
Should I contribute to this discussion?

Walid M. Ibrahim, Nicolas Bettenburg, Emad Shihab, Bram Adams, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada

{walid, nicbet, emads, bram, ahmed}@cs.queensu.ca

Abstract—Development mailing lists play a central role in facil-
itating communication in open source projects. Since these lists
frequently host design and project discussions, knowledgeable
contribution to these discussion threads is essential to avoid mis-
communication that might slow-down the progress of a project.
However, given the sheer volume of emails on these lists, it is easy
to miss important discussions. To find out how developers are able
to deal with mailing list discussions, we study the main factors
that encourage developers to contribute to the development
mailing lists. We develop personalized models to automatically
identify discussion threads that a developer would contribute
to based on his previous contribution behavior. Case studies on
development mailing lists of three open source projects (Apache,
PostgreSQL and Python) show that the average accuracy of our
models is 89–85% and that the models vary significantly between
different developers.

I. INTRODUCTION

The popularity of Open Source Software (OSS) projects

keeps on growing rapidly. This popularity has been driven by

the voluntary efforts of thousands of developers in different

locations and time zones across the globe. Many projects

use mailing lists and Internet Relay Chat (IRC) channels to

effectively communicate and plan their development work

[1]. Messages on development mailing lists discuss impor-

tant issues such as current development plans, maintenance

requests, user support, bugs, design decisions and development

schedules. Such information forms the basis for knowledge

transfer to new developers in a project. In general, the devel-

opment mailing list is where the development team lives and

communicates [2].

Timely contributions help steer important development dis-

cussions in the right direction. Such timely contributions

provide needed information and shed light into undocumented

design issues or misunderstood requirements. However, de-

velopers of large open source projects are constantly flooded

by emails on a daily basis (for example, 1,150 messages

per month for the PostgreSQL project). Over-strained project

members must wade through this flood of emails to decide

which emails require their participation and contribution. To

cope with all these emails, developers might skim emails

quickly or even completely ignore them if the subject line

does not catch their attention. Thus, developers are likely to

miss contributing to relevant discussion threads.

In this paper, we are interested in understanding the factors

that influence developers to contributing to mailing list discus-

sion threads. For example, contributors in mailing list might

reply to short messages and threads, or threads posted by the

people they know. Developers typically also have particular

moments during the day when they check their emails, and

periods during the week when they are not available. Of

course, the actual content of a message provides a definitive

answer to the question whether one should contribute to a

thread. Using these factors, we want to identify what motivates

developers to contribute to threads in highly active mailing

lists.

Based on the developers’ history of thread contributions,

we develop for each developer a personalized model that can

identify, based on her previous contribution to a mailing list

which threads require developer contribution. This model helps

to understand the factors that influence the contribution of a

developer. Through a case study based on the mailing lists of

three open source projects (Apache, PostgreSQL and Python),

we use our model to answer two research questions:

Q1 Can we build a high accuracy model of developer
contribution to a thread?
For each developer, we build a composite model

based on Naive Bayesian and Decision Tree classi-

fiers that determines with high accuracy the contribu-

tion of developers to a thread based on her previous

contribution behavior.

Q2 What are the most important factors that influ-
ence a developer to contribute to a thread?
Based on our composite model, we find that message

content, the current length of a discussion thread and

recent activity of a developer are the most important

factors. We also find that the important factors vary

between developers.

Our composite model combines the strengths of Naive

Bayesian and Decision tree classifiers to improve the overall

performance. We use a Naive Bayesian classifier to deal with

the body and subject of a thread, as selecting important threads

for a developer to contribute to is similar to detecting emails

that are not spam. We use a Decision Tree classifier to explain

the contribution behavior of a developer based on the output

of the Naive Bayesian classifier along with other factors.

Organization of the Paper. Section II explains the method-

ology we used to build our composite model. Section III

presents our data collection and thread reconstruction process.

Section IV answers the two research questions using a case

study. Section V discusses our findings. Section VI presents

threats to validity. Section VII discusses related work. Finally,

Section VIII concludes the paper.

MSR 2010978-1-4244-6803-4/10/$26.00 © 2010 IEEE 181

Naive
Bayesian
Classifier

Training Corpus

Results

Content Dimension

Bayesian Score,
Thread Dimension,
Social Dimension,
Time Dimension

Testing Corpus

Apply Trained
Model on

Thread Dimension,
Social Dimension,
Time Dimension

Bayesian Score,
Thread Dimension,
Social Dimension,
Time Dimension

Thread Dimension,
Social Dimension,
Time Dimension

Decision
Tree

Classifier

Decision
Tree
Model

Naive
Bayesian
Score

Classify

Add

Content Dimension

Add

Naive
Bayesian
Score

Fig. 1. Our composite model building approach.

II. METHODOLOGY
Our goal is to determine the main factors that drive develop-

ers to contribute to a particular discussion thread in practice.

To identify these main factors, we build a composite model

that determines which discussion threads a developer would

contribute to based on her previous contribution. If the model

returns “do not contribute” for a developer and a given thread,

this means that the developer decided not to contribute to the

thread (although he might have read the thread). The decision

to contribute or not might depend on various factors. The

developer might not have the knowledge needed to help him

to move the discussion forward, or it could be that another

developer has already contributed the right information to

the discussion. Our model could be considered as a type of

spam filter, except that our model flags interesting threads that

need developer contribution, instead of flagging threads that a

developer should not read as spam messages.

We use a data mining approach to build a composite model

that explains, given a corpus of historical thread discussions:

Can we determine whether or not a developer should con-

tribute to a given thread? In this section, we present the data

mining elements that we need to build such a model:

1) The possible factors that can influence the decision of a

developer to contribute to a given thread.

2) The composite data mining approach that we use.

3) The metrics to evaluate the accuracy of our model.

A. Contribution Factors

A developer decides to contribute to a given discussion

based on various factors. Table I shows the different factors

used in our approach. These factors span the following four

different dimensions:

1) The Thread dimension consists of factors that mea-

sure the characteristics of a discussion thread. The

Contribute

<= 1> 1

<= 0.9 > 0.9

<= 200 > 200

Contribute

thread_length

Naive_Bayesian_score

contribution_activity

word_count

known_poster

ContributeNot Contribute

<= 7175> 7175

YesNo

Contribute

Not Contribute

Fig. 2. A Decision Tree for Thomas Lockhart.

factors that we consider are the length of the discussion

(thread length) and the size of the thread (word count).

This dimension measures the necessity for a developer

to contribute to a discussion thread.

2) The Social dimension consists of factors that capture

the communication activity between developers. The

factors that we use are whether the person who started

the discussion is well known (one of the top 20 develop-

ers) by others (known starter), whether the person who

last posted to the discussion is well known (one of the

top 20 developers) by others (known poster), or whether

the developer has been active recently on the mailing

list (contribution activity). This dimension measures the

impact of inter-personal relations such as friendship on

mailing list contribution.

3) The Time dimension consists of factors that indicate

when the message in a thread was posted. The factors we

use are the message time (msg time), day (msg day),

and month (msg month). This dimension measures the

availability of the developer to contribute to threads.

4) The Content dimension consists of factors that are

related to the content of a thread. Examples of such

factors are the words in the thread subject or content.

This dimension captures the expertise of a developer on

the topics that are discussed.

B. Composite Data Mining Approach
We use a composite model based on the different contribu-

tion factors. The composite model combines two data mining

approaches (Figure 1). First, we apply a Naive Bayesian

classifier (as used by spam filters) [3] on the message content

(subject and body) to determine how relevant an email is to a

developer. Second, we use Thread, Social and Time dimension
with the output of the Naive Bayesian classifier as the input

to a Decision Tree classifier.

Before discussing in more detail the two classifiers, we

provide an example of a Decision Tree that is produced

from our case studies (Figure 2). The Decision Tree is for

“Thomas Lockhart”, one of the main PostgreSQL developers.

The Decision Tree indicates that Thomas Lockhart will not

contribute if there is more than one message in the thread

(thread length > 1), the score from the Naive Bayesian

classifier is > 0.9, his contribution activity in the last month is

182

TABLE I
DIFFERENT CONTRIBUTION FACTORS USED IN OUR APPROACH.

Attribute Name Dimension Type Explanation Rationale
thread length Thread Numeric Number of messages that have been posted

in the thread, before the contributing devel-
oper decides to contribute to the thread.

Long threads might decrease the interest
of a developer in a thread, but also in-
crease the probability that everything has
been said already in the thread.

word count Thread Numeric Number of words in the threads that the
contributing developer has to read before
posting a reply to the thread.

Long messages might decrease the interest
of a developer in a thread or actually, but
also increase the probability that every-
thing has been said already in the thread.

known starter Social Boolean Check if the developer who is going to
contribute to the thread knows the starter
of the thread.

Developers might prefer to take part in
threads that were started by someone they
know.

known poster Social Boolean Check if the developer who is going to con-
tribute to the thread knows the developer
who posted the last reply in the thread.

Developers might prefer to take part in
threads with the last message coming from
someone they know.

contribution activity Social Numeric The number of threads a developer con-
tributed to in the last month.

Inactive developers are less likely to con-
tribute to a thread (e.g., they might be on
vacation or have quit the project).

msg time Time Numeric The hour (0-23) when the last message in
the thread was posted before the developer
decides to post a reply.

A developer might prefer to contribute to
the mailing list at set times during a day
(e.g., working hours).

msg day Time Nominal The day of the week (Mon, Tue, Wed, Thu,
Fri, Sat or Sun) when the last message
was posted before the developer decides to
contribute.

A developer might prefer to contribute to
the mailing list on a particular day of the
week (e.g., weekends or a working day).

msg month Time Nominal The month (Jan, Feb, March, April, May,
June, July, Aug, Sep, Oct, Nov or Dec)
when the last message was posted before
the developer decides to contribute.

The developer contribution activity may
change depending on the month (e.g.,
Christmas period).

subject Content String The original subject of a thread. The subject of a thread is the first thing
the developer considers before deciding to
contribute to the thread.

body Content String The aggregated body text of all the mes-
sages in the thread before the developer
decides to post a reply.

The body contains the actual thread con-
tent and is basically the reason why people
send emails in the first place.

low (contribution activity is ≤ 200) and the number of words

in the message is ≤ 7175, or he does not know the poster.
The Naive Bayesian classifier works as follows. In the

training phase, the Naive Bayesian classifier takes the content

dimension from the training corpus and splits it into two

corpora. One corpus contains the subject and the content of the

threads that the developer contributed to (equivalent to non-

spam messages). The other corpus contains the content of the

threads that the developer did not contribute to (equivalent

to spam messages). In the training phase, each message is

divided into tokens (word) and in each corpus we count the

occurrences of each token. We use these counts to determine

the probability of each token to be an indicator of spam threads

(i.e. thread that developers should not contribute to). Finally,

we combine the highest 15 probabilities [4]) together into one

probability, which gives a score (probability) that a developer

will contribute to a given thread. The closer the score is to 1,

the higher the probability that the developer will not contribute

to the thread.
The Decision Tree classifier takes the score from the Naive

Bayesian classifier algorithm as input instead of the message

content dimension, together with the other factors discussed

in the previous subsection. We choose to use a Decision Tree

classifier as a machine learning algorithm, since a Decision

Tree classifier offers an explainable model. Such a model

explicitly shows the major factors that affect a developer’s

decision to contribute, while many of the other machine

learning approaches produce black box models that do not

explain their classification decisions. We choose to replace

the message content by the output score of the Naive Bayesian

classifier, because Decision Trees do not support string factors.

We used the C4.5 algorithm [5] to create our Decision Tree.

This algorithm starts with an empty tree. Then, at each level,

the algorithm calculates the information gain using the value

of each of the factors listed in Table I. The information gain

measures the improvement in classification accuracy for the

training data when using a particular factor at that specific

level. The factor with the highest information gain is added as

a decision node. This process is repeated at each level until

the number of training instances classified in the lowest level

(i.e., leaves) reaches a specified minimum [5].
C. Evaluating the Accuracy of our approach

We use a confusion matrix to evaluate the accuracy of

our approach. The confusion matrix contains the classification

183

decisions made by the Decision Tree classifier versus the real

classifications in the mailing list data (Contribute and Not-

contribute). Table II shows an example for a confusion matrix.

We measure the following three misclassification rates:

1) Contribute misclassification: This captures the per-

centage of times when a developer did contribute, but

the classifier determined that the developer would not

contribute. This misclassification rate is calculated as:

b/(a + b).
2) Not-contribute misclassification: This captures the per-

centage of times when a developer did not contribute to

a thread but the classifier determined that the developer

would contribute. This misclassification rate is calcu-

lated as: c/(c + d).
3) Overall misclassification: This captures the percentage

of wrong classifications made by the classifier. It is

calculated as: (b + c)/(a + b + c + d).

TABLE II
THE CONFUSION MATRIX FOR OUR MODELS.

Classified as
True Class Contribute Not contribute

Contribute a b
Not contribute c d

If the Contribute misclassification rate is high, then devel-

opers are likely to miss contributing to threads that need their

input. If the Not-contribute misclassification rate is high, then

developers might waste time focusing on irrelevant threads.

Model’s accuracy is (1 - overall misclassification rate).

Ideally, we seek a model with minimal misclassification

rates. Our top priority is to minimize the Contribute mis-

classification rate. We believe that it might be better to read

additional discussions than to miss a thread that requires the

contribution of a developer.

We use tenfold cross-validation to estimate the accuracy of

our model. A tenfold cross-validation divides the threads into

two parts: testing corpus–containing one tenth of the contri-

bution factors, and training corpus–containing the rest of the

contribution factors. The training corpus is used to build the

classification model, while the testing corpus is used to test the

accuracy of the model. This process is repeated ten times, each

time shifting the fold that is used for testing. Tenfold cross-

validation gives more accurate results than other validation

approaches, such as Holdout and Bootstrap approaches [6].

III. CASE STUDY SETUP

This section presents our setup approach for extracting the

messages from the mailing list archive, reconstructing the

discussion threads and data preparation.

A. Data Collection
We process each message in a mailing list repository using

a semi-automated approach similar to [7]. We remove attach-

ments, duplicate messages, convert HTML emails to plain text,

and extract the email header information (such as From and

Date). Then, we identify and merge multiple email addresses

that belong to the same person. Such steps are needed to

ensure the correctness of the calculation of the factors listed in

Table I. For example, Alvaro Herrera, one of the most active

developers in the PostgreSQL mailing list, uses six different

email addresses. We must unify these addresses as a single

person to ensure the correctness of our analysis.

B. Reconstruction of Discussion Threads

Each discussion thread consists of several email messages.

However, email messages are stored in mailing list archives

based on the posting time and date of the message. We must

reconstruct the discussion threads by linking these email mes-

sages together. We use three heuristics to reconstruct threads.

Each heuristic adds new messages to threads generated by the

previous heuristic and creates new threads. The heuristics are:

The “InReplyTo” heuristic. This heuristic uses the in-

reply-to field of a message to find the ID of earlier messages

in a thread.

The “References” heuristic. This heuristic uses the refer-

ences field of a message to find the ID of earlier messages in a

thread. This field contains all the IDs of the previous messages

sent to a thread. We use this heuristic on the remaining mes-

sages that were not classified using the InReplyTo heuristic.

The “Subject” heuristic. In many cases, email clients fail

to generate message-ids. Also, old mailing list did not use

message-ids before 1998. In this case, we can still deduce the

thread of a message from its subject field. To avoid merging

messages from two separate discussions that happen to have

the same subject, we use a sliding time window of 6 months.

We used this heuristic on the remaining unthreaded messages.

C. Data Preparation

To prepare our data for the experiment, we create a training

model for each developer. We take all the messages in a

discussion thread up until the contribution of a developer, and

we mark the thread as a contribute thread for that developer.

If the developer did not contribute to a given thread we take

all the messages posted in that thread and mark the thread as

a not-contribute thread.

For instance, if we are building a model for the developer

“Andrew Dunstan” and we have a thread with 10 postings and

“Andrew Dunstan” posted the fifth post, we would generate

one contribute that contains all the aggregate text in the body

of the messages until the fifth post and discard the other

five posts (for this developer). This approach in preparing

our data ensures that our models are more realistic, since our

approach calculates the contribution activity until a developer

contributes to a thread.

IV. CASE STUDY

We mine the developer mailing lists of three open source

systems (Apache, PostgreSQL and Python) from different do-

mains. The aim of this case study is to build a model that helps

to understand the important factors that motivate developers to

contribute to a given thread. Table III summarizes the details

of the studied software systems. A historical archive of all

184

discussions for each mailing list is publicly available online

as monthly mbox files.

TABLE III
SUMMARY OF THE STUDIED SYSTEMS.

Project Apache PostgreSQL Python

Domain Web Server DBMS Interpreter
of Messages 121,288 162,741 93,919
of Threads 18,838 18,945 10,671
of Contributors 3,137 4,996 2,848
Start date March 1995 Jan. 1997 April 1999
End date Dec. 2009 Sept. 2008 Dec. 2009
% of messages
posted by top 43% 36% 40%
10 developers

We choose to study the performance of our models for the

top ten most active developers. We feel that such developers,

who are flooded with emails, will benefit the most from our

approach over casual developers on the mailing lists. Table IV

shows the activity of the top 10 developers who dominate the

mailing list discussions for the three projects.

Due to space limitations, we only discuss in detail the results

of the PostgreSQL project and we briefly present the results

of the other two projects. We choose to explore and discuss

PostgreSQL in detail, since it has the largest number of threads

and messages among the studied projects. Moreover, Table IV

shows that the PostgreSQL project has the largest variation in

the number of threads the top 10 developers contributed to.

We want to examine closely the performance of our approach

under such high variation.

Q1. Can we build a high accuracy model of developer contri-
bution to a thread?

We use our methodology from section 2 to build a composite

model based on all available mailing list data of each project.

Such a model will enable us to understand the important

factors that motivate developers to contribute to a given thread.

Table V shows the misclassification rates for the top ten

developers for PostgreSQL. Lower misclassification rates are

desired, especially for the Contribute misclassification rate.

We find that the Contribute misclassification rate for Tom

Lane is low (18%), while for the other developers the Con-
tribute misclassification rates are high (29% to 51%). On the

other hand, the Not-contribute misclassification rate for all

the developers is between 0% and 2%, except for Tome Lane

(13%) and Bruce Momjian (5%). The Overall misclassification
rate for all the developers ranges from 2% to 16%. These

results are acceptable if we care about the overall performance,

but we are interested more in the Contribute class. It is

important that developers do not miss contributing to an

important thread, but it is acceptable to read more threads.

The problem is Decision Trees tend to bias their classifica-

tion to the majority class, especially when that class is much

larger than the other classes, as in our case [8]. Table VI shows

the ratio between the “Contribute” class and “Not-Contribute”

class for each developer. If the contribute ratio is near 1, then

TABLE V
MISCLASSIFICATION RATES (IN PERCENTAGES).

Name Contribute Not contribute Overall

Tom Lane 18 13 16
Bruce Momjian 31 5 14
Peter Eisentraut 35 2 6
Thomas Lockhart 41 1 4
Andrew Dunstan 35 1 4
Alvaro Herrera 51 0 4
The Hermit Hacker 38 0 3
Christopher Kings 34 1 3
Hannu Krosing 37 1 2
Jan Wieck 29 0 2

TABLE VI
THE CONTRIBUTION RATIO FOR POSTGRESQL PROJECT.

Name contribution ratio

Tom Lane 1.18
Bruce Momjian 0.52
Peter Eisentraut 0.13
Thomas Lockhart 0.09
Andrew Dunstan 0.09
Alvaro Herrera 0.08
The Hermit Hacker 0.08
Christopher Kings 0.06
Hannu Krosing 0.05
Jan Wieck 0.05

the size of the “Contribute” and “Not-contribute” class are

nearly equal. But if the contribute ratio is less than 1, then the

“Not-contribute” class dominates the “Contribute” class. Table

VI shows that the “Not-contribute” class clearly dominates

the “Contribute” class as the ratios approach zero, except for

Tom Lane and Bruce Momjian. In short, the Decision Tree

simply learns the majority without trying to learn any factors

from the minority training data. This observation appears in

many real-world applications (e.g., in vision recognition [9],

bioinformatics [10], credit card fraud detection [11], cancer

detection [12], bug prediction [13] and bug triage [14]).

To tackle the problem of highly imbalanced classes, we

must increase the minority class (Contribute class) to improve

the Contribute misclassification rate. Re-balancing the training

data is a frequently used technique to address this problem.

There are two approaches for re-balancing the data:

1) By re-weighting the minority class. Re-weighting the

minority class by assigning a higher weight to the

minority class ensures that the Decision Tree would

consider the minority class more prominently.

2) By re-sampling the data. Re-sampling the data can

be done by under-sampling, over-sampling or both [15].

Estabrooks and Japkowicz [15] note that the best ap-

proach is to perform a combined under-sampling and

over-sampling, as under-sampling alone discards useful

data and over-sampling leads to over-fitted models.

We rebuild our models using re-weighting and re-sampling

approaches. We use the AdaBoost algorithm [16] which is part

185

TABLE IV
THE TOP 10 MAILING LIST DEVELOPERS ORDERED BY THE NUMBER OF THREADS THEY CONTRIBUTED TO.

(a) Apache Project

Name contributed to

Ken Coar 3,267
Jim Jagielski 3,212
William Rowe 3,167
Rob Hartill 3,112
Dean Gaudet 2,998
Marc Slemko 2,447
Brian Behlendorf 2,392
Ben Lauri 2,333
Jeff Trawick 2,149
Randy Terbush 1,972

(b) PostgreSQL Project

Name contributed to

Tom Lane 10,184
Bruce Momjian 6,423
Peter Eisentraut 2,180
Thomas Lockhart 1,580
Andrew Dunstan 1,521
Alvaro Herrera 1,403
The Hermit Hacker 1,388
Christopher Kings 1,102
Hannu Krosing 957
Jan Wieck 860

(c) Python Project

Name contributed to

Guido van Rossum 3,597
Martin Von Loewis 2,342
Tim Peters 1,974
Skip Montanaro 1,303
Barry Warsaw 1,260
Greg Ewing 1,126
M. Lemburg 1,079
Nick Coghlan 1,001
Aahz Maruch 895
Fredrik Lundh 893

TABLE VII
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE

DATASET. PERFORMANCE DIFFERENCES RELATIVE TO TABLE V ARE

SHOWN BETWEEN PARENTHESES.

Name Contribute Not contribute Overall

Tom Lane 19(+ 1) 15(+ 2) 17(+ 1)
Bruce Momjian 21(-10) 15(+10) 17(+ 3)
Peter Eisentraut 15(-20) 11(+ 9) 11(+ 5)
Thomas Lockhart 18(-23) 17(+16) 17(+13)
Andrew Dunstan 18(-17) 12(+11) 13(+ 9)
Alvaro Herrera 25(-26) 17(+17) 18(+14)
The Hermit Hacker 18(-20) 14(+14) 15(+12)
Christopher Kings 14(-20) 8(+ 7) 8(+ 5)
Hannu Krosing 20(-17) 23(+22) 21(+19)
Jan Wieck 19(-10) 7(+ 7) 7(+ 5)

of the WEKA machine learning framework [17] to perform a

combined over- and under-sampling of our training data. We

find that a re-weighting or re-sampling approach outperforms

the original non-balanced approach. However, re-sampling is

better than re-weighting by 1 to 4%, so we will use the re-

sampling approach throughout the rest of the paper.

Table VII shows the misclassification rates using the re-

sampling approach. The Contribute misclassification rates for

all the developers, except for Tom Lane, have dramatically im-

proved by as much as 26%. However, this improvement leads

to a 7% to 17% increase in the Not-contribute misclassification
rate. However, the Overall and Contribute misclassification
rates for Tom Lane change by 1% and the Not-contribute
misclassification rate changes only by 2%. This small decrease

in the performance is expected because the contribute ratio for

Tom Lane was reasonably balanced before re-sampling.

Our new models ensure to build a model with high accuracy

that explains the contribution behavior for the developers. Our

composite model ensures that a developer misses contributing

to a smaller number of relevant discussion threads, while she

will have to look through a larger number of discussion threads

that do not require their contribution.

Our findings hold across all three studied projects (Apache,

PostgreSQL and Python). Table VIII shows the average mis-

classification rates for the three projects. The misclassification

rates are consistent across the three projects with average

TABLE VIII
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG

THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER RE-SAMPLING THE

DATASET.

Project Contribute Not contribute Overall

Apache 12.7 12.5 12.6
PostgreSQL 18.7 13.9 14.4
Python 19.3 9.8 11.0

Overall misclassification rate between 11% and 14.4%.
�

�

�

�

We can build a developer contribution model with a
high accuracy of 89–895% using data re-sampling.

Q2. What are the most important factors that influence a
developer to contribute to a thread?

We now study which factors have the most influence on the

decision of a developer to contribute. This study helps us to

understand the contribution behavior of developers. In order to

study the most important factors, we examine the top factors in

the ten Decision Trees created by the Tenfold cross validation

for each developer. The most important factor is the root

node of a Decision Tree. The factors gradually become less

important as we go down the tree. If the thread length factor

would appear as the root node in each of the ten trees created

in each fold, then we would record that thread length appears

ten times at Level 0. This would mean that thread length is

the most important factor. This analysis is called Top Node
analysis [18], [19].

Due to space constraints, Table IX only shows the Top Node

analysis results for the most active developer (Tom Lane),

a middle activity developer (Alvaro Herrera), and the least

active developer (Jan Wieck) from the top ten most active

developers. We also show the average Top Node analysis

results across the top ten developers. Looking at the results for

the three developers, we note that each developer has different

contribution behavior. For Tom Lane, our model suggests that

the length of the discussion is the most important factor, as it

appears in the root of every tree. Alvaro Herrera’s contribution

activity is considered to be the most important factor, since

Alvaro’s contribution activity appears in eight out of the ten

186

TABLE IX
TOP NODES IN DECISION TREES BUILT FOR TABLE VII.

Tom Lane Alvaro Herrera Jan Wieck Average
Level # Attribute # Attribute # Attribute # Attribute

0 10 thread length 8 contribution activity 10 Naive Bayesian score 4 Naive Bayesian score
2 thread length 3 contribution activity

3 thread length
1 10 Naive Bayesian score 6 Naive Bayesian score 8 thread length 5 Naive Bayesian score

3 thread length 2 contribution activity 4 thread length
1 contribution activity 1 word count

1 contribution activity
2 10 words count 5 thread length 5 contribution activity 3 words count

2 Naive Bayesian score 2 word count 2 Naive Bayesian score
2 words count 2 thread length 2 contribution activity
1 contribution activity 1 msg time 2 thread length

1 msg time

TABLE X
THE AVERAGE TOP NODES IN DECISION TREES FOR EACH PROJECT.

Apache PostgreSQL Python
Level # Attribute # Attribute # Attribute

0 5 Naive Bayesian score 4 Naive Bayesian score 7 Naive Bayesian score
4 thread length 3 thread length 3 thread length
1 contribution activity 3 contribution activity

1 3 Naive Bayesian score 5 Naive Bayesian score 3 Naive Bayesian score
2 thread length 4 thread length 2 thread length
2 word count 1 word count 2 contribution activity
2 contribution activity 1 contribution activity 1 word count

2 2 words count 3 words count 1 words count
2 contribution activity 2 Naive Bayesian score 1 contribution activity
1 Naive Bayesian score 2 contribution activity 1 Naive Bayesian score
1 thread length 2 thread length 1 thread length
1 known starter 1 msg time

trees. For Jan Wieck, the message content (Naive Bayesian

classifier score) seems to be very important in his contribution

decision, since it appears in all his trees. For the average across

the ten developers, we find that the message content comes

first, followed by contribution activity and the length of the

thread respectively.
We examine the top words that the Naive Bayesian classifier

uses to define if Tom Lane and Jan Wieck are going to

contribute to a thread. Through these words, we can gain

insight into the behavior of developers and their areas of

interest and expertise. For Tom Lane, the classifier uses the

following words: “Linux”, “baseline”, “version”, “package”,

“deadlock timeout”, “trace”, “structure”, and “debug”. For

Jan Wieck, the classifier uses the words: “format”, “bug”,

“directory”, “libpq”, “reporting”, “compile”, “log directory”,

“parser”, and “testtable”. The words for Tom match his leading

role in the PostgreSQL project as the words show that he

contributes to threads that talk about releases and overall

structuring issues. For Jan, the words highlight his areas of

expertise, which relate to the libpq library (this is the C

application programmer’s interface to PostgreSQL). Jan tends

to contribute to threads that talk about various problems and

bugs related to this library.

We also perform the Top Node analysis on the Apache and

Python projects. The average top node analysis for each project

is shown in Table X. Although there is no common contribu-

tion behavior for all developers, Table X shows that there are

three main contribution factors that influence developers across

all the studied projects: the Naive Bayesian score (developer’s

expertise), the message length (necessity to contribute) and

the developer activity. The Top Node analysis shows that

social dimension (inter-personal behavior) and time dimension

(availability) do not influence the contribution behavior of the

top 10 developers.
�

�

�

	

The content of the thread (Naive Bayesian score), the
length of a thread (thread length) and the contribu-
tion activity of a developer (contribution activity) are
the most important contribution factors.

V. DISCUSSION
In this section, we closely study the top two factors that

influence the developers to contribute according to our models.

The first factor is the message content, while the second factor

is the length of the thread. We want to understand how these

contribution factors affect our model compared to the other

contribution factors.

A. Message content
In the previous section, we found that message content

is one of the most important factors, as it appears either at

187

TABLE XI
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER APPLYING NAIVE

BAYESIAN CLASSIFIER ONLY AND RE-SAMPLING THE DATASET.
PERFORMANCE DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN

BETWEEN PARENTHESES.

Name Contribute Not contribute Overall

Tom Lane 6(-13) 87(+72) 35(+18)
Bruce Momjian 28(+07) 57(+42) 50(+33)
Peter Eisentraut 69(+54) 17(+ 6) 22(+11)
Thomas Lockhart 91(+73) 3(-14) 25(+ 8)
Andrew Dunstan 80(+62) 7(- 5) 20(+ 7)
Alvaro Herrera 80(+55) 1(-16) 22(+ 4)
The Hermit Hacker 92(+74) 1(-13) 27(+12)
Christopher Kings 88(+74) 4(- 4) 6(- 2)
Hannu Krosing 94(+74) 7(-16) 10(-11)
Jan Wieck 100(+81) 0(- 7) 1(- 6)

TABLE XII
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE

DATASET WITHOUT USING MESSAGE CONTENT. PERFORMANCE

DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN BETWEEN

PARENTHESES.

Name Contribute Not-contribute Overall

Tom Lane 27(+ 8) 11(- 4) 20(+ 3)
Bruce Momjian 41(+20) 12(- 3) 22(+ 5)
Peter Eisentraut 32(+17) 33(+22) 32(+21)
Thomas Lockhart 19(+ 1) 26(+ 9) 26(+ 9)
Andrew Dunstan 21(+ 3) 26(+14) 25(+12)
Alvaro Herrera 23(- 2) 29(+12) 29(+11)
The Hermit Hacker 16(- 2) 21(+ 7) 21(+ 6)
Christopher Kings 24(+10) 28(+20) 28(+20)
Hannu Krosing 42(+22) 33(+10) 33(+12)
Jan Wieck 37(+18) 25(+18) 26(+19)

level 0 or level 1 in the Decision Trees. We want to compare

our model with a model that only uses the Naive Bayesian

classifier to find out if we actually need the other factors.

To explore this question, we redo our experiment twice, once

using only the Naive Bayesian classifier (Table XI), and once

using the Decision Tree without the message content factor

“Naive Bayesian score” (Table XII).

Table XI shows that using only a Naive Bayesian classifier

dramatically increases one of the misclassification rates, either

the not-contribute class as for Tom Lane and Bruce Momjian,

or the contribute class for the other developers. Table XII

shows that ignoring the message content leads to an increase

in the Overall misclassification rates by 3% to 20%. The

Contribute misclassification rate increases by 8% to 22%,

except for Alvaro Herrera and The Hermit Hacker, for whom

it decreases by 2%. The Not-contribute misclassification rate
increased by 7% to 22%, except for Tom Lane and Bruce

Momjian, for whom it decreased by 4% and 3% respectively.

Table XIII shows the average misclassification rate among

the three projects using Naive Bayesian classifier only. The

table shows that the Contribute misclassification rate for

Apache and Python is lower than for PostgreSQL, but still they

are higher than the Contribute misclassification rate using all

contribution factors (Table VIII). The reason of having lower

TABLE XIII
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG

THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER APPLYING BAYESIAN

CLASSIFIER ONLY AND RE-SAMPLING THE DATASET. PERFORMANCE

DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.

Project Contribute Not contribute Overall

Apache 31.7(+19.0) 11.8(-0.7) 12.5(-0.1)
PostgreSQL 72.8(+54.1) 18.4(+4.5) 21.8(+7.4)
Python 31.1(+11.8) 7.1(-2.7) 9.3(-1.7)

TABLE XIV
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG

THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER RE-SAMPLING THE

DATASET WITHOUT USING MESSAGE CONTENT. PERFORMANCE

DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.

Project Contribute Not contribute Overall

Apache 21.3(+08.6) 23.6(+11.1) 23.3(+10.7)
PostgreSQL 28.2(+09.5) 24.4(+10.5) 26.2(+11.8)
Python 31.0(+11.7) 22.6(+12.8) 23.9(+12.9)

Contribute misclassification rate for Apache and Python, is

that the Decision Trees for Apache and Python (some even

exclusively) use the Naive Bayesian Score, whereas those for

PostgreSQL use the other factors more. Table XIV shows the

average misclassification rates for each project without using

message content. The table shows that not using message

content increases the Overall misclassification rate by 10.7%

up to 12.9%. This means that using the other factors with the

Naive Bayesian classifier reduces the misclassification rate.

B. Thread Length
The Top Node analysis shows that the length of a discussion

(thread length) is one of the most important factors for many

of the developers. However, while examining a few of the

Decision Trees, we note that some of the nodes state that the

developer should contribute to a thread when the thread length

≤ 1. Figure 2 shows an example of this in the tree generated

for Thomas Lockhart. This pattern is not consistent for all

developers though, as it does not hold for Christopher Kings

and Hannu Krosing. This means that our model suggests that

whenever there is a new thread posted and the developer is

available online, then the developer should contribute to this

new thread. This seems rather strange as developers are not

available online 24 hours a day, seven days a week. However,

by the time they get online, many emails have been answered

already by other developers. Therefore, we do not expect each

developer to reply to every single thread that is started.

To measure the effect of our composite model without using

the thread length factor, we redo our case study using the re-

sampled training data, excluding the thread length factor. Ta-

ble XV shows that removing the thread length factor improves

the Contribution misclassification rate for some developers

and increases it for others. The Not-contribute and Overall
misclassification rates increase for all developers, except for

the last three and Alvaro Herrera (which was expected since

188

TABLE XV
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE

DATASET WITHOUT USING THREAD LENGTH. PERFORMANCE

DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN BETWEEN

PARENTHESES.

Name contribute Not-contribute Overall

Tom Lane 20(+1) 24(+ 9) 22(+ 5)
Bruce Momjian 18(-3) 30(+15) 26(+ 9)
Peter Eisentraut 16(+1) 13(+ 2) 13(+ 2)
Thomas Lockhart 22(+4) 24(+ 7) 24(+ 7)
Andrew Dunstan 17(-1) 22(+10) 22(+ 9)
Alvaro Herrera 21(-4) 14(- 3) 15(- 3)
The Hermit Hacker 26(+8) 22(+ 8) 23(+ 8)
Christopher Kings 15(+1) 7(- 1) 7(- 1)
Hannu Krosing 20(+0) 9(-14) 9(-12)
Jan Wieck 19(+0) 7(+ 0) 7(+ 0)

TABLE XVI
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG

THE TOP 10 DEVELOPERS FOR EACH PROJECT AFTER RE-SAMPLING THE

DATASET WITHOUT USING THREAD LENGTH. PERFORMANCE

DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.

Project Contribute Not contribute Overall

Apache 12.3(-0.4) 17.3(+4.8) 16.9(+4.3)
PostgreSQL 19.4(+0.7) 17.2(+3.3) 16.8(+2.4)
Python 20.0(+0.7) 12.9(+3.1) 13.5(+2.5)

our Top Node analysis shows that thread length is not an

important factor for them).

The average misclassification rates for the three projects

without using thread length are shown in Table XVI. The

table shows that removing thread length increases the Overall
and Not-contribute misclassification rates. Also, thread length

has a small effect on the Contribute misclassification rate as

the performance changes by less than 1% than the original

model (Table VIII). This means that thread length only slightly

improves our composite model, although thread length appears

at the top levels in the Decision Trees.

C. Developer Privacy
When writing this paper, we struggled with a dilemma about

using the real names of the developers to safeguard the privacy

of the developers. Eventually, we decided not to anonymize

their names for two reasons.

• Publicly Accessible Data: We use developer mailing lists

of three open source systems, in which data is publicly

available. Hence, it is hard to hide developer names.

One way to decipher developer names is by ordering

the developer names by the number of threads they

contributed to and compare these names with Table IV.

• Case Study Replication: Researchers normally replicate

a case study to compare it with a new approach. Some

years ago, a researcher had to replicate our case study

[20] and contacted us to decipher the anonymized names.

Eventually, we decided to use the real names of the devel-

opers, to make it easier for researchers to replicate our case

study and improve our results.

VI. THREATS TO VALIDITY

Our case study was performed using the development mail-

ing list of three open source projects with different domain

and size. Additional case studies on commercial projects are

needed to verify the generality of our findings.

In our study, we use the whole history of the mailing list.

Building models per year may result in different findings.

In future work, we plan to study the developer contribution

characteristics on yearly bases.

We use Decision Trees to build our models, but other

techniques such as Support Vector Machines (SVM) should

be studied and compared. Also, our model uses a small set

of contribution factors, but they all perform well. However,

additional factors should be explored, because they might

improve the performance of our model. Prior work by Bird

[21] uses a subset of our factors.

Marking a thread for a given developer as not to contribute

to it, does not mean that the developer did not read the thread,

but rather that it means either he does not have the correct

information to contribute to this thread or someone already

posted the correct contribution. Also, when our model suggests

not to contribute to a given thread, this does not mean that the

developer should not read the message.

VII. RELATED WORK

Our survey of related work focuses on two categories: work

that mines mailing lists and work that mines software archives

to cope with overload.

Using Mailing List Archives: Previous work uses mailing

lists to study the social structure of developers. Bird et al. [22]

created a developer social network and used it to study the evo-

lution of sub-communities within large projects. Weissgerber

et al. [23] used mailing lists to study the likelihood of a patch

getting accepted and Rigby et al. [24] used mailing lists to

study the code review process. We determine the contribution

of developers to developer mailing list threads.

In addition, several studies used mailing lists to study

developer morale, work times and the code review process.

Rigby and Hassan [20] performed a psychometric study to

identify the personality types of open-source software devel-

opers and to gain insight into the phenomena of pre- and post-

release optimism. Tsunoda et al. [25] observed that, every

year, an increasing number of commit messages are being sent

during overtime periods. Our approach studies the factors that

motivate developers to contribute to a given thread.

Other work used mailing lists to identify architectural

changes [26], to accurately identify actors [27] and to study the

time it takes for developers to be invited into the core group of

a project [28]. Bacchelli et. al. [29] create a benchmark that

evaluates the linking between source code and e-mails. The

work closest to ours is the work done by Bird [21]. He applies

neural networks to predict which emails a developer would be

interested in. Our work differs from Bird’s work in that Bird

builds a single model for all the participants of a mailing list,

while we build personalized models for each participant that

189

has a better performance and presents an explainable model

of the contribution behavior of each developer.

Using Software Archives to cope with overload: Vary

researchers analyze software archives to assist overloaded

people. Anvik et al. [14] applied a supervised machine learning

algorithm on data mined from bug repositories to assist in the

assignment of a bug report to a developer with the appropriate

expertise. This study helps overloaded managers assign bugs

to the right developer. Zimmerman et al. [30] created ROSE,

a tool that uses source code repositories to recommend related

files that may need to be co-changed. Ying et al. [31] created

rule associations for files using information contained in the

source code repository. Using these rules, Ying et al. assist in

the identification of related changes that occur in the future.

Our composite model identifies for overloaded developers

which mailing list threads need their contribution.

VIII. CONCLUSIONS

We build a composite model that explores the contribution

behavior for the top ten developers in mailing lists based on

our factors in 4 dimensions. We applied our composite model

on three open source mailing lists (Apache, PostgreSQL and

Python). Our composite model shows that the contribution

behavior varies between the developers, yet the models are

intuitive and simple to follow. The most important contribution

factors are the message content, developer contribution activity

in the last month and the length of the thread. We are currently

exploring whether our composite model could be used by

the developers in practice to support them to identify which

threads need their contributions from the hundreds of emails

they receive everyday.

REFERENCES
[1] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of developer

irc meetings in open source projects,” in Proc. of 25th IEEE Int. Conf.
on Software Maintenance (ICSM), September 2009, pp. 147–156.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks in postgres,” in Proc. of the int. workshop
on Mining software repositories (MSR), 2006, pp. 137–143.

[3] T. A. Meyer and B. Whateley, “Spambayes: Effective open-source,
bayesian based, email classification system,” in Proc. of the First Conf.
on Email and Anti-Spam (CEAS), 2004.

[4] P. Graham, “A plan for spam,” http://paulgraham.com/spam.html, 2002,
last accessed, March 2010.

[5] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[6] R. Kohavi, “A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 1995, pp. 1137–1145.

[7] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the
risks of using off-the-shelf techniques for processing mailing list data,”
in Proc. of the 25th IEEE Int.Conf. on Software Maintenance (ICSM),
2009, pp. 539–542.

[8] R. Barandela, J. S. Sánchez, V. Garcı́a, and F. J. Ferri, “Learning from
imbalanced sets through resampling and weighting,” in Proc. of the First
Iberian Conf. on Pattern Recongnition and Image Analysis (IbPRIA),
Mallorca, Spain, June 2003, pp. 80–88.

[9] J. Sánchez, R. Barandela, A. Marqués, and R. Alejo, “Performance
evaluation of prototype selection algorithms for nearest neighbor classifi-
cation,” in proc. of the 14th Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI), 2001, pp. 44–50.

[10] R. Barandela, J. S. Sánchez, V. Garcı́a, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognition Research
(JPRR), vol. 36, no. 3, pp. 849–851, 2003.

[11] P. K. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection,”
in Con. on Knowledge Discovery and Data Mining (KDD), 1998, pp.
164–168.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Artificial Intelligence Re-
search (JAIR), vol. 16, pp. 321–357, 2002.

[13] J. Shirabad, T. Lethbridge, and S. Matwin, “Supporting software main-
tenance by mining software update records,” in Proc. of the IEEE Int.
Conf. on Software Maintenance (ICSM), 2001, pp. 22–31.

[14] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proc. of the 28th Int. Conf. on Software Eng. (ICSE), 2006, pp. 361–370.

[15] A. Estabrooks and N. Japkowicz, “A mixture-of-experts framework for
learning from imbalanced data sets,” in Proc. of the 4th Int.Conf. on
Advances in Intelligent Data Analysis (IDA), 2001, pp. 34–43.

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Second European Conf.
on Computational Learning Theory (EuroCOLT), 1995, pp. 23–37.

[17] I. H. Witten and E. Frank, “Data mining: practical machine learning
tools and techniques with java implementations,” Special Interest Group
on Management Of Data (SIGMOD), vol. 31, no. 1, pp. 76–77, 2002.

[18] J. Sayyad Shirabad, Ph.D. dissertation.

[19] A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” proc. of the 21st Int. Conf. on Automated
Software Eng. (ASE), pp. 189–198, 2006.

[20] P. C. Rigby and A. E. Hassan, “What Can OSS Mailing Lists Tell Us?
A Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List,” in Proc. of the Fourth Int. Workshop on Mining Software
Repositories (MSR), 2007, pp. 23–31.

[21] C. Bird, “Predicting email response using mined data,”
http://wwwcsif.cs.ucdavis.edu/�bird/papers/mlpaper.pdf, last accessed,
March 2010.

[22] C. Bird, D. Pattison, R. D’Souza, V. Folkiv, and P. Devanbu, “Latent
Social Structure in Open Source Projects,” in Proc. of the 2008 ACM
SIGSOFT symposium on the Foundations of Software Eng. (FSE), 2008,
pp. 24–35.

[23] P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!” in Proc.
of the Int. Working Conf. on Mining Software Repositories (MSR). New
York, NY, USA: ACM, 2008, pp. 67–76.

[24] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in Proc. of
the 30th Int. Conf. on Software Eng. (ICSE). New York, NY, USA:
ACM, 2008, pp. 541–550.

[25] M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K.-i. Matsumoto,
“Analyzing oss developers’ working time using mailing lists archives,”
in Proc. of the Int. workshop on Mining Software Repositories (MSR),
2006, pp. 181–182.

[26] O. Baysal and A. J. Malton, “Correlating social interactions to release
history during software evolution,” in Proc. of the Fourth Int. Workshop
on Mining Software Repositories (MSR), 2007, p. 7.

[27] G. Robles and J. M. Gonzalez-Barahona, “Developer identification
methods for integrated data from various sources,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pp. 1–5, 2005.

[28] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open
borders? immigration in open source projects.” in Proc. of the Fourth
Int. Workshop on Mining Software Repositories (MSR), 2007, p. 6.

[29] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Working
Conf. on Reverse Eng. (WCRE), 2009, pp. 205–214.

[30] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proc. of the 26th Int. Conf. on
Software Eng. (ICSE), 2004, pp. 563–572.

[31] A. T. T. Ying, R. Ng, and M. C. Chu-Carroll, “Predicting source code
changes by mining change history,” IEEE Trans. Softw. Eng. (TSE),
vol. 30, no. 9, pp. 574–586, 2004.

190

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Nicolas Bettenburg
	Also by Emad Shihab
	Also by Bram Adams
	Also by Ahmed E. Hassan
