
Using a Clone Genealogy Extractor for Understanding and
Supporting Evolution of Code Clones

Miryung Kim and David Notkin
Computer Science & Engineering

University of Washington
Seattle, USA.

{miryung,notkin}@cs.washington.edu

ABSTRACT
Programmers often create similar code snippets or reuse ex-
isting code snippets by copying and pasting. Code clones
—syntactically and semantically similar code snippets—can
cause problems during software maintenance because pro-
grammers may need to locate code clones and change them
consistently. In this work, we investigate (1) how code clones
evolve, (2) how many code clones impose maintenance chal-
lenges, and (3) what kind of tool or engineering process
would be useful for maintaining code clones.

Based on a formal definition of clone evolution, we built a
clone genealogy tool that automatically extracts the history
of code clones from a source code repository (CVS). Our
clone genealogy tool enables several analyses that reveal evo-
lutionary characteristics of code clones. Our initial results
suggest that aggressive refactoring may not be the best so-
lution for all code clones; thus, we propose alternative tool
solutions that assist in maintaining code clones using clone
genealogy information.

1. INTRODUCTION
We define code clones as syntactically similar code snippets
that resemble one another semantically, which are often cre-
ated by copy and paste1. Code clones may induce problems
during software evolution. In particular, when a change is
made to one element in a group of clones, a programmer
must generally make consistent changes to the other ele-
ments in the group. Forgetting to update one or more ele-
ments may leave outdated code, a potential bug. In other
words, code clones impose cognitive overhead because pro-
grammers must remember cloning dependencies to apply the
same change consistently.

1Code clones have no consistent definition in the literature,
but most consider them to be identical or near identical
fragments of source code [5, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MSR’05, May 17, 2005, Saint Louis, Missouri,
USA Copyright 2005 ACM 1-59593-123-6/05/0005...$5.00

Software engineering researchers have addressed problems
surrounding code clones in many ways. First, several kinds
of clone detectors have been built. Clone detectors [3, 4, 6,
7, 10, 11, 13, 14, 15, 17] identify similar code snippets auto-
matically by comparing the internal representation of source
code (e.g., a parametrized token string [3, 11], AST [6, 17],
or PDG [13, 14]). Second, a few programming methodolo-
gists have educated programmers about how to avoid or re-
move code clones. Fowler [8] argues that code duplicates are
bad smells of poor design and programmers should aggres-
sively use refactoring techniques. The Extreme Program-
ming (XP) community has integrated frequent refactoring
as a part of development process. Nickell and Smith [17]
argue that fewer code clones are found in XP process soft-
ware, claiming that the XP process improves software qual-
ity. We believe that these previous research efforts are based
on the following assumptions: (1) code clones indicate poor
software quality, (2) aggressive refactoring would solve the
problem of code clones, and (3) if programmers can locate
code clones, they can improve the quality of the code base.

Based on our study of copy and paste programming prac-
tices [12], we became skeptical about the validity of some of
these assumptions. We found that even skilled programmers
sometimes had no choice but to create and manage code
clones. Subjects copied and pasted code snippets to reuse
the logic that is often not separable given the limitations of
Java programming language. Our subjects often discovered
an appropriate level of abstraction as they copied, pasted,
and modified code; some subjects postponed refactoring un-
til their design decisions become stable.

We hypothesize that programmers create and maintain code
clones for two major reasons: (1) as programmers deal with
volatile design decisions while they add new features or ex-
tend existing features, they prefer not to commit to a partic-
ular level of abstraction too quickly, and (2) programmers
cannot refactor many code clones because of the primary
design decisions in the software and the limitations of pro-
gramming languages. To test our hypothesis, analyzed how
code clones have evolved in two Java open source projects.
We formally defined a model of clone evolution and then
built an analysis tool that automatically extracts the his-
tory of code clones from a set of program versions. Using
this tool, we investigated frequent clone evolution patterns.

Our initial result confirms some conventional wisdom about

17

code clones and also suggests that aggressive refactoring may
not benefit many, perhaps not most, clones:

• Clones are not dormant and programmers often face
the challenge of updating clones consistently. In fact,
32% ∼ 38% of code clones changed consistently with
their counterparts at least once in their history.

• Aggressive refactoring may not be the best solution;
64% ∼ 68% of code clones were not factorable un-
less programmers sacrifice primary design decisions or
make non-local changes.

Because programmers may not be able to remove or avoid all
code clones, we propose clone maintenance tools as effective
alternatives and supplements to refactoring. The proposed
software engineering tools employ clone genealogy informa-
tion—the history of code clones—to assist in maintaining
clones.

The rest of this paper is organized as follows. Section 2
formally defines the model of clone evolution, which serves
the basis of a clone genealogy extractor described in Section
3. Section 4 presents analysis of clone evolution patterns
and discusses implications of our initial result. Section 5
proposes software engineering tools that use clone genealogy
information. Section 6 summarizes and concludes our study.

2. MODEL OF CLONE EVOLUTION
We formally defined the model of clone evolution to reason
how clones change regardless of underlying clone detection
technologies.

The basic unit of our analysis is a Code Snippet which has
two attributes, Text and Location. Text is an internal rep-
resentation of code that a clone detector uses to compare
code snippets. For example, when using CCFinder [11], a
parametrized token sequence is Text, whereas when using
CloneDr [6], Text is an isomorphic AST. A Location is used
to track code snippets across multiple versions of a program;
thus, every code snippet in a particular version of a program
has a unique Location. A Clone Group is a set of code snip-
pets with identical Text.
A Cloning Relationship exists between an old clone group
and a new clone group in two consecutive versions if and
only if the similarity between the clone groups is over a sim-
ilarity threshold simth. An Evolution Pattern is defined
between an old clone group OG in the version k and a new
clone group NG in the version k + 1, where NG and OG
have a Cloning Relationship.

• Same: all code snippets in NG did not change from
OG.

• Add: at least one code snippet in NG is a newly added
one. For example, programmers added a new code
snippet to NG by copying an old code snippet in OG.

• Subtract: at least one code snippet in OG does not
appear in NG. For example, programmers removed
one clone snippet.

A
B

A
B

D
C

A
B

D
C

C

V i V i+1 V i+2 V i+3

A
B

D

Clone group

Code snippet

Location overlapping
relationship

Cloning relationship

Consistent Change Add Inconsistent Change
Subtract

Evolution Patterns

A
D

V i+4

Subtract

Figure 1: Example Clone Lineage

• Consistent Change: all code snippets in OG have
changed consistently; thus they belong to NG together.
For example, programmers applied the same change
consistently to all code clones in OG.

• Inconsistent Change: at least one code snippet in
OG changed inconsistently; thus it does not belong to
NG anymore. For example, a programmer forgot to
change one code snippet in OG.

Clone Lineage is a directed acyclic graph that describes the
evolution history of a sink node (clone group). In a clone
lineage, a clone group (node) in the version k is connected
by an Evolution Pattern (directed edge) from a clone group
in the version k − 1. For example, Figure 1 shows a clone
lineage including Add, Subtract, Consistent Change, and
Inconsistent Change.

Clone Genealogy is a set of clone lineages that have orig-
inated from the same clone group. A clone genealogy is a
connected component where every clone group (node) is con-
nected by at least one evolution pattern (edge). A clone ge-
nealogy approximates how programmers create, propagate,
and evolve code clones by copying, pasting, and modifying
code. Our model is written in the Alloy modeling language
[2] and is available at [1].

3. CLONE GENEALOGY EXTRACTOR
Based on the clone evolution model in Section 2, we built
a tool that automatically extracts clone genealogies over a
project’s lifetime.

Given the source code repository (CVS) of a project, our tool
prepares versions of the project in chronological order. We
used Kenyon’s front-end to identify CVS transactions and
check out the source code that corresponds to each transac-
tion time [9].

Given multiple versions of a program, our tool identifies
clone groups in each version using a clone detector. Our
tool is designed to plug in different types of a clone de-
tector. Currently we use CCFinder [11], a state-of-the-art
clone detector, which compares a parametrized token string
of code to detect code clones. Next, it finds cloning relation-
ships between all consecutive versions using the same clone
detector. Then, it separates each connected component of

18

Table 1: Clone Genealogies in carol and dnsjava
Number of Genealogies carol dnsjava

Total 122 95
False Positive 13 19

Locally Unfactorable 70 (64%) 52 (68%)
Consistent Changed 41 (38%) 24 (32%)

cloning relationships found over the project’s life time and
labels evolution patterns in each connected component. This
connected component is called a clone genealogy.

4. CLONE EVOLUTION ANALYSIS
To understand how clones evolve, we extracted clone ge-
nealogies from two Java open source projects, carol and dns-
java, and studied evolution patterns shown in the genealo-
gies. Carol is a library that allows clients to use different
RMI implementations and it has grown from 7878 lines of
code (LOC) to 23731 LOC from August 2002 to October
2004 (carol.objectweb.org). Dnsjava is a implementation of
DNS in Java, and it has grown from 5038 LOC to 20752
LOC from March 1999 to June 2004 (www.dnsjava.org).

In our analysis, we chose 37 versions out of 164 check-ins
of carol and 39 versions out of 47 releases of dnsjava that
resulted in changes of LOCC (the total number of lines of
code clones).

We set the minimum token length of CCFinder to be 30
tokens because many programmers do not consider short
clones as real clones. We set the similarity threshold simth

for cloning relationships to be 0.3 because empirically we
found that simth 0.3 does not underestimate or overestimate
the size or the length of genealogies.

CCFinder occasionally detects false positive clones that are
similar only in a token sequence, although common sense
says that they are not clones. If clones comprise only a syn-
tactic template, we consider the clones as false positives. In
our previous study of copy and paste programming prac-
tices [12], we defined “a syntactic template” as a template
of repeated code appearing in a row because a programmer
often copies and pastes a code fragment when writing a se-
ries of syntactically similar code fragments. For example, a
programmer often copies a field declaration statement when
writing a block of field declaration, an invocation statement
when writing a static initializer, or a case statement to write
a series of case statements in a switch-case block. We man-
ually removed 13 out of 122 genealogies in carol and 19 out
of 95 genealogies in dnsjava because they comprise only a
syntactic template.

Using the clone genealogy information, we intend to exam-
ine two research questions: (1) how serious is the problem
of code clones? and (2) whether would refactoring benefit
most code clones? For each research question, we describe
our analysis approach, initial result, and implication of our
result.

Q: How many code clones impose maintenance chal-
lenges?

If code clones stay dormant, these unchanging clones might
not pose challenges during software evolution. But consis-
tently changing clones would reduce productivity because
programmers often need to locate code clones and apply the
equivalent change to the code clones.

We define that a clone genealogy includes a consistently
changing pattern if and only if all lineages in the clone ge-
nealogy include at least one “consistent change” pattern.
Our definition is very conservative because, if one lineage in
the genealogy does not include a consistent change pattern,
the genealogy is considered not to have a consistent change
pattern. We measured the number of genealogies with a
consistent change pattern. Out of 109 genealogies in carol,
41 genealogies (38%) include a consistently changing pat-
tern. Out of 76 genealogies in dnsjava, 24 genealogies (32%)
include a consistently changing pasttern (see Table 1). This
result implies that programmers had faced the challenge of
updating clones consistently with other elements in the same
clone group.

Q: Would aggressive refactoring be the best solution
for maintaining code clones?

Finding a new abstraction to remove code duplication has
been a core approach for effective programming. There has
been a broad assumption that code clones are inherently
bad because code clones defy the principle of abstraction.
To examine the validity of this assumption, we set up two
hypotheses.

Hypothesis 1 : Many code clones are not locally factorable
given the primary design decisions of software and the limi-
tations of programming languages.

In our analysis, we define that a clone group is “locally fac-
torable” if a programmer can remove duplication with stan-
dard refactoring techniques, such as pull up a method, ex-
tract a method, remove a method, replace conditional with
polymorphism, etc [8]. On the other hand, if a program-
mer must make non-local changes in the design or modify
publicized interfaces to remove duplication of if a program-
mer cannot remove duplication due to programming lan-
guage limitations, we consider that the clone group is not
locally factorable. Our previous work describes a taxonomy
of locally unfactorable code clones that are often created by
copy and paste [12]. A clone lineage is locally unfactorable if
the latest clone group (a sink node of the lineage) is locally
unfactorable. We define that a clone genealogy is locally
unfactorable if and only if all clone lineages in the geneal-
ogy are locally unfactorable. A locally unfactorable geneal-
ogy means that a programmer cannot discontinue any of its
clone lineages by refactoring.

In the two subject programs, we inspected all clone lineages
and manually labeled them as “locally factorable” or “lo-
cally unfactorable.” Then, we measured how many clone
genealogies are locally unfactorable. 70 genealogies (64%) in
carol and 52 genealogies (68%) in dnsjava comprise locally
unfactorable clone groups; this result indicates that popu-

19

Distribution of Clone Genealogies (Carol)

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28 31 34 37

Genealogy' s Age

N
um

be
r o

f G
en

ea
lo

gy

Alive
Genealogy

Dead
Genealogy

Distribution of Clone Genealogies (Dnsjava)

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31 34 37

Genealogy' s Age

N
um

be
r o

f G
en

ea
lo

gy

Alive
Genealogy

Dead
Genealogy

Figure 2: Many clone genealogies disappear after a
relatively short time.

lar refactoring techniques would not benefit most clones. In
fact, we found that many long-lived, consistently changing
clones are locally unfactorable. Out of 37 genealogies that
lasted more than 20 versions in carol, 19 of them include
both consistent change patterns and locally unfactorable
clones. Out of 11 genealogies that lasted more than 20 ver-
sions in dnsjava, 3 of them include both consistent change
patterns and locally unfactorable clones.

Hypothesis 2 : Programmers prefer not to commit to a par-
ticular abstraction immediately when dealing with volatile
design decisions.

A dead genealogy means that all of its clone lineages were
discontinued because the code clones disappeared, diverged,
or they were refactored. An alive genealogy means that at
least one of its clone lineage is still evolving and the clones
have not disappeared yet. Figure 2 shows distribution of
dead and alive clone genealogies over their age. The age of
a clone genealogy is the number of versions that the geneal-
ogy spans. In carol, out of 53 dead genealogies, 42 genealo-
gies disappeared less than 10 versions. In dnsjava, out of 59
dead genealogies, 41 genealogies disappeared less than 10
versions. We believe that programmers created and main-
tained code clones while they explored new design space, and
then later, they removed, diverged, or refactored the code
clones as the relevant design decisions became stable. When
we manually inspected all dead lineages, we found that 25%
(carol) ∼ 48% (dnsjava) of them were discontinued because

of divergent changes in the clone group. Programmers would
not get the best return on their refactoring investment if the
clones are to diverge.

5. CLONE MAINTENANCE TOOLS
Our study result indicates that popular refactoring tech-
niques may not remove most code clones, especially clones
that are difficult to maintain. Thus, we propose clone main-
tenance tools as alternatives and supplements to refactoring.
This section lists possible software engineering tools that can
be built on top of our clone genealogy extractor.

5.1 Simultaneous Text Editing
Abstraction, isolating code duplication in a programming
language unit, provides two advantages during software evo-
lution. First, programmers can locate the duplicated logic
in one place. Second, programmers can apply the change
only once in the refactored code. Clone detectors automat-
ically locate code clones, resolving the first issue. However,
programmers still need to update code clones manually one
by one when the same change is required, leaving the sec-
ond issue unresolved. Simultaneous text editing [16] is a
new method for automating repetitive text editing. After
describing a set of regions to edit, the user can edit any one
record and see equivalent edits applied simultaneously to all
other records. We propose simultaneous editing of consis-
tently changing clones. The proposed editor uses clone ge-
nealogy information to automatically identify code snippets
that are likely to change consistently in the future. Then,
when a programmer edits one of the clones, upon request,
the equivalent edit is made to other clones simultaneously.
This proposed editor not only provides the same advantages
as abstraction but also allows divergent changes flexibly.

5.2 Cloning Related Bug Detection
Many programming errors occur when programmers create
and update code clones. For example, Li et al., found that a
few errors in Linux were created when a programmer copied
code but failed to rename identifiers correctly in the pasted
code [15]. As another example, Ying et al., also reported a
cloning related bug in Mozilla [18]; a web browser using gtk
UI toolkit and the version using xlib UI toolkit were code
clones. When a developer changed the version using gtk but
did not update the version using xlib, this missed update led
to a serious defect, called “huge font crashes X Windows.”
If a clone genealogy extractor finds clones that have changed
similarly before but change inconsistently later, this infor-
mation may strongly suggest a bug.

Programmers often copy and paste to reuse existing code
snippets. If the copied code contains a bug, this bug can be
propagated to many places via copy and paste. In Mozilla,
we found that a buggy code snippet was copied for 12 times
[12]. If the copied snippets did not change, a clone detec-
tor can locate the buggy snippets automatically. But if the
copied code was modified very differently from its template,
a clone detector may not be able to find it. Our clone ge-
nealogy tool infers how programmers copied, modified, and
evolved existing code. By traversing a genealogy graph, we
can locate code snippets that have originated from the same
buggy code even if they have changed very much.

20

5.3 Decision Support for Maintaining Code
Clones

Clone detectors assist programmers in locating code clones
automatically. However, even if programmers can find all
clones, they may not know which of them should be updated
together when the clones change. The history of code clones
may help programmers to make informed decisions about
how to manage code clone. For example, if a set of clone
snippets have changed consistently in the past, they might
evolve similarly in the future as well. Programmers can
decide what to change together based on the clone history.

We believe that there’s a right timing to refactor code clones.
If programmers refactor code clones too early, they might
not get the best return on their investment because the code
clones may diverge. On the other hand, if programmers
wait too long before they restructure code, they would get
only marginal benefit on their investment. Programmers can
decide when to refactor code clones based on clone genealogy
information: (1) how old clones are and (2) how clones have
changed in the past.

5.4 Locating the Origin of Copied Code
Programmers often copy an example code snippet or a work-
ing component and then modify a small part of it. If pro-
grammers do not fully understand the logic of the copied
code, they cannot adapt the copied code appropriately as
the related design changes. Besides, programmers may have
copied outdated example code and do not know how to make
it up-to-date. In these cases, programmers may want to
find the origin of copied code and consult the original au-
thor. However, CVS history retains only who checked in the
copied code but does not provide who is the original author
or when the original code was written. By overlaying au-
thorship on a clone genealogy, programmers would be able
to find the origin of frequently copied code.

6. CONCLUSIONS
There has been a broad assumption that code clones are
inherently bad because they defy the principle of abstrac-
tion. Thus, previous research efforts focused on mainly two
areas: automatically detecting code clones and educating
programmers how to remove or avoid clones. However, the
history of code clones indicates that this assumption may
not be necessarily true and that the current refactoring so-
lution may not work for many clones. We propose clone
maintenance tools that use clone genealogy information—
code clones’ history that is automatically extracted from a
source code repository.

7. ACKNOWLEDGMENTS
We thank Software Engineering Laboratory at the Osaka
University for providing CCFinder and GRASE lab at the
University of California, Santa Cruz for providing Kenyon.

8. REFERENCES
[1] http://www.cs.washington.edu/homes/miryung/cge.

[2] Micromodels of Software: Lightweight Modelling and
Analysis with Alloy. http://alloy.mit.edu, 2004.

[3] B. S. Baker. A program for identifying duplicated
code. Computing Science and Statistics, 24:49–57,
1992.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and
K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In WCRE, pages
98–107, 2000.

[5] H. A. Basit, D. C. Rajapakse, and S. Jarzabek.
Beyond templates: a study of clones in the STL and
some general implications. In ICSE, 2005.

[6] I. D. Baxter, A. Yahin, L. M. de Moura,
M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368–377, 1998.

[7] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In ICSM, pages 109–118, 1999.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 2000.

[9] GRASE-Lab. User Manual: Kenyon.
http://dforge.cse.ucsc.edu/projects/kenyon, 2005.

[10] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In CASCON.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans.
Software Eng., 28(7):654–670, 2002.

[12] M. Kim, L. Bergman, T. A. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE, pages 83–92, 2004.

[13] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In SAS, pages
40–56, 2001.

[14] J. Krinke. Identifying similar code with program
dependence graphs. In WCRE, pages 301–309, 2001.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI, pages 289–302, 2004.

[16] R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
USENIX Annual Technical Conference, General
Track, pages 161–174, 2001.

[17] E. Nickell and I. Smith. Extreme programming and
software clones. In the Proceedings of the International
Workshop on Software Clones, 2003.

[18] A. T. T. Ying, G. C. Murphy, R. Ng, and
M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Trans. Software Eng.,
30(9):574–586, 2004.

21

