilla and
GNOME received respectively 6.976 and 3.263 reports over the same
period.
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descriptions, text mining algorithms are likely candidates for
providing such support. Text mining techniques have been
previously applied on these descriptions of bug reports to
automate the bug triaging process [1, 2, 3] and to detect
duplicate bug reports [4, 5]. Our hypothesis is that frequently
used terms to describe bugs like “crash” or “failure” serve
as good indicators for the severity of a bug. Using a text
mining approach, we envision a tool that — after a certain
“training period” — provides a second opinion to be used
by the development team for verification purposes.

Consequently, in this paper we investigate whether we can
accurately predict the severity of a reported bug by analyzing
its textual description with a text mining algorithm. While
answering this question, we tackle four subsidiary research
questions inherent to the use of a text mining algorithm.

o potential indicators: Which terms in the textual descrip-
tions of a bug report could serve as good indicators of
the severity?

o short vs. long: Which (text) fields in the bug reports
serve as the best prediction basis? The one-line sum-
mary which briefly focusses on the problem or the
longer full description which includes more detail?

o training period: How many samples must be collected
before one can make a reliable predictor?

e per component vs. cross-component: Is it better to
have a specialized predictor for each component of the
software system, or can we combine bug reports over
different software components (the so-called “cross-
component” approach)?

The paper itself is structured as follows. First, Section II
provides the necessary background on both the bug triaging
and text mining necessary to understand the technique.
The technique and its validation against three open-source
cases (Mozilla, Eclipse and GNOME) is then described in
Section III. Also concerning validation, we investigate the
subsidiary research questions (indicators; short vs. full bug
report; the length of the training period; per-component vs.
cross-component) in Section IV. After that, Section V lists
those issues that may pose a risk to the validity of our results,
followed by Section VI discussing related work of other
researchers. Finally, Section VII summarizes the results and
points out future work.
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II. BACKGROUND

In this section, we provide the necessary background in-
formation needed for a detailed description of our approach.
First, we discuss the underlying principle of bug reports and
bug triaging in general. Then, we provide a brief introduction
of the text mining techniques we use in the context of this
study.

A. Bug reports and bug triaging

A software bug is what software engineers commonly use
to describe the occurrence of a fault in a software system. A
fault is then defined as a mistake which causes the software
to behave differently from its specifications [6]. Nowadays,
users of software systems are encouraged to report the
bugs they encounter, using bug tracking systems such as
Jira [www.atlassian.com/software/jira] and Bugzilla [www.
bugzilla.org].

While reporting a bug, a user is asked to provide infor-
mation about the bug by filling in a form, used subsequently
by the development team to resolve the bug. This form
includes a one-line summary of the observed malfunction
and longer more profound description, sometimes including
stack traces and the like. Typically the form also allows to
select a particular component of the faulty software system:
e.g., in the Mozilla project, “Bookmarks” and “Layout”
are components. For larger software systems the form may
even include a field for specifying the product where the
bug occurred: e.g., in the Mozilla project, the web-browser
“Firefox” and the e-mail client “Thunderbird” are products.
Most important for the purpose of this paper though is that
the user is also asked to make an assessment of the severity
of the bug. Most projects have clear guidelines on how
to determine the severity: Critical = the software will not
run; High = unexpected fatal errors (incl. crashes and data
corruption); Medium = a feature is malfunctioning; Low =
a cosmetic issue. Nevertheless such an assessment must be
made in good conscience and when users have no clue they
typically just leave the default option.

Researchers have been investigating what characterizes
a “good” bug report, i.e., ones that are appreciated by
developers and are likely to get fixed sooner [7]. They
concluded that “stack traces” and “steps to reproduce” are
considered most useful. This is fairly technical information
to provide, and unfortunately there is little knowledge on
whether users submitting bug reports are capable to do
so. Nevertheless, we can make some educated assumptions.
Users of technical software such as Eclipse and GNOME
typically have more knowledge about software development,
hence are more likely to provide the necessary technical
detail. Also, a user base which is heavily attached to the
software system are more likely to help the developers by
writing detailed bug reports.

Finally, caution must be taken as some software systems
generate bug reports that are submitted automatically when

certain exceptions occur; such reports of course must be
omitted as their severity is confirmed by their construction.

B. Text mining techniques

Document classification is widely studied in Machine
Learning [8]. Classification or categorization is the pro-
cess of automatically assigning a predefined category to
a document like categorizing textual documents according
to their topic. For example, the popular news site Google
News [news.google.com] uses a classifier to sort online news
reports according to their topic like entertainment, sports and
others. Formally, a classifier is a function

[+ Document — {ci, ..., cq}

mapping a document (in our case a bug report) to a
certain category in {ci,...,c,} (in our case the categories
{non—severe, severe}. Each document is represented using
a vector of features where a feature corresponds to a single
term.

A range of classification algorithms exist: like Support
Vector Machines, Decision trees, Nearest Neighbor clas-
sifier, .... In this study, we use a Naive Bayes classifier
which is based on the probabilistic occurrence of terms
(the features). This classifier has found its way into many
applications including e-mail filtering software where it is
used to distinguishes spam from legitimate e-mails based on
the contents of the e-mail to some extent. In simple terms,
the Naive Bayesian classifier categorizes documents based
on the probability of the presence or absence of a term in the
document. When training the classifier, the algorithm keeps
track of the probability of each term belonging to a certain
category. Using this extracted information, a new document
is categorized according to the determined probabilities of
each term occurring in the document.

Classifiers based on the Naive Bayes approach are studied
frequently. Even though the Naive Bayes classification algo-
rithm is based on a simple probabilistic principle, this clas-
sifier has proven to perform quite good compared to more
sophisticated algorithms [9]. They are called “naive” because
the algorithm assumes that all terms occur independent from
each other which is often obviously false [8].

To allow automatic classification of documents, a Naive
Bayes classifiers requires a feature vector, obtained through
the following preprocessing steps. The effect of each pre-
processing step is shown in Table 1.

Table 1
EFFECTS OF EACH PREPROCESSING STEP

Original description crashes when I Manage
Bookmarks with a Personal

Toolbar Folder link

After stop-words removal | crashes manage bookmarks

personal toolbar folder 1link

After stemming crash manag bookmark person

toolbar folder link




o Tokenization: The process of tokenization consists of
dividing a large textual string into a set of tokens
where a single token corresponds to a single term. This
step also includes filtering out all meaningless symbols
like punctuations and commas, because these symbols
do not contribute to the classification task. Also, all
capitalized characters are replaced by their lower-cased
ones.

e Stop-words removal: Human languages commonly
make use of constructive terms like conjunctions, ad-
verbs, prepositions and other language structures to
build up sentences. Terms like “the”, “in” and “that”
also known as stop-words do not carry much specific
information in the context of a bug report. Moreover,
these terms appear frequently in the descriptions of
the bug reports and thus increase the dimensionality of
the data which in turn could decrease the performance
of classification algorithms. This is sometimes also
referred as the curse of dimensionality. Therefore, all
stop-words are removed from the set of tokens based
on a list of known stop-words.

o Stemming: The stemming step aims at reducing each
term appearing in the descriptions into its basic form.
Each single term can be expressed in different forms
but still carry the same specific information. For ex-
ample, the terms “computerized”, “computerize” and
“computation” all share the same morphological base:
“computer”. A stemming algorithm like the porter
stemmer [10] transforms each term to its basic form.

III. CASE STUDY

In this section, we first provide a step-by-step in depth
description of our approach. Then, we select the measures
we use to validate the overall performance of the presented
approach. Afterwards, we motivate the selection of the cases
and then present the results.

A. Approach

In this study, our approach is based on the assumption that
the reporter of a bug uses potentially significant terms in the
descriptions which distinguish non-severe from severe bugs.
For example, if it is explicitly stated that the application
crashes when performing a certain operation, the hypothesis
is that we are most likely dealing with a severe bug.

The bug reports we studied originated from Bugzilla
bug tracking systems where the severity varies from trivial,
minor, normal, major, critical to blocker. There exist clear
guidelines on how to assign the severity of a bug. Bugzilla
also allow users to request features using the reporting
mechanism in the form of a report with “severity” en-
hancement. These reports are not considered in this study
since they technically do not represent real bug reports.
In our approach, we treat the severities trivial and minor
as non-severe, while reports with severity major, critical,

blocker are considered severe bugs. Herraiz et al. proposed
a similar grouping of severities [11]. In our case, the normal
severity is deliberately not taken into account. First of all
because they represent the grey zone, hence might confuse
the classifier. But more importantly, because in the cases we
investigated this “normal” severity was the default option for
selecting the severity when reporting a bug and we suspected
that many reporters just did not bother to consciously asses
the bug severity. Manual sampling of bug reports confirmed
this suspicion.

Of course, the prediction must be based on problem-
domain specific assumptions. In this case, the predicted
severity of a new report is based on characteristics observed
in previous ones. Therefore we use a prediction heuristic
which learns the specific characteristics of bug reports from
a history of bug reports we provide where the severity
of each report is known in advance. Subsequently, the
heuristic can then be deployed to predict the severity of
a previously unseen report. The provided history of bug
reports is also known as the training set of bug reports.
A separate evaluation set of reports is used to evaluate the
accuracy of the prediction heuristic.

The approach presented in this paper basically consists of
the following five steps, detailed below.

(1) Extract and organize bug reports: To have good
predictors for the severity of a bug report, the terms used
to describe bugs are most likely specialized for the part
of the system they are reporting about. Bug reports are
typically organized according to the affected component and
the corresponding product. The first step of our approach
consequently selects bug reports of a certain product and
component.

(2) Preprocessing the bug reports: To assure the opti-
mal performance of the text mining algorithm, we apply the
standard preprocessing steps for textual data (tokenization,
stop-words removal and stemming) on the descriptions in
the bug reports.

(3) Choosing a training and evaluation set: As is
common in text classification, we train the heuristic by
giving a set of example bug reports where their severities
is known in advance. The training set with the example
reports is selected from the global set of the bug reports in a
random manner. To ensure that the classifier is not affected
by the distribution of the bugs according to their severities,
we make sure that we select just as much reports in the
training and evaluation set for each severity.

We expect the size of the training set to play a significant
role for the prediction heuristic. We use £70 — 30% of
the available reports for the training and evaluation set
respectively. However, we will investigate this issue further
under the subsidiary research questions in IV-C.

(4) Training the classifier: Using the training set we
obtained in the previous step, we now advance to the
actual training period where the Naive Bayes classification



algorithm basically learns the characteristics of the bug
reports.

(5) Applying the classifier on the evaluation set: Once
the classifier is trained sufficiently, we apply it on the bug
reports contained in the evaluation set where the heuristic
predicts the severity of each report. Since the severity for
these bug reports is known in advance, we can compare the
predictions to the actual severities in order to verify how
accurate the predictions would have been.

B. Evaluation measures

The two most commonly used evaluation metrics which
we use to validate our approach are precision and recall.

e Precision The percentage of bug reports predicted
as either non-severe or severe which are correctly
predicted. We consider precision thus for each severity
separately. When S is either non-severe or severe, we
define precision more formally as:

Precisi # bugs correctly predicted as S
recisiong =
o # bugs predicted as S

e Recall The percentage of all bug reports with severity
non-severe or severe that are actually predicted as
being respectively non-severe or severe. Here, we also
consider recall for each precision separately. When S
is either non-severe or severe, we define recall more
formally as:

# bugs correctly predicted as S
Recallg =

# bugs of severity S

We calculate both precision and recall using a confusion
matrix, sketched in Table II. This matrix represents all
possible outcomes when making predictions of the severity.

Table 1T
CONFUSION MATRIX USED TO CALCULATE PRECISION AND RECALL

Correct severity
non-severe severe
tp: true positives | fp: false positives
fn: false negatives | tn: true negatives

Predicted
severity

non-severe
severe

Using this confusion matrix, we calculate precision and
recall as follows:

lp tn
PreéCnon—severe = m Pre€Csevere = m
tp tn
T'€Cnon—severe — m T€Csevere = m

With an ideal classifier, all bug reports are classified
correctly (high recall), while it minimizes the number of
incorrect classified bug reports (high precision).

We also use an alternate technique to evaluate the perfor-
mance of our approach: the Receiver Operating Character-
istic (ROC). The ROC compares the rate of true positives
(TPR) with the rate of false positives (FPR) and is typically

drawn as a curve [12]. The “area under the ROC curve”
(AUC) is then a statistic summarizing the ROC curve in a
single number representing the overall performance of the
heuristic. This statistic represents the probability that the out-
come of the heuristic is a better indication when compared to
randomly choosing the severity. Random classification has
an AUC value of 0.5 while the perfect heuristic has an AUC
of 1 — similar to precision and recall — which means that
the heuristic predicted the severities of all bugs correctly.
Therefore, the higher AUC value is, the better the heuristic
performs.

C. Selection on the cases

To validate the presented approach, we use bug reports
from three major open-source projects using Bugzilla as their
bug tracking system: Mozilla, Eclipse and GNOME.

Mozilla: [http://bugzilla.mozilla.org] Mozilla is an
open-source software project hosting several popular prod-
ucts like Firefox and Thunderbird. The copy of the bug
databases we obtained contains all reports submitted in
the period of 1997-2008 corresponding to approximately
400.000 reported bugs. The Mozilla products are examples
of applications with less savvy users so we expect the bug
reports to be less detailed than the ones from Eclipse and
GNOME.

Eclipse: [http://bugs.eclipse.org/bugs] Eclipse is an
open-source integrated development environment widely
used in both open-source and industrial settings. The bug
database contains over 200.000 bug reports submitted in the
period of 2001-2008. Eclipse is a technical application used
by developers themselves, so we expect the bug reports to
be quite detailed and “good” (as defined by Bettenburg et
al. [7]).

GNOME: [http://bugzilla.gnome.org] GNOME is an
open-source desktop-environment developed for Unix-based
operating systems. In this case we have over 450.000
reported bugs available submitted in the period of 1998-
2009. GNOME was selected primarily because it was part of
the MSR 2010 mining challenge [msr.uwaterloo.ca/msr2010/
challenge/]. As such the community agreed that this is a
worthwhile case to investigate. Moreover results we obtained
here might be compared against results obtained by other
researchers. For our investigation, GNOME was also inter-
esting because —as confirmed by our inspection of the bug
reports— it had a lot of automatically generated bug reports.

D. Selection of the components

As mentioned under the first step of our approach, the
predictive heuristic is considered per component so that
“component-specific” terms in the bug reports are taken into
account by the heuristic. Therefore, we select a series of
components from the cases on which we apply and validate
our approach. We selected components according to the
highest number of available bug reports since these contain



the most reports to train and validate with. In Table III, we
present the selected components with their corresponding
identification ID. The ID’s of the GNOME components are
omitted because this information was not included in the
available data we used.

Table III
COMPONENTS AND NUMBER OF THEIR (non-)severe BUGS FOR
RESPECTIVELY MOZILLA, ECLIPSE AND GNOME

ID Name Non-severe bugs | Severe bugs
23 Layout 1.043 3.064
145 Bookmarks 644 1.120
279 FirefoxGeneral 2.699 8.443
8 Eclipse User Interface 1.403 3.258
12 JDT User Interface 1.401 1.522
43 JDT Text 806 557
X Calendar 619 2.661
X Contacts 638 1.637
X Mailer 2.537 7.239
E. Results

Table IV shows the precision and recall measures for
each of the selected components from Mozilla, Eclipse and
GNOME.

Table IV
PRECISION AND RECALL OF THE APPROACH APPLIED ON A SERIES OF
COMPONENTS

Non-severe Severe
Component Precision | Recall | Precision | Recall
Mozilla:Layout 0.701 0.785 0.752 0.653
Mozilla:Bookmarks 0.692 0.703 0.698 0.687
Mozilla:FirefoxGeneral 0.692 0.744 0.723 0.670
Eclipse: Ul 0.707 0.633 0.668 0.738
Eclipse:JDT-UI 0.653 0.714 0.685 0.621
Eclipse:JDT-Text 0.705 0.718 0.713 0.700
GNOME:Calendar 0.828 0.783 0.794 0.837
GNOME:Contacts 0.767 0.706 0.728 0.785
GNOME:Mailer 0.767 0.804 0.794 0.756

As we see in Table IV, the results of the Mozilla and
Eclipse components are similar where we note that both
precision and recall vary between the values 0.65-0.75.
This applies for both non-severe as severe bugs. Moreover,
the GNOME case shows significantly better results with
precision and recall varying in the range 0.70-0.85.

Table V shows the AUC values of the predictive heuristic
applied on the three cases. The AUC for all Eclipse com-
ponents are approximately 0.74. We notice an improvement
with the Mozilla components where we observe an AUC of
approximately 0.80. The approach performs best with the
components of GNOME where the AUC varies between
0.82-0.87. In this case, this means that our approach per-
forms around 35 % better than if we would randomly guess
the severity of each bug.

Table V
AUC MEASURES OF THE APPROACH ON A SERIES OF COMPONENTS

Component AUC
Mozilla:Layout 0.813
Mozilla:Bookmarks 0.793
Mozilla:FirefoxGeneral | 0.802
Eclipse:Ul 0.744
Eclipse:JDT-UI 0.740
Eclipse:JDT-Text 0.775
GNOME:Calendar 0.869
GNOME:Contacts 0.822
GNOME:Mailer 0.854

Therefore, we conclude that it is possible to predict the
severity of a reported bug based on the provided information,
more particularly the one-line summary using a Naive Bayes
classifier. The accuracy of the approach is reasonable, yet it
depends on the case.

IV. SUBSIDIARY RESEARCH QUESTIONS

Knowing that we can we can accurately predict the
severity of a reported bug, there are some issues which may
affect the performance of the technique. We formulate these
issues using the following questions:

o Which terms in the textual descriptions of a bug report
could serve as good indicators of the severity?

e A bug reporter also provides a long description in a
report. How does the prediction perform when training
with this description?

e How many training examples do we need to build a
stable, robust predictor?

« What about training the heuristic with cross-component
bug reports?

We make variations to some of the parameters of the
approach and report the differences compared to the base
results shown in Table IV.

A. Which terms in the textual descriptions of a bug report
could serve as good indicators of the severity?

The Naive Bayes classifier we use in our approach pre-
dicts the severity based on the probability of the presence
or absence of a term in the one-line summary of a report.
When we train this classifier, the algorithm calculates these
probability values of each term belonging to a certain sever-
ity. We managed to extract these values from the classifier of
each term. Based on these extracted probabilities, we report
for a number of components in Table VI the top-10 most
significant terms indicating the severity.

From Table VI we observe that terms like deadlock,
hang and segfault are significant terms considering
severe reported bugs. This confirms our hypothesis that
certain terms in the descriptions are good indicators for the
severity of a reported bug. The same terms tend even to
appear across different components and even products.



Table VI
ToOP-10 MOST SIGNIFICANT TERMS INDICATING EACH SEVERITY

Component Non-severe Severe

Mozilla inconsist, fault, machin,

Firefox- favicon, credit, reboot, reinstal,

General extra, consum, lockup, seemingli,
licens, underlin, perman, instantli,
typo, inspector, segfault, compil
titlebar

Eclipse deprec, style, hang, freez,

JDT UI runnabl, system, deadlock, thread,
cce, tvt35, slow, anymor,
whitespac, node, memori, tick, jvm,
put, param adapt

GNOME mnemon, outbox, deadlock,

Mailer typo, pad, follow, sigsegv, relat,
titl, high, caus, snapshot,
acceler, decod, segment, core,
reflect unexpectedli,

build, loop

When considering the non-severe indicators, we observed
that some terms like typo serve as good indicators. How-
ever, we noticed that less non-severe indicators are shared
across different components while severe indicators tend
to appear across different components and products. This
can be explained by the origins of severe bugs which
are typically easier to describe using specific terms. For
example, the application crashes or there is a memory issue.
These situations are easily described using specific powerful
terms like crash or memory. This is less obvious in the
case of non-severe indicators since they typically describe
cosmetic issues. In this case, reporters use less common
terms to describe the nature of the problem.

B. How does the approach perform with the longer descrip-
tion?

In addition to the one-line summary, the reporter also
provides a longer description of the encountered problem
when a bug is submitted. This description provides more
detailed information of the bug. For example, the reporter
explains when exactly the bug occurs and how it can be
reproduced. The reporter may also provide a stack trace of
the application when the bug occurs within this description.
This information may also implicitly contain significant in-
formation in the context of the severity of the bug. Therefore,
we now use this description (instead of one-line summary)
to train the heuristic expecting that the accuracy of the
predictions will improve since the heuristic is provided with
more detailed information. For this part of the evaluation
we had to exclude the bug reports for the GNOME case
since manual inspection revealed that the severity of the
reported bug was automatically included into the description
field. This will of course jeopardize our results as we would
quickly obtain a perfect classifier. Table VII shows the
effect on the precision and recall for Mozilla and Eclipse
components.

Table VII
PERFORMANCE OF THE APPROACH WHEN USING THE LONGER
DESCRIPTION

Non-severe Severe
Component Precision | Recall | Precision | Recall
Mozilla:Layout 0.583 0.961 0.890 0.314
Mozilla:Bookmarks 0.536 0.963 0.820 0.166
Mozilla:FirefoxGeneral 0.578 0.948 0.856 0.308
Eclipse:Ul 0.548 0.976 0.892 0.197
Eclipse:JDT-UI 0.547 0.973 0.881 0.195
Eclipse:JDT-Text 0.570 0.988 0.955 0.257

The first striking observation we make from the results in
Table VII, is the contrast with the results of our approach.
While we see on the one hand very high recall and much
lower precision values with non-severe, we also observe on
the other hand a very high precision and a much lower
recall with severe. In the context of the confusion matrix
(see Table II) it seems we are dealing with large number of
false positives and a very small number of false negatives.
This basically means that many severe bug reports are faulty
predicted as non-severe explaining the low recall value in the
severe case. This subsequently leads to a small number of
remaining severe reported bugs where the heuristic predicts
correctly (leading to a high precision). Also, a small number
of non-severe reports are correctly predicted, but due to
the large number of false positives we conclude that these
predictions are not meaningful. Therefore, we conclude that
the one-line summary of the bug is a better source of
information than the longer full description for the heuristic.

The contrast of the obtained results can be explained by
the characteristics of the description and confirms earlier
results from a linguistic analysis of bug reports [13]. The
description generally tends to be much longer in size com-
pared to the one-line summary. The reporter explains the
nature of the problem using several sentences while the same
information is also summarized using only one line. The
information is often scattered in a longer description and
therefore more difficult to extract resulting in a degradation
of the performance. In some cases the reporter also includes
stack traces, snippets of source code in these descriptions
which is considered as noise by the heuristic.

C. How many training examples?

Accepting that we can train an algorithm to predict the
severity, we of course would like to know how many bug
reports we need in order to obtain good, stable predictions.
Therefore we ran a series of measurements, where we
gradually increase the size of the training set. However,
we maintain only one single fixed evaluation set which
we repeatedly use to evaluate the performance with each
increment of the training set. Figure 1, 2 (a) and (b) show
the performance of the heuristic when we vary the training
set sizes for respectively the Mozilla FirefoxGeneral and



Figure 1.

Performance of the classifier in function of the training-set size with the Mozilla GeneralFirefox component
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Figure 2. Performance of the classifier in function of the training-set size with the Eclipse User Interface component
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Eclipse User Interface components. Due to space limitations
we only show the results for the two components with
the most reports in Mozilla and Eclipse case. We observed
similar trends for all other components in the the three cases
however. Note that with the Mozilla case, the training set
increases up to 1400 reports while in the Eclipse case, we
only have a maximum training set with over 1000 reports.

Figure 1 and 2 show the accuracy of the predictions when
we use training sets of different sizes. Along the x-axis, we
see how many training examples we have used in each case
which we relate to precision and recall measures we obtained
using a fixed evaluation set. Both figures clearly show a
very unstable behavior when a relatively small number of
training examples are used. The impact of small increments
in the training set seem to have a significant impact on the

. Training set size
(b) Precision and recall with severe bugs

performance. This indicates that the heuristic has not yet
“learned” sufficient about the specifics of bug reports and
therefore the heuristic is easily influenced by the increment
(which is large relatively to the number of training examples
in the previous run).

However, the performance of our approach stabilizes in
both the Mozilla, Eclipse and GNOME components when
the heuristic is trained with more bug reports. With approx-
imately more than 500 bug reports for each severity, both
precision and recall stabilize and we conclude that from then
onwards the heuristic has learned sufficiently to allow for
more reliable predictions.



D. What about a cross-component approach?

In our approach, we train and evaluate our heuristic sepa-
rately for each component. However, we were also interested
to know whether this specialization is really necessary. In
other words, can the information stored in bug reports of one
component be used to predict the severity of reports from
another component? In a new measurement, we combine
bug reports from different components in a single training
and evaluation set. Table VIII shows the accuracy of this
modified approach.

Table VIII
PERFORMANCE OF THE CROSS-COMPONENT APPROACH
Non-severe Severe
Runs Precision | Recall | Precision | Recall
Mozilla: + 500 0.673 0.620 0.648 0.700

Mozilla: £ 1.000 0.702 0.742 0.726 0.685
Mozilla: £ 2.000 0.704 0.750 0.733 0.685

Eclipse: £ 500 0.672 0.503 0.603 0.754
Eclipse: + 1.000 0.673 0.510 0.605 0.752
Eclipse: & 2.000 0.693 0.553 0.628 0.755
GNOME: £ 500 0.753 0.680 0.708 0.777
GNOME: + 1.000 0.822 0.727 0.755 0.842
GNOME: =+ 2.000 0.817 0.737 0.760 0.835

As shown in Table VIII, we performed the cross-
component approach for each case where we also varied
the size of the training set (e.g. training set varies from 500
to 2000 training reports per severity). The new training set
is constructed from training examples which we randomly
selected from five different components, including the ones
we presented in the previous evaluations.

From the results of the Mozilla case, we see an im-
provement in performance when we use a training set with
1000 reports for each severity compared to when using 500
reports. In the Mozilla case, the performance is similar with
our previous approach: precision and recall vary between
0.65-0.75. However, the performance is lower when we
only use for each severity around 500 training examples.
Therefore, we need a larger training set when we perform
cross-component predictions here. In the case of Eclipse,
we notice that the cross-components predictions are less
obvious. Even when the training set contains more than 2000
example reports for each severity, the prediction heuristic
still performs poorly. In the GNOME case, we notice an
increase in the overall performance when the training set
expands.

This phenomenon can be explained by the fact that we are
dealing with different cases. Each case has their own specific
characteristics when it comes to the one-line summary
in the bug report. These problem-specific characteristics
could be even more specialized to a single component
resulting in a poor performing “cross-component” predictor.
However, some cases (Mozilla and GNOME) tend to share
problem-specific characteristics across different components

and products. In this case we see an improvement of the
performance of this approach.

V. THREATS TO VALIDITY

In this section we identify factors that may jeopardize the
validity of our results and the actions we took to reduce
or alleviate the risk. Consistent with the guidelines for case
studies research (see [14, 15]) we organize them in four
categories.

Construct Validity: We have trained our classifier per
component, assuming that special terminology used per
component will result in a better prediction. However, bug
reporters have confirmed that providing the “component”
field in a bug report is notoriously difficult [7], hence we
risk that the users interpreted these categories in different
ways than intended. We alleviated the risk by selecting those
components where there are many bug reports (see Table
IIT). We verified that few of these bugs have been reassigned
to other components.

Internal Validity: Our approach relies heavily on the
presence of a causal relationship between the contents of the
fields in the bug report and the severity of the bug. There is
empirical evidence that this causal relationship indeed holds
(see for instance [13]). Nevertheless software developers and
bug reporters confirmed that other fields in the bug report
or more important, which may be a confounding factor [7].

External Validity: In this study, we focused on the
bug reports of three software projects: Mozilla, Eclipse
and GNOME. Like in other empirical studies, the results
obtained from our presented approach are therefore not
guaranteed to hold with other software projects. However,
we selected the cases to represent worthwhile points in
the universe of software projects, representing sufficiently
different characteristics to warrant comparison. For instance,
Eclipse was selected because its user base are developers
hence likely to produce “good” bug reports. This was in
contrast with Mozilla and to some extent GNOME.

The bug reports used in our approach are extracted from
cases using Bugzilla as their bug tracking system. Other bug
tracking systems exist as well like Jira and CollabNet. Since
they potentially use other representations of bug reports, it
may be possible that the approach must be adapted to the
context of other bug tracking systems.

Reliability: Since we use the bug reports submitted by
the community both as training and evaluation purposes,
it is not guaranteed that the severities in these reports are
entered correctly. Users fill in the reports according to their
understanding and therefore assess severities corresponding
to their experience, which do not necessarily correspond
with the guidelines. We explicitly omitted the bug reported
with severity “normal” since this category corresponded to
the default option when submitting a bug and thus likely
to be unreliable. We performed a manual inspection of a
sample of the bug reports to verify whether the severity was



properly accounted for and found it OK in almost all of the
cases.

The tools we used to process the data might contain errors.
We implemented our approach in the programming language
Ruby [www.ruby-lang.org] where we relied as much as
possible on standard tools and libraries for the querying of
the data (i.e., REXML which is the ruby standard library
for XML parsing) and the Bayes classifier (i.e., the Ruby
Porter stemmer [rubyforge.org/projects/stemmer] and the
Ruby Classifier [classifier.rubyforge.org] library) and use a
small amount of scripting to glue everything together. Hence
we believe this risk to be acceptable.

VI. RELATED WORK

At the moment, we are only aware of a single work
on the automatic prediction of the severity of reported
bugs. Menzies et al. predict the severity based on a rule
learning technique which also uses the textual descriptions
of reported bugs [16]. The approach was applied on five
projects supplied by the NASA’s Independent Verification
and Validation Facility. In this case-study, the authors have
shown that it is feasible to predict the severity of bug
reports using a text mining technique even for a more fine-
grained categorization than we do (the paper distinguishes
between 5 severity levels of which 4 were included in the
paper). While they were forced to use smaller training sets
than we do (the data sets sizes ranged from 1 to 617 bug
reports per severity), the precision and recall they reported
varied a lot more (precision between 0.08 and 0.91; recall
between 0.59 and 1.00). This suggests that the training sets
indeed must be sufficiently large to arrive at stable results.
Due to the smaller cases, Menzies et. al. could also not
investigate the subsidiary research questions we reported
about in section IV

Antoniol et al. also used text mining techniques on the
descriptions of reported bugs to predict whether a report is
either a real bug or a request for an enhancement [17]. They
used techniques like decision trees, logistic regression and
also a Naive Bayesian classifier for this purpose. The per-
formance of this approach on three cases (Mozilla, Eclipse
and JBoss) indicated that reports can be predicted to be a
bug or an enhancement with between 77% and 82% correct
decisions.

Other current research concerning bug characterization
and prediction mainly apply text mining techniques on the
descriptions of bug reports. This work can be divided in
two groups: automatically assigning newly reported bugs to
an appropriate developer based on his or her expertise and
detecting duplicate bug reports.

A. Automatic bug assignment

Machine learning techniques are used to predict the most
appropriate developer for resolving a new incoming bug
report. This way, bug triagers are assisted in their task.

Cubranic et al. trained a Naive Bayes classifier with the
history of the developers who solved the bugs as the category
and the corresponding descriptions of the bug reports as the
data [3]. This classifier is subsequently used to predict the
most appropriate developer for a newly reported bug. Over
30 % of the incoming bug reports of the Eclipse project are
assigned to a correct developer using this approach.

Anvik et al. continued investigating the topic of the previ-
ous work and performed new experiments in the context of
automatic bug assignment. The new experiment introduced
more extensive preprocessing on the data, introducing more
classification algorithms like Support Vector Machines. In
this case, an overall classification accuracy of 57 % and 64
% for the Eclipse and Firefox projects respectively [1].

B. Duplicate bug report detection

Since the community behind a project is in some cases
very large, it is possible for multiple users to report the same
bug into the bug tracking system. This leads to multiple
bug reports describing the same bug. These “duplicate” bug
reports result in more triaging work. Runeson et al. used
text similarity techniques to help automate the detection of
duplicate bug reports by comparing the similarities between
bug reports [4]. In this instance, the description was used
to calculate the similarity between bug reports. Using this
approach, over 40 % of the duplicate bug reports are
correctly detected.

Wang et al. consider not only the actual bug reports, but
also include “execution information” of a program which
is for example the execution traces [5]. This additional
information reflects the situation that lead to the bug and
therefore reveal buggy runs. Adding structured and unam-
biguous information to the bug reports and comparing it to
others, improves the overall performance of the duplicate
bug report detection technique.

VII. CONCLUSIONS AND FUTURE WORK

Deciding how soon a reported bug needs to be fixed partly
depends on its severity. However, estimating the severity of
a bug is often left to the person reporting the bug. This
paper shows that it is possible to predict the severity based
on other information contained in a bug report, in particular
the textual information describing the bug. We evaluated the
performance of predictions based on three cases drawn from
the open-source community (Mozilla, Eclipse and GNOME).
We conclude that it is possible to predict the severity of
a reported bug given sufficient training data (= 500 bug
reports for each severity) with a reasonable performance
where both precision and recall vary between 0.65-0.75 for
selected components of Mozilla and Eclipse. In the case of
the GNOME components, we have seen a notable increase in
performance with both precision and recall varying between
0.70-0.85.



Knowing that we can accurately predict the severity of
a reported bug, we investigated whether certain parameters
affect the accuracy of the result. In particular, we had a
look at the terms used in the textual descriptions of a bug
report and discovered that they could serve as indicators
but were largely project and component dependent. This
specialization is indeed key: we also ran a test to see the
effect of cross-component predictors and observed a weaker
performance. We also investigated whether the longer de-
scription included in a bug report would result in a better
predictor, but for the systems we investigated this was not
the case.

This study is relevant because it enables us to implement
a more automated and more efficient bug triaging process.
It also can contribute to the current research regarding bug
triaging. We see trends concentrating on automating the
triaging process where this current research can be combined
with our approach with the intention to improve the overall
reliability of a more automated triaging process.

Future work is aimed at including additional sources
of data to support our predictions. Information from the
(longer) description will be more thoroughly preprocessed
so that it can be used for the predictions. In our approach,
we used the Naive Bayes based classification algorithm.
However, other classification algorithms also exist including
the promising Decision trees and Support Vector Machines
could be used for our purpose. The performance of each of
these classifications will be compared in order to determine
the most efficient approach for our goal. Also, the impact
of additional techniques like feature selection and cross-
validation will be evaluated. Finally, we will investigate
other industrial cases, where fewer bug reports get submitted
but where the bug reports get reviewed consciously.
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